The 2013 Version of the Gene Table of Neuromuscular Disorders (Nuclear

Total Page:16

File Type:pdf, Size:1020Kb

The 2013 Version of the Gene Table of Neuromuscular Disorders (Nuclear Available online at www.sciencedirect.com Neuromuscular Disorders 22 (2012) 1108–1135 www.elsevier.com/locate/nmd The 2013 version of the gene table of monogenic neuromuscular disorders (nuclear genome) Jean-Claude Kaplan a,⇑, Dalil Hamroun b a Institut Cochin, Universite´ Paris Descartes, and Ho^pital Cochin-Maternite´s, 123, Bd Port-Royal, 75014 Paris, France b Centre Hospitalo-Universitaire de Montpellier, Ho^pital Arnaud de Villeneuve, 34000 Montpellier, France General features Column 2: Alphanumeric temporary annual code to des- ignate the item in each disease category, subject to changes This table is published annually in the December issue. Its in the subsequent printed versions if intercalations/dele- purpose is to provide the reader of Neuromuscular Disorders tions are needed. with an updated list of monogenic muscle diseases due to a Column 3: Mode of inheritance (AD: autosomal domi- primary defect residing in the nuclear genome. It comprises nant; AR: autosomal recessive; XR: X-linked recessive). diseases in which the causative gene is known, or at least Column 4: Generally accepted locus symbol, with corre- localized on a chromosome, if not yet identified. Diseases sponding OMIM2 phenotype number. for which the locus has not been mapped or which are due Column 5: Chromosomal localization of the locus. to defects involving mitochondrial genes are not included.1 Column 6: Gene symbol, approved by the HUGO Gene Nomenclature Committee (HGNC)3 followed by the corre- As in past years the diseases are classified into 16 sponding OMIM gene number. groups: Column 7: Protein name (most of the time approved by 1. Muscular dystrophies; 2. Congenital muscular dystro- the HGNC). phies; 3. Congenital myopathies; 4. Distal myopathies; 5. Other Column 8: Key references (in general limited to first myopathies; 6. Myotonic syndromes; 7. Ion channel muscle dis- locus chromosomal assignment; first identification of the eases; 8. Malignant hyperthermias; 9. Metabolic myopathies; gene; major contribution in the gene pathology). 10. Hereditary cardiomyopathies, subdivided into 10-A (non- Column 9: Other allelic disease phenotype(s) arrhythmogenic) and 10-B (arrhythmogenic); 11. Congenital myasthenic syndromes; 12. Motor neurone diseases; 13. Development of the gene table Hereditary ataxias; 14. Hereditary motor and sensory neuropathies; 15. Hereditary paraplegias; 16. Other Since its creation in the first issue of this journal (1991), neuromuscular disorders. the table has exploded in size and in complexity, essentially due to genetic and phenotypic heterogeneity. In addition In each group every entry corresponds to a given clinical the lack of congruence between clinical-based and entity with nine descriptive features: molecular-based classifications has dismantled the classical nosology, notably blurring the limits of the field of Column 1: Name of disease (where there are several neuromuscular disorders. This situation induced us in synonymous designations the most commonly used by clin- 2005 to start, in parallel to the rigid annual printed version, icians is preferred). an online gene table database (http://www.musclegenetable. fr), where space is not limited and which is easier to man- *Corresponding author. age and consult (see below). E-mail address: [email protected] (J.-C. Kaplan) 1 For diseases caused by mitochondrial genome mutations see: 2 Online Mendelian Inheritance in Man, OMIMÒ. McKusick-Nathans MITOMAP A human mitochondrial genome database. A compendium Institute of Genetic Medicine, Johns Hopkins University (Baltimore), MD of polymorphisms and mutations of the human mitochondrial DNA World Wide Web URL: http://omim.org/ http://www.mitomap.org/MITOMAP 3 URL: http://www.genenames.org/ doi:10.1016/j.nmd.2011.10.008 Gene table / Neuromuscular Disorders 22 (2012) 1108–1135 1109 Updating the table: linked to PubMed and to major databases related to mole- cular medicine (Leiden Muscular Dystrophy, OMIM, The material eligible for incorporation in the table con- NCBI, Genatlas, Orphanet). It contains several query tools sists of (i) new morbid genes primarily involved in the deter- allowing one to perform a variety of interrogations. This mination of a neuromuscular disease; (ii) new phenotypes computerized version of the table is now surpassing the related to an identified gene; (iii) new mapped morbid loci printed version which cannot accommodate the ever- still awaiting gene identification. Only key references are increasing volume and complexity of data. given. They comprise publications reporting the first map- ping and/or identification of a morbid gene. Further reports Recent upgrading of the online version of the gene table of additional new mutations are not considered. To save space only new key references added since the last edition Editing: It is now possible to export any displayed list are given at the end of the table, arranged by disease group. of data in Excel format. The alphanumeric temporary item number is indicated to Mitochondrial proteins: these are now indexed and facilitate the retrieval of the corresponding material in the labelled [M]. table. The last printed cumulative alphabetical list compris- Links: To the GeneCardsÒ database6; links to Orpha- ing all key references published from 1991 to 2007 is in the net7 (under construction at the time of going to press) gene table published in January 2007 issue (Vol 17, No.1, Tools: The search function is extended to any 81–102). The complete list of current references is available word included in the following categories: genes and on the online gene table (see below). For the retrieval and col- related diseases; proteins; references lection of relevant published data, we acknowledge the Statistics: A button automatically provides the latest invaluable help of Myobase4, a bibliographic alert system list of genes, proteins, phenotypes and bibliographic refer- of the AFM (Association Francßaise contre les Myopathies). ences in the table. Each list can be displayed and exported. The revision and updating of this version was done under the supervision of the following experts: Mathieu Anheim, Contents of the online version of the gene table Kate Bushby, Valerie Delague, Salvatore Di Mauro, Andy Engel, Ana Ferreiro, Michela Guglieri, Pascale Guicheney, As of 29 October 2012 the online Gene table contained: Nigel Laing, Judith Melki, Francesco Muntoni, Ichizo 681 disease phenotypes Nishino, Anders Oldfors, Louis Pta´cek, Elizabeth Stevens, 321 different genes Charles Thornton, Haluk Topaloglu and Bjarne Udd. 321 different proteins, of which 25 are As started in the 2009 edition, to save space, some items mitochondrial considered to be "less neuromuscular" have been removed 93 mapped loci awaiting gene identification from the printed version, but they are still maintained 892 references (all linked to PubMed) and implemented in the online version. This involves the arrythmogenic syndromes in the group of Hereditary Altogether these figures reflect the redundancy of the Cardiomyopathies (Group 10-B), and all the items of table due to (i) phenotypic convergence, ie several possible Hereditary Ataxias (Group 13), and Hereditary alternative genes for a given disease phenotype, such as Paraplegias (Group 15). in CMT; (ii) phenotypic divergence, ie several different dis- We are extremely appreciative of the invaluable help ease phenotypes generated by defects affecting the same provided by Jane Miller at all stages of elaboration and gene, such as LMNA. editing of this table. Citation of the gene table The online gene table - Printed version: Kaplan JC and Hamroun D The 2013 The full-length version of the gene table version is freely version of the gene table of neuromuscular disorders. available online at the following URL address: http:// Neuromuscul Disord. 22 (12), 1108–1135. www.musclegenetable.fr. In addition to the items available - Online version: GeneTable of Neuromuscular Disor- in the yearly printed version it contains Group 10-B ders: www.musclegenetable.fr (arrhythmogenic cardiomyopathies), Group 13 (hereditary 5 ataxias), and Group 15 (hereditary paraplegias). Contact: Started in 2005, it has been devised and developed by one of us (DH) using the 4th Dimension language from Users of the gene table are kindly requested to send any 4D (www.4D.com). It is fed by all the data selected and comments on the printed and/or the online version to classified by the curator of the NMD gene table (JCK). [email protected]. In the online version the data are cross-referenced and 6 The Human Gene Compendium maintained by the Weizmann 4 URL: http://www.myobase.org/ Institute (http://www.genecards.org/) 5 Containing 60, 61 and 54 items respectively (as of October 29 2012) 7 URL: http://www.orpha.net/consor/cgi-bin/index.php Available online at www.sciencedirect.com Neuromuscular Disorders 22 (2012) 1108–1135 www.elsevier.com/locate/nmd Gene table of monogenic neuromuscular disorders (nuclear genome only) Vol. 22 No. 12, December 2012 A computerized version of the table is freely accessible at http://www.musclegenetable.fr/ Shaded background indicates newly added items. DISEASE NAME Item line in Inheritance Locus or disease Chromosome Gene symbol Protein (mitochondrial Key references Other allelic disease(s) this group symbol and and OMIM proteins indicated by (group in this table) OMIM number number symbol [M]) GROUP 1. MUSCULAR DYSTROPHIES Duchenne muscular 1.1 XR DMD Xp21.2 DMD Dystrophin Monaco et al. (1986) Allelic to CMD3B (group dystrophy; Becker 310200 300377 Burghes et al. (1987) 10/A) muscular dystrophy BMD Koenig et al. (1987, 300376 1988) Hoffman et al. (1987, 1988) Emery-Dreifuss 1.2 XR EDMD1 Xq28 EMD Emerin Hodgson et al. (1986) muscular dystrophy, 310300 300384 Romeo et al. (1988) X-linked, type 1 Bione et al. (1994, 1995) Klauck et al. (1995) Nigro et al. (1995) Emery-Dreifuss 1.3 XR EDMD6 Xq27.2 FHL1 Four and a half Gueneau et al. (2009) Allelic to RSS (2), XPMA muscular dystrophy, 300696 300163 LIM domain 1 (5), XPMD (5) reducing X-linked, type 2 body myopathy (group 5) Emery-Dreifuss 1.4 AD EDMD2 1q21.2 LMNA Lamin A/C Bonne et al.
Recommended publications
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • Genetic and Genomic Analysis of Hyperlipidemia, Obesity and Diabetes Using (C57BL/6J × TALLYHO/Jngj) F2 Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Nutrition Publications and Other Works Nutrition 12-19-2010 Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P. Stewart Marshall University Hyoung Y. Kim University of Tennessee - Knoxville, [email protected] Arnold M. Saxton University of Tennessee - Knoxville, [email protected] Jung H. Kim Marshall University Follow this and additional works at: https://trace.tennessee.edu/utk_nutrpubs Part of the Animal Sciences Commons, and the Nutrition Commons Recommended Citation BMC Genomics 2010, 11:713 doi:10.1186/1471-2164-11-713 This Article is brought to you for free and open access by the Nutrition at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Nutrition Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Stewart et al. BMC Genomics 2010, 11:713 http://www.biomedcentral.com/1471-2164/11/713 RESEARCH ARTICLE Open Access Genetic and genomic analysis of hyperlipidemia, obesity and diabetes using (C57BL/6J × TALLYHO/JngJ) F2 mice Taryn P Stewart1, Hyoung Yon Kim2, Arnold M Saxton3, Jung Han Kim1* Abstract Background: Type 2 diabetes (T2D) is the most common form of diabetes in humans and is closely associated with dyslipidemia and obesity that magnifies the mortality and morbidity related to T2D. The genetic contribution to human T2D and related metabolic disorders is evident, and mostly follows polygenic inheritance. The TALLYHO/ JngJ (TH) mice are a polygenic model for T2D characterized by obesity, hyperinsulinemia, impaired glucose uptake and tolerance, hyperlipidemia, and hyperglycemia.
    [Show full text]
  • Neuromuscular Disorders Neurology in Practice: Series Editors: Robert A
    Neuromuscular Disorders neurology in practice: series editors: robert a. gross, department of neurology, university of rochester medical center, rochester, ny, usa jonathan w. mink, department of neurology, university of rochester medical center,rochester, ny, usa Neuromuscular Disorders edited by Rabi N. Tawil, MD Professor of Neurology University of Rochester Medical Center Rochester, NY, USA Shannon Venance, MD, PhD, FRCPCP Associate Professor of Neurology The University of Western Ontario London, Ontario, Canada A John Wiley & Sons, Ltd., Publication This edition fi rst published 2011, ® 2011 by Blackwell Publishing Ltd Blackwell Publishing was acquired by John Wiley & Sons in February 2007. Blackwell’s publishing program has been merged with Wiley’s global Scientifi c, Technical and Medical business to form Wiley-Blackwell. Registered offi ce: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial offi ces: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offi ces, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley-blackwell The right of the author to be identifi ed as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • Neurofilament Depletion Improves Microtubule Dynamics Via Modulation of Stat3/Stathmin Signaling
    Edinburgh Research Explorer Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling Citation for published version: Yadav, P, Selvaraj, BT, Bender, FLP, Behringer, M, Moradi, M, Sivadasan, R, Dombert, B, Blum, R, Asan, E, Sauer, M, Julien, JP & Sendtner, M 2016, 'Neurofilament depletion improves microtubule dynamics via modulation of Stat3/stathmin signaling', Acta Neuropathologica, vol. 132, no. 1, pp. 93-110. https://doi.org/10.1007/s00401-016-1564-y Digital Object Identifier (DOI): 10.1007/s00401-016-1564-y Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Acta Neuropathologica Publisher Rights Statement: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Neurofilaments: Neurobiological Foundations for Biomarker Applications
    Neurofilaments: neurobiological foundations for biomarker applications Arie R. Gafson1, Nicolas R. Barthelmy2*, Pascale Bomont3*, Roxana O. Carare4*, Heather D. Durham5*, Jean-Pierre Julien6,7*, Jens Kuhle8*, David Leppert8*, Ralph A. Nixon9,10,11,12*, Roy Weller4*, Henrik Zetterberg13,14,15,16*, Paul M. Matthews1,17 1 Department of Brain Sciences, Imperial College, London, UK 2 Department of Neurology, Washington University School of Medicine, St Louis, MO, USA 3 a ATIP-Avenir team, INM, INSERM , Montpellier university , Montpellier , France. 4 Clinical Neurosciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom 5 Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Québec, Canada 6 Department of Psychiatry and Neuroscience, Laval University, Quebec, Canada. 7 CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, QC, G1J 2G3, Canada 8 Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland. 9 Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, 10962, USA. 10Departments of Psychiatry, New York University School of Medicine, New York, NY, 10016, 11 Neuroscience Institute, New York University School of Medicine, New York, NY, 10016, USA. 12Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA 13 University College London Queen Square Institute of Neurology, London, UK 14 UK Dementia Research Institute at University College London 15 Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden 16 Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden 17 UK Dementia Research Institute at Imperial College, London * Co-authors ordered alphabetically Address for correspondence: Prof.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Supp Table 6.Pdf
    Supplementary Table 6. Processes associated to the 2037 SCL candidate target genes ID Symbol Entrez Gene Name Process NM_178114 AMIGO2 adhesion molecule with Ig-like domain 2 adhesion NM_033474 ARVCF armadillo repeat gene deletes in velocardiofacial syndrome adhesion NM_027060 BTBD9 BTB (POZ) domain containing 9 adhesion NM_001039149 CD226 CD226 molecule adhesion NM_010581 CD47 CD47 molecule adhesion NM_023370 CDH23 cadherin-like 23 adhesion NM_207298 CERCAM cerebral endothelial cell adhesion molecule adhesion NM_021719 CLDN15 claudin 15 adhesion NM_009902 CLDN3 claudin 3 adhesion NM_008779 CNTN3 contactin 3 (plasmacytoma associated) adhesion NM_015734 COL5A1 collagen, type V, alpha 1 adhesion NM_007803 CTTN cortactin adhesion NM_009142 CX3CL1 chemokine (C-X3-C motif) ligand 1 adhesion NM_031174 DSCAM Down syndrome cell adhesion molecule adhesion NM_145158 EMILIN2 elastin microfibril interfacer 2 adhesion NM_001081286 FAT1 FAT tumor suppressor homolog 1 (Drosophila) adhesion NM_001080814 FAT3 FAT tumor suppressor homolog 3 (Drosophila) adhesion NM_153795 FERMT3 fermitin family homolog 3 (Drosophila) adhesion NM_010494 ICAM2 intercellular adhesion molecule 2 adhesion NM_023892 ICAM4 (includes EG:3386) intercellular adhesion molecule 4 (Landsteiner-Wiener blood group)adhesion NM_001001979 MEGF10 multiple EGF-like-domains 10 adhesion NM_172522 MEGF11 multiple EGF-like-domains 11 adhesion NM_010739 MUC13 mucin 13, cell surface associated adhesion NM_013610 NINJ1 ninjurin 1 adhesion NM_016718 NINJ2 ninjurin 2 adhesion NM_172932 NLGN3 neuroligin
    [Show full text]
  • The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement
    International Journal of Molecular Sciences Review The Ubiquitin Proteasome System in Neuromuscular Disorders: Moving Beyond Movement 1, , 2, 3,4 Sara Bachiller * y , Isabel M. Alonso-Bellido y , Luis Miguel Real , Eva María Pérez-Villegas 5 , José Luis Venero 2 , Tomas Deierborg 1 , José Ángel Armengol 5 and Rocío Ruiz 2 1 Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Sölvegatan 19, 221 84 Lund, Sweden; [email protected] 2 Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla/Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain; [email protected] (I.M.A.-B.); [email protected] (J.L.V.); [email protected] (R.R.) 3 Unidad Clínica de Enfermedades Infecciosas, Hospital Universitario de Valme, 41014 Sevilla, Spain; [email protected] 4 Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, 29071 Universidad de Málaga, Spain 5 Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain; [email protected] (E.M.P.-V.); [email protected] (J.Á.A.) * Correspondence: [email protected] These authors contributed equally to the work. y Received: 14 July 2020; Accepted: 31 August 2020; Published: 3 September 2020 Abstract: Neuromuscular disorders (NMDs) affect 1 in 3000 people worldwide. There are more than 150 different types of NMDs, where the common feature is the loss of muscle strength. These disorders are classified according to their neuroanatomical location, as motor neuron diseases, peripheral nerve diseases, neuromuscular junction diseases, and muscle diseases. Over the years, numerous studies have pointed to protein homeostasis as a crucial factor in the development of these fatal diseases.
    [Show full text]
  • Neurofilaments and Neurofilament Proteins in Health and Disease
    Downloaded from http://cshperspectives.cshlp.org/ on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Neurofilaments and Neurofilament Proteins in Health and Disease Aidong Yuan,1,2 Mala V. Rao,1,2 Veeranna,1,2 and Ralph A. Nixon1,2,3 1Center for Dementia Research, Nathan Kline Institute, Orangeburg, New York 10962 2Department of Psychiatry, New York University School of Medicine, New York, New York 10016 3Cell Biology, New York University School of Medicine, New York, New York 10016 Correspondence: [email protected], [email protected] SUMMARY Neurofilaments (NFs) are unique among tissue-specific classes of intermediate filaments (IFs) in being heteropolymers composed of four subunits (NF-L [neurofilament light]; NF-M [neuro- filament middle]; NF-H [neurofilament heavy]; and a-internexin or peripherin), each having different domain structures and functions. Here, we review how NFs provide structural support for the highly asymmetric geometries of neurons and, especially, for the marked radial expan- sion of myelinated axons crucial for effective nerve conduction velocity. NFs in axons exten- sively cross-bridge and interconnect with other non-IF components of the cytoskeleton, including microtubules, actin filaments, and other fibrous cytoskeletal elements, to establish a regionallyspecialized networkthat undergoes exceptionallyslow local turnoverand serves as a docking platform to organize other organelles and proteins. We also discuss how a small pool of oligomeric and short filamentous precursors in the slow phase of axonal transport maintains this network. A complex pattern of phosphorylation and dephosphorylation events on each subunit modulates filament assembly, turnover, and organization within the axonal cytoskel- eton. Multiple factors, and especially turnover rate, determine the size of the network, which can vary substantially along the axon.
    [Show full text]
  • Supplementary Table 1
    Supplementary Table 1. 492 genes are unique to 0 h post-heat timepoint. The name, p-value, fold change, location and family of each gene are indicated. Genes were filtered for an absolute value log2 ration 1.5 and a significance value of p ≤ 0.05. Symbol p-value Log Gene Name Location Family Ratio ABCA13 1.87E-02 3.292 ATP-binding cassette, sub-family unknown transporter A (ABC1), member 13 ABCB1 1.93E-02 −1.819 ATP-binding cassette, sub-family Plasma transporter B (MDR/TAP), member 1 Membrane ABCC3 2.83E-02 2.016 ATP-binding cassette, sub-family Plasma transporter C (CFTR/MRP), member 3 Membrane ABHD6 7.79E-03 −2.717 abhydrolase domain containing 6 Cytoplasm enzyme ACAT1 4.10E-02 3.009 acetyl-CoA acetyltransferase 1 Cytoplasm enzyme ACBD4 2.66E-03 1.722 acyl-CoA binding domain unknown other containing 4 ACSL5 1.86E-02 −2.876 acyl-CoA synthetase long-chain Cytoplasm enzyme family member 5 ADAM23 3.33E-02 −3.008 ADAM metallopeptidase domain Plasma peptidase 23 Membrane ADAM29 5.58E-03 3.463 ADAM metallopeptidase domain Plasma peptidase 29 Membrane ADAMTS17 2.67E-04 3.051 ADAM metallopeptidase with Extracellular other thrombospondin type 1 motif, 17 Space ADCYAP1R1 1.20E-02 1.848 adenylate cyclase activating Plasma G-protein polypeptide 1 (pituitary) receptor Membrane coupled type I receptor ADH6 (includes 4.02E-02 −1.845 alcohol dehydrogenase 6 (class Cytoplasm enzyme EG:130) V) AHSA2 1.54E-04 −1.6 AHA1, activator of heat shock unknown other 90kDa protein ATPase homolog 2 (yeast) AK5 3.32E-02 1.658 adenylate kinase 5 Cytoplasm kinase AK7
    [Show full text]
  • Gene Discovery and Mechanism of Disease in the Myopathies
    Gene discovery and mechanism of disease in the myopathies Heather Best Primary supervisor: A/Prof Sandra Cooper Associate supervisors: The Late A/Prof Nigel Clarke, Dr Michaela Yuen and Dr Frances Lemckert A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy The Institute for Neuroscience and Muscle Research The Children’s Hospital at Westmead, Sydney, NSW, Australia Discipline of Child and Adolescent Health, Faculty of Medicine The University of Sydney, NSW, Australia February 2018 STATEMENT OF ORIGINALITY The contents of this thesis have not been presented for the award of a degree or diploma at this or any other university. The data presented are the original work of the author except where specifically indicated in the text. i AUTHOR CONTRIBUTION Chapter 2 Part A of this thesis is published as: O'Grady, G. L., Best, H.A., Oates, E.C., Kaur, S., Charlton, A., Brammah, S., Punetha, J., Kesari, A., North, K.N., Ilkovsli, B., Hoffman, E.P., Clarke, N.F. (2015). "Recessive ACTA1 variant causes congenital muscular dystrophy with rigid spine." Eur J Hum Genet 23, 883-886 Heather Best carried out the functional characterisation of the ACTA1 variant which became Figure 2 E-L of our publication. Heather contributed to drafting/revising the manuscript. NB: Dr Gina O’Grady’s PhD thesis included this publication. Dr O’Grady collated the clinical data for Patient 1 and 2, interpreted NGS results, drafted the manuscript, constructed the figures, and managed all aspects of paper submission. Chapter 4 Part A of this thesis is published as: O'Grady, G.
    [Show full text]
  • Supplementary Table 3 Gene Microarray Analysis: PRL+E2 Vs
    Supplementary Table 3 Gene microarray analysis: PRL+E2 vs. control ID1 Field1 ID Symbol Name M Fold P Value 69 15562 206115_at EGR3 early growth response 3 2,36 5,13 4,51E-06 56 41486 232231_at RUNX2 runt-related transcription factor 2 2,01 4,02 6,78E-07 41 36660 227404_s_at EGR1 early growth response 1 1,99 3,97 2,20E-04 396 54249 36711_at MAFF v-maf musculoaponeurotic fibrosarcoma oncogene homolog F 1,92 3,79 7,54E-04 (avian) 42 13670 204222_s_at GLIPR1 GLI pathogenesis-related 1 (glioma) 1,91 3,76 2,20E-04 65 11080 201631_s_at IER3 immediate early response 3 1,81 3,50 3,50E-06 101 36952 227697_at SOCS3 suppressor of cytokine signaling 3 1,76 3,38 4,71E-05 16 15514 206067_s_at WT1 Wilms tumor 1 1,74 3,34 1,87E-04 171 47873 238623_at NA NA 1,72 3,30 1,10E-04 600 14687 205239_at AREG amphiregulin (schwannoma-derived growth factor) 1,71 3,26 1,51E-03 256 36997 227742_at CLIC6 chloride intracellular channel 6 1,69 3,23 3,52E-04 14 15038 205590_at RASGRP1 RAS guanyl releasing protein 1 (calcium and DAG-regulated) 1,68 3,20 1,87E-04 55 33237 223961_s_at CISH cytokine inducible SH2-containing protein 1,67 3,19 6,49E-07 78 32152 222872_x_at OBFC2A oligonucleotide/oligosaccharide-binding fold containing 2A 1,66 3,15 1,23E-05 1969 32201 222921_s_at HEY2 hairy/enhancer-of-split related with YRPW motif 2 1,64 3,12 1,78E-02 122 13463 204015_s_at DUSP4 dual specificity phosphatase 4 1,61 3,06 5,97E-05 173 36466 227210_at NA NA 1,60 3,04 1,10E-04 117 40525 231270_at CA13 carbonic anhydrase XIII 1,59 3,02 5,62E-05 81 42339 233085_s_at OBFC2A oligonucleotide/oligosaccharide-binding
    [Show full text]