Neurofilament Depletion Improves Microtubule Dynamics Via Modulation of Stat3/Stathmin Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Neurofilament Depletion Improves Microtubule Dynamics Via Modulation of Stat3/Stathmin Signaling Edinburgh Research Explorer Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling Citation for published version: Yadav, P, Selvaraj, BT, Bender, FLP, Behringer, M, Moradi, M, Sivadasan, R, Dombert, B, Blum, R, Asan, E, Sauer, M, Julien, JP & Sendtner, M 2016, 'Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling', Acta Neuropathologica, vol. 132, no. 1, pp. 93-110. https://doi.org/10.1007/s00401-016-1564-y Digital Object Identifier (DOI): 10.1007/s00401-016-1564-y Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Acta Neuropathologica Publisher Rights Statement: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 Acta Neuropathol (2016) 132:93–110 DOI 10.1007/s00401-016-1564-y ORIGINAL PAPER Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling Preeti Yadav1 · Bhuvaneish T. Selvaraj1,5 · Florian L. P. Bender1 · Marcus Behringer4 · Mehri Moradi1 · Rajeeve Sivadasan1 · Benjamin Dombert1 · Robert Blum1 · Esther Asan2 · Markus Sauer4 · Jean‑Pierre Julien3 · Michael Sendtner1 Received: 24 August 2015 / Revised: 14 March 2016 / Accepted: 15 March 2016 / Published online: 28 March 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com Abstract In neurons, microtubules form a dense array motoneurons and restores axon elongation. This effect is within axons, and the stability and function of this micro- mediated by interaction of neurofilament with the stath- tubule network is modulated by neurofilaments. Accu- min complex. Accumulating neurofilaments associate with mulation of neurofilaments has been observed in several stathmin in axons of pmn mutant motoneurons. Depletion forms of neurodegenerative diseases, but the mechanisms of neurofilament by Nefl knockout increases Stat3–stathmin how elevated neurofilament levels destabilize axons are interaction and stabilizes the microtubules in pmn mutant unknown so far. Here, we show that increased neurofila- motoneurons. Consequently, counteracting enhanced neu- ment expression in motor nerves of pmn mutant mice, a rofilament expression improves axonal maintenance and model of motoneuron disease, causes disturbed microtu- prolongs survival of pmn mutant mice. We propose that this bule dynamics. The disease is caused by a point mutation mechanism could also be relevant for other neurodegenera- in the tubulin-specific chaperone E (Tbce) gene, leading to tive diseases in which neurofilament accumulation and loss an exchange of the most C-terminal amino acid tryptophan of microtubules are prominent features. to glycine. As a consequence, the TBCE protein becomes instable which then results in destabilization of axonal Keywords Axon degeneration · Neurofilament · microtubules and defects in axonal transport, in particu- Microtubules · Stathmin · Stat3 lar in motoneurons. Depletion of neurofilament increases the number and regrowth of microtubules in pmn mutant Introduction Electronic supplementary material The online version of this Destabilization of axon terminals and axon degenera- article (doi:10.1007/s00401-016-1564-y) contains supplementary tion are key pathological features in amyotrophic lateral material, which is available to authorized users. sclerosis (ALS) and spinal muscular atrophy (SMA), the * Michael Sendtner most common forms of motoneuron disease [6, 33, 62, [email protected] 68]. Despite progress in the identification of underlying gene defects [41, 58, 60], the cellular mechanisms that are 1 Institute of Clinical Neurobiology, University of Wuerzburg, 97078 Würzburg, Germany responsible for loss of motor function, degeneration of neu- romuscular endplates, destabilization of axons and finally 2 Institute of Anatomy and Cell Biology, University of Wuerzburg, 97070 Würzburg, Germany death of motoneuron cell bodies are not fully understood [20]. SMA and ALS are considered both clinically and 3 Department of Psychiatry and Neurosciences, Research Centre of Institut Universitaire en Santé Mentale de Québec, genetically as distinct disorders. However, they share com- University Laval, Quebec, Canada mon features. On the clinical side, dysfunction and degen- 4 Department of Biotechnology and Biophysics, University eration of neuromuscular endplates appears as an early of Wuerzburg, 97074 Würzburg, Germany symptom in both disorders, and alterations of the axonal 5 MRC Centre for Regenerative Medicine, University cytoskeleton are characteristic at early stages of both dis- of Edinburgh, Edinburgh, UK eases [16, 29, 35]. Accumulation of spheroids in proximal 1 3 94 Acta Neuropathol (2016) 132:93–110 axons is commonly observed in ALS, and these spheroids background were crossed with heterozygous Nefl knockout primarily contain neurofilaments [13, 23, 52]. In a mouse mice on a C57BL/6 genetic background [83] to produce model of SMA, the density of intermediate filaments in double heterozygous Nefl / ; pmn / mice. These mice + − + − proximal and distal axons is highly increased [9], similar were then backcrossed with NMRI genetic background for as in tg(SOD1*G93A) mutant mice [75], a model for a at least four generations to obtain a uniform NMRI genetic common form of familial ALS. This increased density of background. Subsequently, the heterozygous Nefl / ; + − neurofilaments coincides with lack of axonal sprouting and pmn / were intercrossed to obtain the mice investigated + − increased dynamics and instability of axonal microtubules in this work. NMRI genetic background was preferred [19, 22, 37, 38], indicating that the increased density of over C57BL/6 to obtain bigger litter sizes under a situation intermediate filaments and destabilization of microtubules when two autosomal recessive traits (pmn and Nefl) had to are functionally connected. be crossed to obtain the desired genotypes. Nefl knockout Neurofilaments modulate microtubule stability and thus and corresponding control wild-type mice on a C57BL/6 axon caliber and microtubule functions in axonal transport genetic background were used for the immunoprecipitation [49]. NFL is required for the assembly of neurofilaments, experiments. All experimental procedures were approved as NFM and NFH cannot form intermediate filaments in by animal care and ethic committee of the University of the absence of NFL [17, 18]. Abnormal accumulation of Wuerzburg, the Veterinäramt of the City of Wuerzburg neurofilaments causes neuronal degeneration by disrupting and the Regierung von Unterfranken, and were performed axonal transport of cargos required for the maintenance of according to the guidelines of the European Union. All axon terminals [10]. Depletion of axonal neurofilaments in mice were maintained under a 12-h light/dark cycle with Nefl / and tg(Prph);Nefl / neurons leads to improved food and water ad libitum. − − − − axonal transport of mitochondria and lysosomes [56]. It also increases life span in tg(SOD1*G85R) mutant mice Antibodies [79] and attenuates the neurodegenerative disease pheno- type in tau T44 transgenic mice [28]. However, the precise Antibodies against neurofilament-light chain Ab9035 molecular mechanisms how neurofilament depletion stabi- (Western blot), and NFL mouse monoclonal, Cat# MCA- lizes microtubules, improves axonal transport and prevents DA2 (immunostaining), tyrosinated α-tubulin (clone YL1/2; axon degeneration have remained unclear. ab6160) and stathmin-1 (clone EP1573Y; ab52630) were Here we show that NFL depletion in pmn mutant mice obtained from Abcam. The specificity of these antibodies [7, 46, 66] increases microtubule stability and delays axon and in particular the stathmin antibody has been tested in degeneration. Disruption of the Nefl gene in pmn mutant previous studies [5, 66]. After stathmin-1 knockout [5] or mice increases microtubule numbers in motor axons, and lentiviral knockdown [66] the corresponding Stathmin-1 ameliorates the disease phenotype. This effect appears to band was completely abolished in Western blots. Neurofil- be caused by interaction of NFL with a protein complex ament-heavy chain antibody (AB5539) was obtained from including stathmin and signal transducer and activator of Millipore, eIF2α (D7D3), p-STAT3Y705 (D3A7), and Stat3 transcription-3 (Stat3). Interaction of Stat3 and stathmin is (124H6) (9139S) antibodies from Cell Signaling Technol- increased upon NFL depletion. Enhanced Stat3–stathmin ogy.
Recommended publications
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement
    International Journal of Molecular Sciences Review The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement 1, , 2, 3,4 Sara Bachiller * y , Isabel M. Alonso-Bellido y , Luis Miguel Real , Eva María Pérez-Villegas 5 , José Luis Venero 2 , Tomas Deierborg 1 , José Ángel Armengol 5 and Rocío Ruiz 2 1 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Sölvegatan 19, 221 84 Lund, Sweden; [email protected] 2 Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla/Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain; [email protected] (I.M.A.-B.); [email protected] (J.L.V.); [email protected] (R.R.) 3 Unidad Clínica de Enfermedades Infecciosas, Hospital Universitario de Valme, 41014 Sevilla, Spain; [email protected] 4 Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, 29071 Universidad de Málaga, Spain 5 Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain; [email protected] (E.M.P.-V.); [email protected] (J.Á.A.) * Correspondence: [email protected] These authors contributed equally to the work. y Received: 14 July 2020; Accepted: 31 August 2020; Published: 3 September 2020 Abstract: Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases.
    [Show full text]
  • Neurofilaments and Neurofilament Proteins in Health and Disease
    Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Neurofilaments and Neurofilament Proteins in Health and Disease Aidong Yuan,1,2 Mala V. Rao,1,2 Veeranna,1,2 and Ralph A. Nixon1,2,3 1Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962 2Department of Psychiatry, New York University School of Medicine, New York, New York 10016 3Cell Biology, New York University School of Medicine, New York, New York 10016 Correspondence: [email protected], [email protected] SUMMARY Neurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neuro- filament middle]; NF-H [neurofilament heavy]; and a-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expan- sion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons exten- sively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionallyspecialized networkthat undergoes exceptionallyslow local turnoverand serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskel- eton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Gene Discovery and Mechanism of Disease in the Myopathies
    Gene discovery and mechanism of disease in the myopathies Heather Best Primary supervisor: A/Prof Sandra Cooper Associate supervisors: The Late A/Prof Nigel Clarke, Dr Michaela Yuen and Dr Frances Lemckert A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy The Institute for Neuroscience and Muscle Research The Children’s Hospital at Westmead, Sydney, NSW, Australia Discipline of Child and Adolescent Health, Faculty of Medicine The University of Sydney, NSW, Australia February 2018 STATEMENT OF ORIGINALITY The contents of this thesis have not been presented for the award of a degree or diploma at this or any other university. The data presented are the original work of the author except where specifically indicated in the text. i AUTHOR CONTRIBUTION Chapter 2 Part A of this thesis is published as: O'Grady, G. L., Best, H.A., Oates, E.C., Kaur, S., Charlton, A., Brammah, S., Punetha, J., Kesari, A., North, K.N., Ilkovsli, B., Hoffman, E.P., Clarke, N.F. (2015). "Recessive ACTA1 variant causes congenital muscular dystrophy with rigid spine." Eur J Hum Genet 23, 883-886 Heather Best carried out the functional characterisation of the ACTA1 variant which became Figure 2 E-L of our publication. Heather contributed to drafting/revising the manuscript. NB: Dr Gina O’Grady’s PhD thesis included this publication. Dr O’Grady collated the clinical data for Patient 1 and 2, interpreted NGS results, drafted the manuscript, constructed the figures, and managed all aspects of paper submission. Chapter 4 Part A of this thesis is published as: O'Grady, G.
    [Show full text]
  • Supplementary Table 3 Gene Microarray Analysis: PRL+E2 Vs
    Supplementary Table 3 Gene microarray analysis: PRL+E2 vs. control ID1 Field1 ID Symbol Name M Fold P Value 69 15562 206115_at EGR3 early growth response 3 2,36 5,13 4,51E-06 56 41486 232231_at RUNX2 runt-related transcription factor 2 2,01 4,02 6,78E-07 41 36660 227404_s_at EGR1 early growth response 1 1,99 3,97 2,20E-04 396 54249 36711_at MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F 1,92 3,79 7,54E-04 (avian) 42 13670 204222_s_at GLIPR1 GLI pathogenesis-related 1 (glioma) 1,91 3,76 2,20E-04 65 11080 201631_s_at IER3 immediate early response 3 1,81 3,50 3,50E-06 101 36952 227697_at SOCS3 suppressor of cytokine signaling 3 1,76 3,38 4,71E-05 16 15514 206067_s_at WT1 Wilms tumor 1 1,74 3,34 1,87E-04 171 47873 238623_at NA NA 1,72 3,30 1,10E-04 600 14687 205239_at AREG amphiregulin (schwannoma-derived growth factor) 1,71 3,26 1,51E-03 256 36997 227742_at CLIC6 chloride intracellular channel 6 1,69 3,23 3,52E-04 14 15038 205590_at RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 1,68 3,20 1,87E-04 55 33237 223961_s_at CISH cytokine inducible SH2-containing protein 1,67 3,19 6,49E-07 78 32152 222872_x_at OBFC2A oligonucleotide/oligosaccharide-binding fold containing 2A 1,66 3,15 1,23E-05 1969 32201 222921_s_at HEY2 hairy/enhancer-of-split related with YRPW motif 2 1,64 3,12 1,78E-02 122 13463 204015_s_at DUSP4 dual specificity phosphatase 4 1,61 3,06 5,97E-05 173 36466 227210_at NA NA 1,60 3,04 1,10E-04 117 40525 231270_at CA13 carbonic anhydrase XIII 1,59 3,02 5,62E-05 81 42339 233085_s_at OBFC2A oligonucleotide/oligosaccharide-binding
    [Show full text]
  • Axonal Degeneration in Paraplegin-Deficient Mice Is Associated with Abnormal Mitochondria and Impairment of Axonal Transport
    Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport Fatima Ferreirinha, … , Andrea Ballabio, Elena I. Rugarli J Clin Invest. 2004;113(2):231-242. https://doi.org/10.1172/JCI20138. Article Neuroscience In several neurodegenerative diseases, axonal degeneration occurs before neuronal death and contributes significantly to patients’ disability. Hereditary spastic paraplegia (HSP) is a genetically heterogeneous condition characterized by selective degeneration of axons of the corticospinal tracts and fasciculus gracilis. HSP may therefore be considered an exemplary disease to study the local programs mediating axonal degeneration. We have developed a mouse model for autosomal recessive HSP due to mutations in the SPG7 gene encoding the mitochondrial ATPase paraplegin. Paraplegin-deficient mice are affected by a distal axonopathy of spinal and peripheral axons, characterized by axonal swelling and degeneration. We found that mitochondrial morphological abnormalities occurred in synaptic terminals and in distal regions of axons long before the first signs of swelling and degeneration and correlated with onset of motor impairment during a rotarod test. Axonal swellings occur through massive accumulation of organelles and neurofilaments, suggesting impairment of anterograde axonal transport. Retrograde axonal transport is delayed in symptomatic mice. We speculate that local failure of mitochondrial function may affect axonal transport and cause axonal degeneration. Our data
    [Show full text]
  • 1 SUPPLEMENTAL DATA Figure S1. Poly I:C Induces IFN-Β Expression
    SUPPLEMENTAL DATA Figure S1. Poly I:C induces IFN-β expression and signaling. Fibroblasts were incubated in media with or without Poly I:C for 24 h. RNA was isolated and processed for microarray analysis. Genes showing >2-fold up- or down-regulation compared to control fibroblasts were analyzed using Ingenuity Pathway Analysis Software (Red color, up-regulation; Green color, down-regulation). The transcripts with known gene identifiers (HUGO gene symbols) were entered into the Ingenuity Pathways Knowledge Base IPA 4.0. Each gene identifier mapped in the Ingenuity Pathways Knowledge Base was termed as a focus gene, which was overlaid into a global molecular network established from the information in the Ingenuity Pathways Knowledge Base. Each network contained a maximum of 35 focus genes. 1 Figure S2. The overlap of genes regulated by Poly I:C and by IFN. Bioinformatics analysis was conducted to generate a list of 2003 genes showing >2 fold up or down- regulation in fibroblasts treated with Poly I:C for 24 h. The overlap of this gene set with the 117 skin gene IFN Core Signature comprised of datasets of skin cells stimulated by IFN (Wong et al, 2012) was generated using Microsoft Excel. 2 Symbol Description polyIC 24h IFN 24h CXCL10 chemokine (C-X-C motif) ligand 10 129 7.14 CCL5 chemokine (C-C motif) ligand 5 118 1.12 CCL5 chemokine (C-C motif) ligand 5 115 1.01 OASL 2'-5'-oligoadenylate synthetase-like 83.3 9.52 CCL8 chemokine (C-C motif) ligand 8 78.5 3.25 IDO1 indoleamine 2,3-dioxygenase 1 76.3 3.5 IFI27 interferon, alpha-inducible
    [Show full text]
  • Neurofilaments As Biomarkers in Neurological Disorders
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Neurofilaments as biomarkers in neurological disorders Michael Khalil1*, Charlotte E. Teunissen2, Markus Otto3, Frederik Piehl4, Maria Pia Sormani5, Thomas Gattringer1, Christian Barro6, Ludwig Kappos6, Manuel Comabella7, Franz Fazekas1, Axel Petzold8,9, Kaj Blennow10,11, Henrik Zetterberg10-13, Jens Kuhle6* [Au: Please write out first names in full for the author list.] 1Department of Neurology, Medical University of Graz, Graz, Austria 2Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands 3Department of Neurology, Ulm University Hospital, Ulm, Germany 4Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden 5Biostatistics Unit, Department of Health Sciences, University of Genoa, Genoa, Italy 6Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research, and Biomedicine, University Hospital Basel, University of Basel, Switzerland 7Unit of Clinical Neuroimmunology, Department of Neurology, Hospital Universitari Vall d’Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain. 8UCL Institute of Neurology, Department of Molecular Neurosciences, Moorfields Eye Hospital and The National Hospital for Neurology and Neurosurgery, London, United Kingdom 9Departments of Neurology, Ophthalmology and Expertise Center for Neuro-ophthalmology, Amsterdam UMC, Amsterdam, Amsterdam, The Netherlands 10Clinical
    [Show full text]
  • BMC Genetics Biomed Central
    BMC Genetics BioMed Central Research article Open Access Alterations in lipid metabolism gene expression and abnormal lipid accumulation in fibroblast explants from giant axonal neuropathy patients Conrad L Leung, Yinghua Pang, Chang Shu, Dmitry Goryunov and Ronald KH Liem* Address: Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, 630 W.168th Street, New York, New York 10032, USA Email: Conrad L Leung - [email protected]; Yinghua Pang - [email protected]; Chang Shu - [email protected]; Dmitry Goryunov - [email protected]; Ronald KH Liem* - [email protected] * Corresponding author Published: 1 March 2007 Received: 17 August 2006 Accepted: 1 March 2007 BMC Genetics 2007, 8:6 doi:10.1186/1471-2156-8-6 This article is available from: http://www.biomedcentral.com/1471-2156/8/6 © 2007 Leung et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Giant axonal neuropathy (GAN) is a hereditary neurological disorder that affects both central and peripheral nerves. The main pathological hallmark of the disease is abnormal accumulations of intermediate filaments (IFs) in giant axons and other cell types. Mutations in the GAN gene, encoding gigaxonin, cause the disease. Gigaxonin is important in controlling protein degradation via the ubiquitin-proteasome system. The goal of this study was to examine global alterations in gene expression in fibroblasts derived from newly identified GAN families compared with normal cells.
    [Show full text]