Mutational Analysis of Active Site Residues of Human Adenosine Deaminase*

Total Page:16

File Type:pdf, Size:1020Kb

Mutational Analysis of Active Site Residues of Human Adenosine Deaminase* THEJOURNAL OF BIOLOGICAL CHEMISTRY Vol. 268, No. E, Issue of March 15, pp. 546”5470,1993 0 1993 by The American Society for Biochemistry and Molecular Biology, Inc Printed in U.S.A. Mutational Analysis of Active Site Residues of Human Adenosine Deaminase* (Received for publication, September 8, 1992) Dipa Bhaumik, Jeffrey Medin$, Karen Gathy, and Mary Sue Coleman8 From the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599 Adenosine deaminase was overexpressed in a bacu- combined immunodeficiency (Giblett et al., 1972). These pa- lovirus system. The pure recombinant and native en- tients have no obvious gastrointestinal tract abnormalities, zymes were identical in size,Zn2+ content, and activity. but they do exhibit a dramaticlymphopenia that seems to be Five amino acids, in proximity to the active site, were a direct consequence of the absence of adenosine deaminase replaced by mutagenesis. The altered enzymes were (Coleman et al., 1978; Donofrio et al., 1978). purified to homogeneity and compared to wild-type Potent inhibitors of adenosine deaminase are lympholytic adenosine deaminase with respect to zinc content, en- in humans, and this property hasbeen exploited in the treat- zymatic activity, and kinetic parameters. All but one ment of certain leukemias, the hallmark of which is accumu- of the alterations produced significant activitypertur- lation of differentiation-arrested lymphocytes (Coleman, bations. Replacement of Cysz02produced a protein that 1983). Ground and transition stateanalog inhibitors have also retained at least 30-40% of wild-type activity.In con- proven useful in studies of the reaction mechanism of aden- trast, replacements of His17, His214,Hiszs8, and Glu217 resulted in dramatic losses of enzyme activity. None of osine deaminase. With a rate enhancementof about lo‘’, this these mutants exhibited large variations in K,. The enzyme is among the most efficient that have been described proteins produced from alterations of amino acids im- (Frick et al., 1987). A hydrate tetrahedral intermediate has plicated in metal coordination were slightly activated been postulated from a large number of chemical studies by inclusion ofZnz+ throughout purification. These (Evans and Wolfenden, 1973; Wolfenden et al., 1969; Kurz experiments confirm that in the active enzyme Zn2+ and Frieden, 1983). The most convincing evidence for this plays a critical role in catalysis, that a histidine or intermediate reaction product is from 13C NMR studies of glutamate residue plays a mechanistic role in the hy- adenosine deaminase bound to purine riboside (1,6-dihydro- drolytic deamination step, and that cysteine is not in- purine riboside), in which a change of hybridization from sp2 volved in the catalytic mechanism of adenosine deam- to sp3 is detected (Kurz and Frieden, 1987). Subsequent UV inase. These data support the roles for these amino acid and NMR studies confirmed that this inhibitor is bound as residues suggested from the x-ray structure of murine an oxygen adduct, presumably hydrated at the 1,6 position adenosine deaminase (Wilson, D. K., Rudolf, F. B., and (Jones et al., 1989). This covalent hydrate with C6 in the Quicho, F. A. (1991)Science 252, 1278-1284). adenosine deaminase-purine riboside complex has been con- firmed recently by the determination of its structure by x-ray crystallography (Wilson et al., 1991). Unexpectedly, the crys- talstructure also revealed that adenosine deaminase is a Adenosine deaminase (EC 3.5.4.4), an important enzyme of metalloenzyme that complexes 1 mol of Zn2+ per molof the purine salvage pathway, catalyzes the irreversible hydro- protein. lytic deamination of adenosine or deoxyadenosine to inosine Solution of the crystal structure of a mammalian adenosine or deoxyinosine. Adenosine deaminase is expressed at very deaminase provided knowledge of the amino acids in the high levels along the entire murine gastrointestinal tract, in active site. However, at pH4.2, where crystals were generated thymic T cells and in decidual cells of the developing mater- for x-ray analysis, adenosine deaminase is almost completely nal-fetal interface (Lee, 1973; Knudsen et al., 1988 and 1989; inactive, and at this pH thesubstrate analogue, purine ribo- Witte et al., 1991). In humans,the upper gastrointestinal tract side is only weakly bound (Wolfenden and Kati, 1991). Con- is devoid of this enzyme activity, but high levels are expressed struction of mutations in active site residues coupled with in the lower part of the tract. determination of functional consequences of each mutation The wide spectrum of adenosine deaminase activity in under conditions of optimal enzyme activity, will permit de- mammalian tissues portended an important role for purine tailed characterization of the reaction pathway and descrip- metabolism in nutrition and reproduction. However, the en- tion of enzyme intermediates. tirepurine salvage pathway, and adenosine deaminase in In this study, guided in selection of targets by the crystal particular, became the focus of intenseinterest with the structure, we have altered key amino acid residues within the observation that hereditary deficiency of the enzyme in hu- active site of human adenosine deaminase, an enzyme that is man infants is invariably associated with a form of severe highly homologous to its murine counterpart. The recombi- nant enzymes were expressed in a baculovirus system and * This work was supported in part by United States Public Health purified to homogeneity on a monoclonal antibody affinity Service Grant CA26391 (to M. S. C.). The costs of publication of this column. Kinetic characteristics,stabilities, and metal binding article were defrayed in part by the payment of page charges. This capacities of the altered enzymes were assessed and correlated article must therefore be hereby marked “aduertisement” in accord- ance with 18 U.S.C. Section 1734 solely to indicate this fact. with mechanistic models. $ Recipient of an Army Predoctoral Fellowship in Biotechnology. Present address: Laboratory of Molecular Growth Regulation, EXPERIMENTALPROCEDURES NICHD, National Institutes of Health, Bethesda, MD 20892. Materials-Oligodeoxynucleotide primers used in constructing mu- § To whom correspondence should be addressed. tations and sequencing were synthesized at the University of Ken- 5464 This is an Open Access article under the CC BY license. MutationalAnalysis of AdenosineDeaminase 5465 tucky Macromolecular Structure Facility on an Applied Biosystems stage. The infection was allowed to continue for 4 days after which 380B DNA synthesizer. Restriction endonucleases were from United the larvae were collected and frozen immediately at -70 "C. The States Biochemicals and New England Biolabs. Sequenase DNA mutants H17A and H214L were overexpressed in Sf-9 and High-5 sequencing kits were obtained from United States Biochemicals. [a- cells. For cellular infection, 2.5 X 107cellsin T-175 flasks were infected 36S]dATPand [14C]adenosinewere Du Pont-New England Nuclear at a multiplicity of infection of 10 with the appropriate virus stock. products. The polyclonal antibody used in these experiments was Cells were harvested 65-h postinfection, washed twice with cold raised inrabbits in our laboratory against homogeneous human phosphate-buffered saline, and frozen at -70 "C. adenosine deaminase. The anti-adenosine deaminase monoclonal an- Purification of Recombinant Proteins-Wild-type adenosine de- tibody (NlD1) used in the study was also generated in our laboratory aminase was purified from frozen larvae by adenosine-affinity chro- and propagated in ascitesfluid (Philips etal., 1987).All other reagents matography (Medin et al., 1990). Briefly, frozen larvae (28 g) contain- were of the highest commercial grade available. ing the recombinant protein were homogenized in a buffer (10 mM Bacterial Strains and Vectors-The Escherichia coli strains used sodium acetate, pH 6.4, 2 mM EGTA, 5 mM benzamidine, 10 mM 6- for plasmid propagation were CJ236 and DH5a (Bethesda Research aminocaproic acid, 5 mM phenylmethylsulfonyl fluoride), and centri- Laboratories). The plasmid vector M13 mp18 was used for site- fuged at 30,000 X g for 30 min. Protamine sulfate was added to the directed mutagenesis of the adenosine deaminase cDNA. The bacu- crude extract and allowed to precipitate. The clarified supernatant lovirus transfer vector pAcC4, a generous gift from Cetus, was used obtained after centrifugation was loaded onto a DEAE-Sephadex in homologous recombination experiments to construct specific bac- column (25 X 5 cm). The protein was eluted with the same buffer ulovirus variants. containing 0.5 M sodium chloride and concentrated by ammonium Viruses, Cells, and Larvae-Autographa californica nuclear poly- sulfate precipitation. The precipitate, resuspended ina minimum hedrosis virus (ACMNPV strain Li, Invitrogen Corp.) and Spodoptera volume (-8 ml) of phosphate-buffered saline, pH 7.4, was applied to frugiperda (Sf-9) insect cells (Invitrogen) used were propagated in the an adenosine-Sepharose column (110 X 1.5 cm) (Schrader and Stacy, laboratory and used in the protein expression experiments. The 1977), and the fractions containing the major adenosine deaminase second insect cell line, High-5 (Invitrogen), was derived from eggs of activity were pooled and concentrated by ultrafiltration. the cabbage looper and was an alternate host for recombinant bacu- Mutant proteins were isolated by using a monoclonal antibody lovirus propagation.
Recommended publications
  • 35 Disorders of Purine and Pyrimidine Metabolism
    35 Disorders of Purine and Pyrimidine Metabolism Georges van den Berghe, M.- Françoise Vincent, Sandrine Marie 35.1 Inborn Errors of Purine Metabolism – 435 35.1.1 Phosphoribosyl Pyrophosphate Synthetase Superactivity – 435 35.1.2 Adenylosuccinase Deficiency – 436 35.1.3 AICA-Ribosiduria – 437 35.1.4 Muscle AMP Deaminase Deficiency – 437 35.1.5 Adenosine Deaminase Deficiency – 438 35.1.6 Adenosine Deaminase Superactivity – 439 35.1.7 Purine Nucleoside Phosphorylase Deficiency – 440 35.1.8 Xanthine Oxidase Deficiency – 440 35.1.9 Hypoxanthine-Guanine Phosphoribosyltransferase Deficiency – 441 35.1.10 Adenine Phosphoribosyltransferase Deficiency – 442 35.1.11 Deoxyguanosine Kinase Deficiency – 442 35.2 Inborn Errors of Pyrimidine Metabolism – 445 35.2.1 UMP Synthase Deficiency (Hereditary Orotic Aciduria) – 445 35.2.2 Dihydropyrimidine Dehydrogenase Deficiency – 445 35.2.3 Dihydropyrimidinase Deficiency – 446 35.2.4 Ureidopropionase Deficiency – 446 35.2.5 Pyrimidine 5’-Nucleotidase Deficiency – 446 35.2.6 Cytosolic 5’-Nucleotidase Superactivity – 447 35.2.7 Thymidine Phosphorylase Deficiency – 447 35.2.8 Thymidine Kinase Deficiency – 447 References – 447 434 Chapter 35 · Disorders of Purine and Pyrimidine Metabolism Purine Metabolism Purine nucleotides are essential cellular constituents 4 The catabolic pathway starts from GMP, IMP and which intervene in energy transfer, metabolic regula- AMP, and produces uric acid, a poorly soluble tion, and synthesis of DNA and RNA. Purine metabo- compound, which tends to crystallize once its lism can be divided into three pathways: plasma concentration surpasses 6.5–7 mg/dl (0.38– 4 The biosynthetic pathway, often termed de novo, 0.47 mmol/l). starts with the formation of phosphoribosyl pyro- 4 The salvage pathway utilizes the purine bases, gua- phosphate (PRPP) and leads to the synthesis of nine, hypoxanthine and adenine, which are pro- inosine monophosphate (IMP).
    [Show full text]
  • Purine Metabolism in Cultured Endothelial Cells
    PURINE METABOLISM IN MAN-III Biochemical, Immunological, and Cancer Research Edited by Aurelio Rapado Fundacion Jimenez Diaz Madrid, Spain R.W.E. Watts M.R.C. Clinical Research Centre Harrow, England and Chris H.M.M. De Bruyn Department of Human Genetics University of Nijmegen Faculty of Medicine Nijmegen, The Netherlands PLENUM PRESS · NEW YORK AND LONDON Contents of Part Β I. PURINE METABOLISM PATHWAYS AND REGULATION A. De Novo Synthesis; Precursors and Regulation De Novo Purine Synthesis in Cultured Human Fibroblasts 1 R.B. Gordon, L. Thompson, L.A. Johnson, and B.T. Emmerson Comparative Metabolism of a New Antileishmanial Agent, Allopurinol Riboside, in the Parasite and the Host Cell 7 D. J. Nelson, S.W. LaFon, G.B. Elion, J.J. Marr, and R.L. Berens Purine Metabolism in Rat Skeletal Muscle 13 E. R. Tully and T.G. Sheehan Alterations in Purine Metabolism in Cultured Fibroblasts with HGPRT Deficiency and with PRPPP Synthetase Superactivity 19 E. Zoref-Shani and 0. Sperling Purine Metabolism in Cultured Endothelial Cells 25 S. Nees, A.L. Gerbes, B. Willershausen-Zönnchen, and E. Gerlach Determinants of 5-Phosphoribosyl-l-Pyrophosphate (PRPP) Synthesis in Human Fibroblasts 31 K.0, Raivio, Ch. Lazar, H. Krumholz, and M.A. Becker Xanthine Oxidoreductase Inhibition by NADH as a Regulatory Factor of Purine Metabolism 35 M.M. Jezewska and Z.W. Kaminski vii viii CONTENTS OF PART Β Β. Nucleotide Metabolism Human Placental Adenosine Kinase: Purification and Characterization 41 CM. Andres, T.D. Palella, and I.H. Fox Long-Term Effects of Ribose on Adenine Nucleotide Metabolism in Isoproterenol-Stimulated Hearts .
    [Show full text]
  • Metabolomics Identifies Pyrimidine Starvation As the Mechanism of 5-Aminoimidazole-4-Carboxamide-1- Β-Riboside-Induced Apoptosis in Multiple Myeloma Cells
    Published OnlineFirst April 12, 2013; DOI: 10.1158/1535-7163.MCT-12-1042 Molecular Cancer Cancer Therapeutics Insights Therapeutics Metabolomics Identifies Pyrimidine Starvation as the Mechanism of 5-Aminoimidazole-4-Carboxamide-1- b-Riboside-Induced Apoptosis in Multiple Myeloma Cells Carolyne Bardeleben1, Sanjai Sharma1, Joseph R. Reeve3, Sara Bassilian3, Patrick Frost1, Bao Hoang1, Yijiang Shi1, and Alan Lichtenstein1,2 Abstract To investigate the mechanism by which 5-aminoimidazole-4-carboxamide-1-b-riboside (AICAr) induces apoptosis in multiple myeloma cells, we conducted an unbiased metabolomics screen. AICAr had selective effects on nucleotide metabolism, resulting in an increase in purine metabolites and a decrease in pyrimidine metabolites. The most striking abnormality was a 26-fold increase in orotate associated with a decrease in uridine monophosphate (UMP) levels, indicating an inhibition of UMP synthetase (UMPS), the last enzyme in the de novo pyrimidine biosynthetic pathway, which produces UMP from orotate and 5-phosphoribosyl- a-pyrophosphate (PRPP). As all pyrimidine nucleotides can be synthesized from UMP, this suggested that the decrease in UMP would lead to pyrimidine starvation as a possible cause of AICAr-induced apoptosis. Exogenous pyrimidines uridine, cytidine, and thymidine, but not purines adenosine or guanosine, rescued multiple myeloma cells from AICAr-induced apoptosis, supporting this notion. In contrast, exogenous uridine had no protective effect on apoptosis resulting from bortezomib, melphalan, or metformin. Rescue resulting from thymidine add-back indicated apoptosis was induced by limiting DNA synthesis rather than RNA synthesis. DNA replicative stress was identified by associated H2A.X phosphorylation in AICAr-treated cells, which was also prevented by uridine add-back.
    [Show full text]
  • TITLE Adenylate Kinase 2 Deficiency Causes NAD+ Depletion and Impaired Purine Metabolism During Myelopoiesis
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.450633; this version posted July 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. TITLE Adenylate Kinase 2 deficiency causes NAD+ depletion and impaired purine metabolism during myelopoiesis AUTHORS Wenqing Wang1, Andew DeVilbiss2, Martin Arreola1, Thomas Mathews2, Misty Martin-Sandoval2, Zhiyu Zhao2, Avni Awani1, Daniel Dever1, Waleed Al-Herz3, Luigi Noratangelo4, Matthew H. Porteus1, Sean J. Morrison2, Katja G. Weinacht1, * 1. Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305 USA 2. Children’s Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390 USA 3. Department of Pediatrics, Faculty of Medicine, Kuwait University, Safat, 13110 Kuwait 4. Laboratory of Clinical Immunology and Microbiology, National Institute of Health, BETHESDA MD 20814 USA * Corresponding author ABSTRACT Reticular Dysgenesis is a particularly grave from of severe combined immunodeficiency (SCID) that presents with severe congenital neutropenia and a maturation arrest of most cells of the lymphoid lineage. The disease is caused by biallelic loss of function mutations in the mitochondrial enzyme Adenylate Kinase 2 (AK2). AK2 mediates the phosphorylation of adenosine monophosphate (AMP) to adenosine diphosphate (ADP) as substrate for adenosine triphosphate (ATP) synthesis in the mitochondria. Accordingly, it has long been hypothesized that a decline in OXPHOS metabolism is the driver of the disease. The mechanistic basis for Reticular Dysgenesis, however, remained incompletely understood, largely due to lack of appropriate model systems to phenocopy the human disease.
    [Show full text]
  • Adenosine Deaminase (ADA) Isoenzymes ADA1 and ADA2 in Biological Fluids
    Eur Respir J 1997; 10: 2186–2187 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10092186 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 CORRESPONDENCE Adenosine deaminase (ADA) isoenzymes ADA1 and ADA2 in biological fluids To the Editor: readily obtained by measuring total ADA and the ADA2 which is not inhibited by 100 mmol·L-1 of added EHNA. We read with great interest the editorial by GAKIS [1] In fact, this method is being increasingly used by acquired about the extreme importance of the adenosine deami- immune deficiency syndrome (AIDS) researchers since nase (ADA) isoenzymes ADA1 and ADA2 on the some authors have reported a higher serum ADA activ- homeostasis of 2' deoxyadenosine and adenosine, espe- ity in human immunodeficiency virus (HIV)-1 positive cially when monocytes and macrophages are infected patients [4]. By the method we propose, some authors by intracellular microorganisms. Serum ADA activity have found that ADA2 isoenzyme activity is of con- is increased in various conditions such as liver disease, siderable prognostic value in AIDS and adult T-cell tuberculosis, typhoid, infective mononucleosis and cer- leukaemia (ATL) cases [5, 6]. tain malignancies, especially those of haematopoietic origin. The origin of serum ADA and the mechanisms by which serum activities are increased have not been References fully elucidated. 1. Gakis C. Adenosine deaminase (ADA) isoenzymes ADA1 Whatever the biological role of ADA1 and ADA2, it and ADA2: diagnostic and biological role. Eur Respir has been demonstrated that the presence (low or high) J 1996; 632–633. of these isoenzymes in biological fluids has diagnostic 2.
    [Show full text]
  • Role of the HPRG Component of Striated Muscle AMP Deaminase in the Stability and Cellular Behaviour of the Enzyme
    biomolecules Review Role of the HPRG Component of Striated Muscle AMP Deaminase in the Stability and Cellular Behaviour of the Enzyme Francesca Ronca * and Antonio Raggi Laboratory of Biochemistry, Department of Pathology, University of Pisa, via Roma 55, 56126 Pisa, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-050-2218-273; Fax: +39-050-2218-660 Received: 19 July 2018; Accepted: 20 August 2018; Published: 23 August 2018 Abstract: Multiple muscle-specific isoforms of the Zn2+ metalloenzyme AMP deaminase (AMPD) have been identified based on their biochemical and genetic differences. Our previous observations suggested that the metal binding protein histidine-proline-rich glycoprotein (HPRG) participates in the assembly and maintenance of skeletal muscle AMP deaminase (AMPD1) by acting as a zinc chaperone. The evidence of a role of millimolar-strength phosphate in stabilizing the AMPD-HPRG complex of both AMPD1 and cardiac AMP deaminase (AMPD3) is suggestive of a physiological mutual dependence between the two subunit components with regard to the stability of the two isoforms of striated muscle AMPD. The observed influence of the HPRG content on the catalytic behavior of the two enzymes further strengthens this hypothesis. Based on the preferential localization of HPRG at the sarcomeric I-band and on the presence of a Zn2+ binding motif in the N-terminal regions of fast TnT and of the AMPD1 catalytic subunit, we advance the hypothesis that the Zn binding properties of HPRG could promote the association of AMPD1 to the thin filament. Keywords: AMP deaminase (AMPD); histidine-proline-rich glycoprotein (HPRG); striated muscle; Troponin T (TnT) 1.
    [Show full text]
  • STRIPE2 Encodes a Putative Dcmp Deaminase That Plays an Important Role in Chloroplast Development in Rice
    Available online at www.sciencedirect.com ScienceDirect JGG Journal of Genetics and Genomics 41 (2014) 539e548 ORIGINAL RESEARCH STRIPE2 Encodes a Putative dCMP Deaminase that Plays an Important Role in Chloroplast Development in Rice Jing Xu a, Yiwen Deng a, Qun Li a, Xudong Zhu b,*, Zuhua He a,* a National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China b China National Rice Research Institute, Hangzhou 31006, China Received 31 March 2014; revised 8 May 2014; accepted 9 May 2014 Available online 19 June 2014 ABSTRACT Mutants with abnormal leaf coloration are good genetic materials for understanding the mechanism of chloroplast development and chlorophyll biosynthesis. In this study, a rice mutant st2 (stripe2) with stripe leaves was identified from the g-ray irradiated mutant pool. The st2 mutant exhibited decreased accumulation of chlorophyll and aberrant chloroplasts. Genetic analysis indicated that the st2 mutant was controlled by a single recessive locus. The ST2 gene was finely confined to a 27-kb region on chromosome 1 by the map-based cloning strategy and a 5-bp deletion in Os01g0765000 was identified by sequence analysis. The deletion happened in the joint of exon 3 and intron 3 and led to new spliced products of mRNA. Genetic complementation confirmed that Os01g0765000 is the ST2 gene. We found that the ST2 gene was expressed ubiquitously. Subcellular localization assay showed that the ST2 protein was located in mitochondria. ST2 belongs to the cytidine deaminase-like family and possibly functions as the dCMP deaminase, which catalyzes the formation of dUMP from dCMP by deamination.
    [Show full text]
  • Purine Nucleoside Phosphorylase, Or Adenosine Deaminase (Lesch-Nyhan Syndrome/Immunodeficiency) L
    Proc. Natl. Acad. Sci. USA Vol. 75, No. 8, pp. 3722 -3726, August 1978 Biochemistry Purine metabolism in cultured human fibroblasts derived from patients deficient in hypoxanthine phosphoribosyltransferase, purine nucleoside phosphorylase, or adenosine deaminase (Lesch-Nyhan syndrome/immunodeficiency) L. F. THOMPSON*, R. C. WILLIS*, J. W. STOOPt, AND J. E. SEEGMILLER* * Department of Medicine, University of California, San Diego, La Jolla, California 92093; and t University Children's Hospital, Het Wilhelmina Kinderziekenhuis, Nieuwe Gracht 137, Utrecht, The Netherlands Contributed by J. Edwin Seegmiller, June 8, 1978 ABS14RACT Rates of purine synthesis de novo, as measured tive, high molecular weight form. Thus, either an increase in by the incorporation of [4C]formate into newly synthesized the concentration of PP-ribose-P or a decrease in the levels of purines, have been determined in cultured human fibroblasts derived from normal individuals and from patients deficient inhibitory nucleotides could potentially accelerate the rate of in adenosine deaminase, purine nucleoside phosporylase, or purine synthesis de novo and result in purine "overproduction." hypoxanthine phosphoribosyltransferase, three consecutive This communication concerns the study of purine metabolism enzymes of the purnne salvage pathway. All four types of cell in cultured human fibroblasts deficient in each of three en- lines are capable of incorporating [14C]formate into purines at zymes of the purine salvage pathway and attempts to define approximately the same
    [Show full text]
  • ADAR RNA Editing Below the Backbone
    Downloaded from rnajournal.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW ADAR RNA editing below the backbone LIAM KEEGAN, ANZER KHAN, DRAGANA VUKIC, and MARY O’CONNELL CEITEC at Masaryk University Brno, Pavilion A35, Brno CZ-62500, Czech Republic ABSTRACT ADAR RNA editing enzymes (adenosine deaminases acting on RNA) that convert adenosine bases to inosines were first identified biochemically 30 years ago. Since then, studies on ADARs in genetic model organisms, and evolutionary comparisons between them, continue to reveal a surprising range of pleiotropic biological effects of ADARs. This review focuses on Drosophila melanogaster, which has a single Adar gene encoding a homolog of vertebrate ADAR2 that site-specifically edits hundreds of transcripts to change individual codons in ion channel subunits and membrane and cytoskeletal proteins. Drosophila ADAR is involved in the control of neuronal excitability and neurodegeneration and, intriguingly, in the control of neuronal plasticity and sleep. Drosophila ADAR also interacts strongly with RNA interference, a key antiviral defense mechanism in invertebrates. Recent crystal structures of human ADAR2 deaminase domain–RNA complexes help to interpret available information on Drosophila ADAR isoforms and on the evolution of ADARs from tRNA deaminase ADAT proteins. ADAR RNA editing is a paradigm for the now rapidly expanding range of RNA modifications in mRNAs and ncRNAs. Even with recent progress, much remains to be understood about these groundbreaking ADAR RNA modification systems. Keywords: ADAR; Drosophila melanogaster; RNA editing; dsRNA; RNA modification; epitranscriptome INTRODUCTION tion detected by standard RNA-seq. Therefore, studies on ADAR RNA editing began much earlier and they now also ADARs: promiscuous and site-specific RNA editing lead the way toward understanding the effects of a range of other enzymatic modifications that have been found more re- ADARs (adenosine deaminases acting on RNA) were dis- cently in mRNA (O’Connell et al.
    [Show full text]
  • Identification of ADAR1 Adenosine Deaminase Dependency in a Subset
    ARTICLE https://doi.org/10.1038/s41467-018-07824-4 OPEN Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells Hugh S. Gannon1,2, Tao Zou1,2, Michael K. Kiessling3,4, Galen F. Gao 2, Diana Cai1,2, Peter S. Choi1,2, Alexandru P. Ivan 1, Ilana Buchumenski5, Ashton C. Berger2, Jonathan T. Goldstein2, Andrew D. Cherniack 1,2, Francisca Vazquez 2, Aviad Tsherniak 2, Erez Y. Levanon 5, William C. Hahn 1,2,6,7 & Matthew Meyerson 1,2,7,8 1234567890():,; Systematic exploration of cancer cell vulnerabilities can inform the development of novel cancer therapeutics. Here, through analysis of genome-scale loss-of-function datasets, we identify adenosine deaminase acting on RNA (ADAR or ADAR1) as an essential gene for the survival of a subset of cancer cell lines. ADAR1-dependent cell lines display increased expression of interferon-stimulated genes. Activation of type I interferon signaling in the context of ADAR1 deficiency can induce cell lethality in non-ADAR1-dependent cell lines. ADAR deletion causes activation of the double-stranded RNA sensor, protein kinase R (PKR). Disruption of PKR signaling, through inactivation of PKR or overexpression of either a wild- type or catalytically inactive mutant version of the p150 isoform of ADAR1, partially rescues cell lethality after ADAR1 loss, suggesting that both catalytic and non-enzymatic functions of ADAR1 may contribute to preventing PKR-mediated cell lethality. Together, these data nominate ADAR1 as a potential therapeutic target in a subset of cancers. 1 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
    [Show full text]
  • Identification of the Enzymatic Pathways of Nucleotide Metabolism in Human Lymphocytes and Leukemia Cells'
    [CANCER RESEARCH 33, 94-103, January 1973] Identification of the Enzymatic Pathways of Nucleotide Metabolism in Human Lymphocytes and Leukemia Cells' E. M. Scholar and P. Calabresi Department of Medicine, The Roger Williams General Hospital, Providence, Rhode Island 02908, and The Division of Biological and Medical Sciences,Brown University, Providence,Rhode Island 02912 SUMMARY monocytes, and lymphocytes, it is difficult to know in what particular fraction an enzyme activity is present. It would therefore be advantageous to separate out the different Extracts of lymphocytes from normal donors and from components of the leukocyte fraction before investigating patients with chronic lymphocytic leukemia (CLL) and acute their enzymatic activities. All previously reported work on the lymphoblastic leukemia were examined for a variety of enzymes of purine nucleotide metabolism was done at best in enzymes with activity for purine nucleotide biosynthesis, the whole white blood cell fraction. Those enzymes found to interconversion, and catabolism as well as for a selected be present included adenine and guanine phosphoribosyltrans number of enzymes involved in pyrimidine nucleotide ferase (2, 32), PNPase2 (7), deoxyadenosine deaminase (7), metabolism. Lymphocytes from all three donor types (normal, ATPase (4), and inosine kinase (21). CLL, acute lymphocytic leukemia) contained the following A detailed knowledge of the enzymatic pathways of purine enzymatic activities: adenine and guanine phosphoribosyl and pyrimidine nucleotide metabolism in normal lymphocytes transferase , adenosine kinase , nucieoside diphosphate kinase, and leukemia cells is important in elucidating any biochemical adenylate kinase, guanylate kinase, cytidylate kinase, uridylate differences that may exist. Such differences may be exploited kinase, adenosine deaminase, purine nucleoside phosphorylase, in chemotherapy and in gaining and understanding of the and adenylate deaminase (with ATP).
    [Show full text]
  • Genome-Wide Transcriptional Analysis of Carboplatin Response in Chemosensitive and Chemoresistant Ovarian Cancer Cells
    1605 Genome-wide transcriptional analysis of carboplatin response in chemosensitive and chemoresistant ovarian cancer cells David Peters,1,2 John Freund,2 and Robert L. Ochs2 variety of disease processes, including cancer. Patterns of global gene expression can reveal the molecular pathways 1 Department of Pharmacology and Therapeutics, University of relevant to the disease process and identify potential new Liverpool, United Kingdom and 2Precision Therapeutics, Inc., Pittsburgh, Pennsylvania therapeutic targets. The use of this technology for the molecular classification of cancer was recently shown with the identification of an expression profile that was Abstract predictive of patient outcome for B-cell lymphoma (1). We have recently described an ex vivo chemoresponse In addition, this study showed that histologically similar assay for determining chemosensitivity in primary cultures tumors can be differentiated based on their gene expression of human tumors. In this study, we have extended these profiles. Ultimately, these unique patterns of gene expres- experiments in an effort to correlate chemoresponse data sion may be used as guidelines to direct different modes of with gene expression patterns at the level of transcription. therapy. Primary cultures of cells derived from ovarian carcinomas Although it is widely recognized that patients with the of individual patients (n = 6) were characterized using same histologic stage and grade of cancer respond to the ChemoFx assay and classified as either carboplatin therapies differently, few clinical tests can predict indi- sensitive (n = 3) or resistant (n = 3). Three representa- vidual patient responses. The next great challenge will be tive cultures of cells from each individual tumor were then to use the power of post-genomic technology, including subjected to Affymetrix gene chip analysis (n = 18) using microarray analyses, to correlate gene expression patterns U95A human gene chip arrays.
    [Show full text]