Official City Tree
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Koelreuteria Bipinnata Chinese Flame-Tree1 Edward F
Fact Sheet ST-336 November 1993 Koelreuteria bipinnata Chinese Flame-Tree1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION A yellow carpet of fallen petals, delicate leaflets which cast a mosaic of welcoming shade, and large clusters of persistent rose-colored, papery capsules all help to make Chinese Flame-Treetree a very popular landscape tree over a wide area of the south (Fig. 1). One of only a few yellow-flowering trees for the mid- and deep-south landscape. This broad-spreading, deciduous tree reaches a height of 40 to 60 feet and eventually takes on a flat-topped, somewhat irregular silhouette. It is often used as a patio, shade, street, or specimen tree. The small, fragrant, yellow flowers appear in very showy, dense, terminal panicles in early summer, and are followed in late summer or fall by large clusters of the two-inch-long "Chinese lanterns". These papery husks are held above the foliage and retain their pink color after drying and are very popular for use in everlasting flower arrangements. The bark on Chinese Flame-Tree is smooth and light brown when young, becoming ridged and furrowed as the tree matures. Easily distinquished from Koelreuteria paniculata since Koelreuteria bipinnata has more upright branches and has twice compound leaves, whereas Koelreuteria paniculata has single pinnate compound leaves. Figure 1. Young Chinese Flame-Tree. GENERAL INFORMATION USDA hardiness zones: 7 through 10A (Fig. 2) Origin: not native to North America Scientific name: Koelreuteria bipinnata Uses: container or above-ground planter; large Pronunciation: kole-roo-TEER-ee-uh parking lot islands (> 200 square feet in size); wide bye-pih-NAY-tuh tree lawns (>6 feet wide); medium-sized parking lot Common name(s): Chinese Flame-Tree, islands (100-200 square feet in size); medium-sized Bougainvillea Goldenraintree tree lawns (4-6 feet wide); recommended for buffer Family: Sapindaceae 1. -
Koelreuteria Bipinnata: Chinese Flame-Tree1 Edward F
ENH-495 Koelreuteria bipinnata: Chinese Flame-Tree1 Edward F. Gilman and Dennis G. Watson2 Introduction USDA hardiness zones: 7A through 10A (Fig. 2) Origin: not native to North America A yellow carpet of fallen petals, delicate leaflets which cast a Invasive potential: This one is not listed on the UF/IFAS mosaic of welcoming shade, and large clusters of persistent Assessment of the Status of Non-Native Plants in Florida’s rose-colored, papery capsules all help to make Chinese Natural Areas flame-tree a very popular landscape tree over a wide area Uses: reclamation; shade; street without sidewalk; of the South. One of only a few yellow-flowering trees for specimen; parking lot island < 100 sq ft; parking lot island the mid- and deep-south landscape. This broad-spreading, 100-200 sq ft; parking lot island > 200 sq ft; sidewalk cutout deciduous tree reaches a height of 40 to 60 feet and eventu- (tree pit); tree lawn 3-4 feet wide; tree lawn 4-6 feet wide; ally takes on a flat-topped, somewhat irregular silhouette. tree lawn > 6 ft wide; urban tolerant; highway median; It is often used as a patio, shade, street, or specimen tree. container or planter The small, fragrant, yellow flowers appear in very showy, Availability: not native to North America dense, terminal panicles in early summer, and are followed in late summer or fall by large clusters of the two-inch-long “Chinese lanterns”. These papery husks are held above the foliage and retain their pink color after drying and are very popular for use in everlasting flower arrangements. -
Desirable Plant List
Carpinteria-Summerland Fire Protection District High Fire Hazard Area Desirable Plant List Desirable Qualities for Landscape Plants within Carpinteria/Summerland High Fire Hazard areas • Ability to store water in leaves or • Ability to withstand drought. stems. • Prostrate or prone in form. • Produces limited dead and fine • Ability to withstand severe pruning. material. • Low levels of volatile oils or resins. • Extensive root systems for controlling erosion. • Ability to resprout after a fire. • High levels of salt or other compounds within its issues that can contribute to fire resistance. PLANT LIST LEGEND Geographical Area ......... ............. Water Needs..... ............. Evergreen/Deciduous C-Coastal ............. ............. H-High . ............. ............. E-Evergreen IV-Interior Valley ............. ............. M-Moderate....... ............. D-Deciduous D-Deserts ............. ............. L-Low... ............. ............. E/D-Partly or ............. ............. VL -Very Low .... ............. Summer Deciduous Comment Code 1 Not for use in coastal areas......... ............ 13 ........ Tends to be short lived. 2 Should not be used on steep slopes........ 14 ........ High fire resistance. 3 May be damaged by frost. .......... ............ 15 ........ Dead fronds or leaves need to be 4 Should be thinned bi-annually to ............ ............. removed to maintain fire safety. remove dead or unwanted growth. .......... 16 ........ Tolerant of heavy pruning. 5 Good for erosion control. ............. ........... -
Mechanisms Underpinning the Onset of Seed Coat Impermeability And
www.nature.com/scientificreports OPEN Mechanisms underpinning the onset of seed coat impermeability and dormancy-break in Astragalus Received: 13 November 2018 Accepted: 24 June 2019 adsurgens Published: xx xx xxxx Ganesh K. Jaganathan1, Jiajin Li1, Matthew Biddick2, Kang Han1, Danping Song1, Yashu Yang1, Yingying Han1 & Baolin Liu1 Impermeable seed coats, i.e. physical dormancy (PY) infuence the germination ecology of plants from 18 angiosperm families. Astragalus adsurgens (Fabaceae; Papilinoidaae) is a perennial plant widespread in temperate regions that is thought to produce both permeable and impermeable seeds. Why seeds vary in the permeability of their coat, in addition to the mechanisms by which impermeable seeds break dormancy, are not completely understood. However, seeds are often consumed by herbivores; a phenomenon that might facilitate the germination of impermeable seeds. Here, we tested whether: (1) moisture content plays a signifcant role in the onset of seed coat impermeability (and therefore PY) at similar ranges reported for species from tropical ecosystems; and (2) the presence of impermeable coats ofer any benefts for seed survival when consumed by animals. We tested these hypotheses using A. adsurgens seeds collected from Inner Mongolia, China. Freshly collected seeds with a moisture content of 9.7% were permeable to water and therefore not physically dormant. However, seeds became impermeable when dried below a threshold of 6.5% moisture content. Treating impermeable seeds with hydrochloric acid efectively broke dormancy. Scanning electron microscope (SEM) revealed that HCl treated seeds had a narrow opening in the hilum and extra-hilar regions, through which water entered. Seeds with impermeable coats survived signifcantly better than permeable seeds when consumed by cows. -
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? CAMPINAS 2020 TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Fernando Roberto Martins ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO/TESE DEFENDIDA PELO ALUNO TIAGO PEREIRA RIBEIRO DA GLORIA E ORIENTADA PELO PROF. DR. FERNANDO ROBERTO MARTINS. CAMPINAS 2020 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Gloria, Tiago Pereira Ribeiro da, 1988- G514c GloComo a variação no número cromossômico pode indicar relações evolutivas entre a Caatinga, o Cerrado e a Mata Atlântica? / Tiago Pereira Ribeiro da Gloria. – Campinas, SP : [s.n.], 2020. GloOrientador: Fernando Roberto Martins. GloDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. Glo1. Evolução. 2. Florestas secas. 3. Florestas tropicais. 4. Poliploide. 5. Ploidia. I. Martins, Fernando Roberto, 1949-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: How can chromosome number -
Project Site Location and Description Methods
October 23, 2020 5 Hutton Centre Drive, Suite 750 Santa Ana, California 92707 Glendale Community College District 1500 N Verdugo Rd, Glendale, CA 91208 Subject: Biological Resources Reconnaissance Assessment for the Glendale Community College District 2019 Glendale Community College District Facilities Master Plan Update Chambers Group, Inc. (Chambers Group) was retained by the Glendale Community College District (GCCD) to conduct a literature review and biological reconnaissance-level survey for the Glendale Community College District 2019 Glendale Community College District Facilities Master Plan Update (Project). The purpose of this survey was to document existing vegetation communities, identify special status species with a potential for occurrence, and map habitats that could support special status wildlife species as well as evaluate potential impacts of the Project to these resources. This biological reconnaissance memo report will then be incorporated into the Natural Environment Study – Minimal Impacts Report for this Project. Project Site Location and Description The historic Verdugo Campus is located at 1500 North Verdugo Road in the City of Glendale, California 91208. The Verdugo Campus is built on the terraced hillside of the San Rafael Hills in Verdugo Canyon. The campus boundaries are defined to the east by State Route 2, the Glendale Freeway, Mountain Avenue to the south, and Verdugo Road to the west. The campus consists of 100 acres and is surrounded by residential land uses, small businesses, schools, parks, churches, and an adjacent open space. The elevation range at the Project site ranges from 740 to 1,030 feet above mean sea level (amsl). Maps of the Project Location and Project Vicinity are provided in Attachment 1 (Figure 1 – Project Location and Vicinity Map). -
Koelreuteria Paniculata Goldenraintree1 Edward F
Fact Sheet ST-338 November 1993 Koelreuteria paniculata Goldenraintree1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Goldenraintree grows 30 to 40 feet tall with an equal spread, in a broad, somewhat irregular globe- shape (Fig. 1). Some trees appear vase-shaped. Although it has a reputation for being weak wooded, it is rarely attacked by pests and grows in a wide range of soils, including high pH soils. Goldenraintree tolerates dryness and casts little shade because of the open growth habit. It makes a good street or parking lot tree, particularly where overhead or soil space is limited, due to its adaptive abilities. The tree grows moderately and bears large panicles of bright yellow flowers in May (USDA hardiness zone 9) to July (USDA hardiness zone 6) when few other trees bloom. It is not as showy as Koelreuteria bipinnata but is much more cold-tolerant. The seed pods look like brown chinese lanterns and are held on the tree well into the fall. Figure 1. Middle-aged Goldenraintree. GENERAL INFORMATION in the highway; reclamation plant; shade tree; small parking lot islands (< 100 square feet in size); narrow Scientific name: Koelreuteria paniculata tree lawns (3-4 feet wide); specimen; sidewalk cutout Pronunciation: kole-roo-TEER-ee-uh (tree pit); residential street tree; tree has been pan-ick-yoo-LAY-tuh successfully grown in urban areas where air pollution, Common name(s): Goldenraintree, Varnish-Tree poor drainage, compacted soil, and/or drought are Family: Sapindaceae common USDA hardiness zones: 5B through 9 (Fig. 2) Availability: generally available in many areas within Origin: not native to North America its hardiness range Uses: container or above-ground planter; large parking lot islands (> 200 square feet in size); wide tree lawns (>6 feet wide); medium-sized parking lot islands (100-200 square feet in size); medium-sized tree lawns (4-6 feet wide); recommended for buffer strips around parking lots or for median strip plantings 1. -
Caesalpiniaceae) Species
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Phyton, Annales Rei Botanicae, Horn Jahr/Year: 1988 Band/Volume: 28_2 Autor(en)/Author(s): Gottsberger Gerhard, Silberbauer-Gottsberger Ilse Artikel/Article: Evolution of Flower Structures and Pollination in Neotropical Cassiinae (Caesalpiniaceae) Species. 293-320 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Phyton (Austria) Vol. 28 Fasc. 2 293-320 15.12.1988 Evolution of Flower Structures and Pollination in Neotropical Cassiinae (Caesalpiniaceae) Species*) By Gerhard GOTTSBERGER and Ilse SILBERBAUER-GOTTSBERGER**) With 9 Figures Received February 18th, 1988 Key words: Caesalpiniaceae, Cassiinae, Cassia, Chamaecrista, Senna. — Flow- er evolution, pollination. - Flora of the Neotropics. - Hymenoptera. Summary GOTTSBERGER G. & SILBERBAUER-GOTTSBERGER 1.1988. Evolution of flower struc- tures and pollination in neotropical Cassiinae (Caesalpiniaceae) species. - Phyton (Austria) 28 (2): 293-320, 9 figures. - English with German summary. Poricidal anther dehiscence occurs in the majority of the species of the subtribe Cassiinae (Caesalpiniaceae); it implies a constraint for pollination through pollen- collecting female bees able to vibrate flowers. In open pollen-flowers, poricidal anthers also provide protection against pollen depletion by rainfall, as well as provide a means for more efficient and more economic pollination. The ovaries of the Cassiinae as also in the majority of the Fabales are elongated. It is shown that the longer the ovaries the more ovules they contain. The trend in the Cassiinae to approximate the position of the pollen releasing anther openings and the stigma is realized in different ways. In Cassia and many Senna species, at least some of the stamens are so long that the anther openings reach about the same level as the stigma. -
Illustration Sources
APPENDIX ONE ILLUSTRATION SOURCES REF. CODE ABR Abrams, L. 1923–1960. Illustrated flora of the Pacific states. Stanford University Press, Stanford, CA. ADD Addisonia. 1916–1964. New York Botanical Garden, New York. Reprinted with permission from Addisonia, vol. 18, plate 579, Copyright © 1933, The New York Botanical Garden. ANDAnderson, E. and Woodson, R.E. 1935. The species of Tradescantia indigenous to the United States. Arnold Arboretum of Harvard University, Cambridge, MA. Reprinted with permission of the Arnold Arboretum of Harvard University. ANN Hollingworth A. 2005. Original illustrations. Published herein by the Botanical Research Institute of Texas, Fort Worth. Artist: Anne Hollingworth. ANO Anonymous. 1821. Medical botany. E. Cox and Sons, London. ARM Annual Rep. Missouri Bot. Gard. 1889–1912. Missouri Botanical Garden, St. Louis. BA1 Bailey, L.H. 1914–1917. The standard cyclopedia of horticulture. The Macmillan Company, New York. BA2 Bailey, L.H. and Bailey, E.Z. 1976. Hortus third: A concise dictionary of plants cultivated in the United States and Canada. Revised and expanded by the staff of the Liberty Hyde Bailey Hortorium. Cornell University. Macmillan Publishing Company, New York. Reprinted with permission from William Crepet and the L.H. Bailey Hortorium. Cornell University. BA3 Bailey, L.H. 1900–1902. Cyclopedia of American horticulture. Macmillan Publishing Company, New York. BB2 Britton, N.L. and Brown, A. 1913. An illustrated flora of the northern United States, Canada and the British posses- sions. Charles Scribner’s Sons, New York. BEA Beal, E.O. and Thieret, J.W. 1986. Aquatic and wetland plants of Kentucky. Kentucky Nature Preserves Commission, Frankfort. Reprinted with permission of Kentucky State Nature Preserves Commission. -
September 29, 2015 20884 Jemellee Cruz Flood Maintenance
September 29, 2015 20884 Jemellee Cruz Flood Maintenance Division County of Los Angeles Department of Public Works 900 South Fremont Avenue, Annex Building Alhambra, California 91803 SUBJECT: RESULTS FROM THE FOCUSED PLANT SURVEY FOR SOFT-BOTTOM CHANNEL REACH 112, BALLONA CREEK, MAINTENANCE PROJECT, LOS ANGELES COUNTY, CALIFORNIA. TASK ORDER NUMBER FMD-C339 Dear Ms. Cruz: This letter report summarizes the findings of the focused plant survey conducted for the Soft-Bottom Channel (SBC) Reach 112, Ballona Creek, for the Los Angeles County Flood Control District (LACFCD) to support the Regional Water Quality Control Board (RWQCB) Waste Discharge Requirements (WDR) for the proposed actions relating to the Ballona Creek SBC Reach Annual Maintenance Project (Project). Information contained in this document is in accordance with accepted scientific and technical standards that are consistent with the requirements of United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW). The Project reach is located in the Marina Del Rey area of the City of Los Angeles and is surrounded mainly by residential, commercial, and industrial development. The Project is located west of Interstate 405, east of Marina Del Rey, and north of the Los Angeles International Airport (Figure 1), from Centinela Avenue to Pacific Avenue. The proposed impact area includes: . The expanse from the top of the riprap on one bank, across the channel, to the top of the riprap on the other bank . A 50-foot buffer around any tree or shrub identified as having a 0.5-inch or more root diameter within the Ballona Creek Project area (landward side of levee on one bank, across the channel, to the landward side of levee on the other bank plus an additional 15-foot buffer if it is contained within the LACFCD easement) . -
UNDERUTILIZED CULTIVARS of NATIVE TREES for NORTH and CENTRAL FLORIDA Jason A
CouncilThe Quarterly Quarterly Newsletter of the Florida Urban Forestry Council 2015 Issue Two The Council Quarterly newsletter is published quarterly by the Florida Urban Forestry Council and is intended as an educational benefit to our members. Information may be reprinted if credit is given to the author(s) and this newsletter. All pictures, articles, advertisements, and other data are in no way to be construed as an endorsement of the author, products, services, or techniques. Likewise, the statements and opinions expressed herein are those of the individual authors and do not represent the view of the Florida Urban Forestry Council or its Executive Committee. This newsletter is made possible by the generous support of the Florida Department of Agriculture and Consumer Services, Florida Forest Service, Adam H. Putnam Commissioner. IMPROVING ON NATIVES: UNDERUTILIZED CULTIVARS OF NATIVE TREES FOR NORTH AND CENTRAL FLORIDA Jason A. Smith, Associate Professor – University of Florida - School of Forest Resources and Conservation Most of us in the business of helping increase awareness and demand. Perhaps But, if that doesn’t work, feel free to contact create and maintain healthy urban forests this will get the ball rolling in changing me. in Florida recognize the urgent need to what we plant. diversify our palette of trees that are Acer saccharum x barbatum ‘Sandersville’ planted. The benefits of diversification are The following cultivars I present all (Harvest Moon® Southern sugar maple) – realized both immediately and in the future. represent selections of our native trees with Many people think red maple (Acer rubrum) We now know about the dire consequences various superior attributes. -
Anther and Gynoecium Structure and Development of Male and Female Gametophytes of Koelreuteria Elegans Subsp
Flora 255 (2019) 98–109 Contents lists available at ScienceDirect Flora journal homepage: www.elsevier.com/locate/flora Anther and gynoecium structure and development of male and female gametophytes of Koelreuteria elegans subsp. formosana (Sapindaceae): T Phylogenetic implications ⁎ Adan Alberto Avalosa,1, Lucía Melisa Zinia,1, María Silvia Ferruccia, Elsa Clorinda Lattara,b, a IBONE-UNNE-CONICET, Sargento Cabral 2131, C.P. 3400 Corrientes, Argentina b Cátedra de Morfología de Plantas Vasculares, Facultad de Ciencias Agrarias, Sargento Cabral 2131, C.P. 3400 Corrientes, Argentina ARTICLE INFO ABSTRACT Edited by Louis Ronse De Craene Anther and gynoecium structure and embryological information in Koelreuteria and Sapindaceae as a whole fl Keywords: remain understudied, as well as the evolution of imperfect owers in the latter. The aims of this study were to Monoecy analys in K. elegans subsp. formosana the anther and gynoecium structure and the development of male and Microsporogenesis female gametophytes in the two floral morphs of putatively imperfect flowers. Standard techniques were applied Orbicules for LM and SEM. Compared to the normal anther development in staminate flowers, a delayed programmed cell The pollen tube transmitting tract death of tapetum, septum and middle layers on the onset of microspore stage result in indehiscent anthers in the Ovule campylotropous functionally pistillate flowers. Orbicules are reported for the first time in Sapindaceae. Gynoecium development Character evolution in functionally pistillate flowers is normal, whereas in functionally staminate ones a pistillode with degenerated ovules at the tetrad stage is formed. The pollen tube transmitting tract consists of one layer of epithelial cells with a small lumen in the style and ovary.