Least and greatest solutions of equations over sets of integers Artur Je_z1 ? and Alexander Okhotin2;3 ?? 1 Institute of Computer Science, University of Wroc law, Poland
[email protected] 2 Department of Mathematics, University of Turku, Finland
[email protected] 3 Academy of Finland Abstract. Systems of equations with sets of integers as unknowns are considered, with the operations of union, intersection and addition of sets, S + T = fm + n j m 2 S; n 2 T g. These equations were recently studied by the authors (\On equations over sets of integers", STACS 2010 ), and it was shown that their unique solutions represent exactly the hyperarithmetical sets. In this paper it is demonstrated that greatest 1 solutions of such equations represent exactly the Σ1 sets in the analytical hierarchy, and these sets can already be represented by systems in the resolved form Xi = 'i(X1;:::;Xn). Least solutions of such resolved systems represent exactly the recursively enumerable sets. 1 Introduction Consider equations '(X1;:::;Xn) = (X1;:::;Xn), in which the unknowns Xi are sets of integers, and the expressions '; may contain addition S + T = fm + n j m 2 S; n 2 T g, Boolean operations and ultimately periodic constants. At a first glance, they might appear as a simple arithmetical object. However, already their simple special case, expressions and circuits over sets of integers, have a non-trivial computational complexity, studied by McKenzie and Wag- ner [10] in the case of nonnegative integers and by Travers [18] in the case of all integers. If only nonnegative integers are allowed in the equations, they become iso- morphic to language equations [8] over a one-letter alphabet.