Downloaded 09/26/21 10:20 AM UTC

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded 09/26/21 10:20 AM UTC service of NLSI, which is on the Web site (http:// of five rain-wrapped tornados. A tornadic HP storm adgrafix.iserver.com/nlsi/home.htm). near Holly, Colorado, on 1 July, a wall cloud and sev- Rich Keen, outgoing chapter president, then mod- eral short-lived funnel clouds near Castlerock, Colo- erated the slide and video presentations for the remain- rado, on 28 June, rotating wall clouds near Stillwater, der of the night. Ken Langford led off with slides from Oklahoma, on 16 May, and a well-developed wall several sites in Mexico, California, and Hawaii of cloud and tornado near Meadowlake, Colorado, on 22 multiple suns and the green flash phenomenon pho- June were also captured on video. Another active tographed at sunset. Several slides of supercells and storm chaser, Tim Samaras, showed numerous hailstorms in Kansas and Texas were shown by Bob supercells, hailstorms, mesocyclones, and the like be- Henson. He ended with multiple slides of wall clouds, ginning with a tornado on 25 March near Miami, gust fronts, and hail from a large mesocyclone located Texas. A damaging hailstorm in Dallas, Texas, on 29 near Greeley, Colorado, on 6 June 1995. Keen pre- April, gustfront cells near Bennett, Colorado, on 30 sented miscellaneous shots of hail, winter storms, and April, a large supercell that produced baseball-sized lightning. hail between Goodland and Junction City, Kansas, on The video portion of the program was launched by 12 May, another supercell southeast of Amarillo, Dave Blanchard with tornado footage from the 3 June Texas, on 31 May, a rotating supercell southeast of storm near Strasburg, Colorado, and time-lapse shots Hugo, Colorado, on 4 June, an HP rotating storm with from the 6 June storm (mentioned above) showing the a gustnado near Gilcrest, Colorado, on 7 June, and brief appearance of a funnel cloud. Al Pietrycha, along various features from a tornadic storm near Dumas, with his chasing partner Randy Collander, presented Texas, on 2 July rounded out Samaras's video collec- numerous video clips from their chases. West of tion. Dean Cosgrove showed a variety of shots, from Childress, Texas, on 3 June, they captured a series of prairie fires to lightning to wall clouds. Strong vorti- high precipitation (HP) storms, including a sequence ces generated by a prairie fire near Yuma, Colorado, NOAA's First Satellite able to National Weather Service forecast offices The first Improved TIROS Operational Sat- throughout the nation for use in preparing early ellite (ITOS-A) was launched from NASA's morning forecasts. This is an increase in satellite western test range at Lompoc, Calif., on 11 De- coverage over earlier systems. cember 1970, and after one orbit became The scanning radiometer also will measure NOAA-1. surface temperatures in cloud-free areas. The omnibus spacecraft contains four camera NOAA's National Environmental Satellite Ser- systems—two for global picture coverage of the vice has developed a technique for preparing glo- Earth's weather and two for immediate transmis- bal maps of sea-surface temperatures from these sion of cloud photographs directly to receiving measurements (BULLETIN, 51, 1100) and expects stations around the world. These Advanced Vidi- to begin issuing such maps on a routine opera- con Camera Systems (AVCS) and Automatic tional basis later this year. Picture Transmission (APT) systems proved their Unlike previous operational vehicles, NOAA-1 reliability and effectiveness in the ESSA proto- is large enough to house additional environmen- type ITOS-1 launched 23 January 1970 (BULLE- tal sensors. For example, it con- TIN, 51, 257). tains a flat-plate radiometer to Instrumentation of the new ITOS includes provide data on the Earth's heat scanning radiometer systems that provide data in balance, and a solar-proton both visible and infrared channels. The visible monitor to detect the arrival of channel is an alternative source of daytime cloud energetic solar protons in the pictures, while the infrared channel affords cloud vicinity of the Earth. pictures both night and day. Nighttime satellite observations will be avail- Bull. Amer. Meteor. Soc., 52, 67. 148 Vol. 77, No. 1, January 1996 Unauthenticated | Downloaded 09/26/21 10:20 AM UTC.
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • More Observations of Small Funnel Clouds and Other Tubular Clouds
    3714 MONTHLY WEATHER REVIEW VOLUME 133 PICTURE OF THE MONTH More Observations of Small Funnel Clouds and Other Tubular Clouds HOWARD B. BLUESTEIN School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 14 March 2005, in final form 20 May 2005) ABSTRACT In this brief contribution, photographic documentation is provided of a variety of small, tubular-shaped clouds and of a small funnel cloud pendant from a convective cloud that appears to have been modified by flow over high-altitude mountains in northeast Colorado. These funnel clouds are contrasted with others that have been documented, including those pendant from high-based cumulus clouds in the plains of the United States. It is suggested that the mountain funnel cloud is unique in that flow over high terrain is probably responsible for its existence; other types of small funnel clouds are seen both over elevated, mountainous terrain and over flat terrain at lower elevations. 1. Introduction which the benign funnel clouds occur so that if they are observed, severe weather warnings are not issued. Fur- Bluestein (1994) and others (e.g., Doswell 1985, p. thermore, the small funnel clouds are of interest in their 107; McCaul and Blanchard 1990) have documented, in own right because their dynamics are not well under- the plains of the United States, small funnel clouds pen- stood, and they have not been discussed in the litera- dant from convective clouds whose updrafts appear to ture to the much greater extent that the dynamics of be rooted above the boundary layer. Above many of tornadoes have (e.g., Davies-Jones 1986).
    [Show full text]
  • The Lagrange Torando During Vortex2. Part Ii: Photogrammetry Analysis of the Tornado Combined with Dual-Doppler Radar Data
    6.3 THE LAGRANGE TORANDO DURING VORTEX2. PART II: PHOTOGRAMMETRY ANALYSIS OF THE TORNADO COMBINED WITH DUAL-DOPPLER RADAR DATA Nolan T. Atkins*, Roger M. Wakimoto#, Anthony McGee*, Rachel Ducharme*, and Joshua Wurman+ *Lyndon State College #National Center for Atmospheric Research +Center for Severe Weather Research Lyndonville, VT 05851 Boulder, CO 80305 Boulder, CO 80305 1. INTRODUCTION studies, however, that have related the velocity and reflectivity features observed in the radar data to Over the years, mobile ground-based and air- the visual characteristics of the condensation fun- borne Doppler radars have collected high-resolu- nel, debris cloud, and attendant surface damage tion data within the hook region of supercell (e.g., Bluestein et al. 1993, 1197, 204, 2007a&b; thunderstorms (e.g., Bluestein et al. 1993, 1997, Wakimoto et al. 2003; Rasmussen and Straka 2004, 2007a&b; Wurman and Gill 2000; Alexander 2007). and Wurman 2005; Wurman et al. 2007b&c). This paper is the second in a series that pre- These studies have revealed details of the low- sents analyses of a tornado that formed near level winds in and around tornadoes along with LaGrange, WY on 5 June 2009 during the Verifica- radar reflectivity features such as weak echo holes tion on the Origins of Rotation in Tornadoes Exper- and multiple high-reflectivity rings. There are few iment (VORTEX 2). VORTEX 2 (Wurman et al. 5 June, 2009 KCYS 88D 2002 UTC 2102 UTC 2202 UTC dBZ - 0.5° 100 Chugwater 100 50 75 Chugwater 75 330° 25 Goshen Co. 25 km 300° 50 Goshen Co. 25 60° KCYS 30° 30° 50 80 270° 10 25 40 55 dBZ 70 -45 -30 -15 0 15 30 45 ms-1 Fig.
    [Show full text]
  • Tim Samaras 1957 – 2013 Nyheden Om Tim Samaras Alt for Tidlige Og Uforståelige Bortgang Skabte Chokbølger I Det Amerikanske
    Tim Samaras 1957 – 2013 Nyheden om Tim Samaras alt for tidlige og uforståelige bortgang skabte chokbølger i det amerikanske meteorologiske miljø og blandt stormchasere verden over i dagene efter 1. Juni 2013. Tim Samaras interesse for tornadoer blev vakt i en alder af 6, da hans forældre tvang ham til at se ”Troldmanden fra Oz”. Som ung uddannede han sig til ingeniør. Hans interesse for tornadoer voksede og hans stiftede team TWISTEX (Tactical Weather Instrumented Sampling in/near Tornadoes Experiment) hvis mål var at foretage in situ målinger af temperatur, tryk m.m. i tornadoer. Han designede og byggede selv sine instrumenter, bl.a. sine tornadoprober (”Skilpadder” med måleudstyr og kameraer) som blev placeret direkte i en tornados bane. Han udstyr er indehaver af et rekordstort registreret trykfald på 100 hPa i en tornado. Trykfaldet skete på under et minut, og det laveste tryk var 850 hPa – hvilket også er det lavest registrerede lufttryk ved jordoverfladen når der er kalibreret for højden over havet. Denne måling blev foretaget i forbindelse med Manchester, South Dakota tornadoen i 2003. Tim Samaras anden store passion var lyn. Han ombyggede et koldkrigs highspeed kamera, oprindeligt til fotografering af nukleare eksplosioner med konventionel film, til digital fotografering med over 1.000.000 billeder i sekundet og har med det kunnet registrere et lyns livscyklus med hidtil usete detaljer. Tim Samaras og hans crew blev verdenskendt og respekteret for deres deltagelse i 3 sæsoner af Discovery Channels’s serie ”Storm Chasers”. Tim Samaras var også primus motor på det årlige National Storm Chasers Convention, som en weekend i februar i Denver tiltrækker stormchasere fra hele verden.
    [Show full text]
  • Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System ∗
    XV International Conference on Atmospheric Electricity, 15-20 June 2014, Norman, Oklahoma, U.S.A. Large Charge Moment Change Lightning in an Oklahoma Mesoscale Convective System ∗ Timothy J. Lang1,*, Steven Cummer2, Danyal Petersen3, Lizxandra Flores-Rivera4, Walt Lyons5, Donald MacGorman6, and William Beasley3 1. National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC), Huntsville, Alabama, United States of America (USA) 2. Duke University, Durham, North Carolina, USA 3. University of Oklahoma, Norman, Oklahoma USA 4. University of Puerto Rico - Mayaguez, Mayaguez, Puerto Rico, USA 5. FMA Research, Inc., Fort Collins, Colorado, USA 6. National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Laboratory (NSSL), Norman, Oklahoma, USA ABSTRACT: On 31 May 2013, a line of severe thunderstorms developed during the local afternoon in central Oklahoma, USA. One of the supercells produced the El Reno tornado, which caused significant damage and killed several people. During the 2300 UTC hour (during the mature supercell stage and just after the tornado began), the storm produced several positive cloud-to-ground (+CG) lightning strokes that featured large (> 100 C km) impulse charge moment changes (iCMCs; charge moment during the first 2 ms after the return stroke). These discharges occurred mainly in convection, in contrast to the typical pattern of large-CMC and sprite-parent +CGs occurring mainly in stratiform precipitation regions. After this time, the line of thunderstorms evolved over several hours into a large mesoscale convective system (MCS). By the 0700 UTC hour on 1 June 2013, the large-CMC pattern had changed markedly. Large-CMC negative CGs, which were absent early in the storm's lifetime, occurred frequently within convection.
    [Show full text]
  • Innovation Magazine Spring 2016
    SPRING 2016 SPRING 2016 SPECIAL ciweek 2016 PROGRAM EDITION FREE To Dream THE POWER of Dreaming Big CHASING DREAMS COVER PHOTO: and the Nasty Side of Mother Nature JAMIE FOXX IN FULL ELECTRO MAKEUP FOR THE AMAZING SPIDERMAN 2. THE ART OF MAKEUP and So Much More DREAM with Focus www.dmacc.edu/ciweek LAURA JOHNSON | Merit Resources When you partner with the INS Family of Companies for your business solutions, you’re freed up to focus on what you do best. We’ll equip and support you with a full suite of business solutions including Technology, HR and Contact Center services. Offering our unique combination of top-level talent, technology and tools, we’re your valued productivity partner on the road to success. INSFamilyOfCompanies.com THE INS FAMILY OF COMPANIES One experience for everything in your life Come to Microsoft and check out Surface Pro 3, Windows Phones, and more Microsoft at Jordan Creek Town Center 101 Jordan Creek Parkway West Des Moines, IA 50266 Some apps sold separately. Some features require Windows 8.1 Update, available through Windows Update. Internet access required; fees may apply. FEATURES 7 | The Power of Dreaming Big BY SCOTT SIEPKER 13 | Chasing Dreams and the Nasty Side of Mother Nature BY DR. REED TIMMER 19 | The Art of Makeup And So Much More BY HOWARD BERGER 25 | Dream with Focus BY JASON KIESAU 31 | Student Spotlight: Dreaming Reality BY JAMIN MYCAL HARDENBROOK PROGRAM CELEBRATE! INNOVATION MAGAZINE 34 | Welcome IS PUBLISHED BIANNUALLY PROVOST ANTHONY D. PAUSTIAN, Ph.D. BY DES MOINES AREA COMMUNITY COLLEGE WEST CAMPUS.
    [Show full text]
  • Use of the European Severe Weather Database to Verify Satellite-Based Storm Detection Or Nowcasting
    USE OF THE EUROPEAN SEVERE WEATHER DATABASE TO VERIFY SATELLITE-BASED STORM DETECTION OR NOWCASTING Nikolai Dotzek1,2, Caroline Forster1 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany 2 European Severe Storms Laboratory, Münchner Str. 20, 82234 Wessling, Germany Abstract Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of € 5-8 billion each year. Yet a pan-European database of severe weather reports in a homogeneous data format has become available only recently: the European Severe Weather Database (ESWD). We demonstrate the large potential of ESWD applications for storm detection and forecast or now- casting/warning verification purposes. The study of five warm-season severe weather days in Europe from 2007 and 2008 revealed that up to 47% of the ESWD reports were located exactly within the polygons detected by the Cb-TRAM algorithm for three different stages of deep moist convection. The cool-season case study of extratropical cyclone “Emma” on 1 March 2008 showed that low-topped winter thunderstorms can provide a challenge for satellite storm detection and nowcasting adapted to warm-season storms with high, cold cloud tops. However, this case also demonstrated how ESWD reports alone can still be valuable to identify the hazardous regions along the cold front of the cyclone. 1. INTRODUCTION Severe thunderstorms, with their attendant strong winds, hail, flooding, and tornadoes, are common phenomena in many European countries, leading to a total damage estimate of 5 to 8 billion euros per year (source: Munich Re Group). Extreme events like an F4 tornado in France and an F3 downburst in Austria in 2008 exemplify these damage totals.
    [Show full text]
  • Glossary of Severe Weather Terms
    Glossary of Severe Weather Terms -A- Anvil The flat, spreading top of a cloud, often shaped like an anvil. Thunderstorm anvils may spread hundreds of miles downwind from the thunderstorm itself, and sometimes may spread upwind. Anvil Dome A large overshooting top or penetrating top. -B- Back-building Thunderstorm A thunderstorm in which new development takes place on the upwind side (usually the west or southwest side), such that the storm seems to remain stationary or propagate in a backward direction. Back-sheared Anvil [Slang], a thunderstorm anvil which spreads upwind, against the flow aloft. A back-sheared anvil often implies a very strong updraft and a high severe weather potential. Beaver ('s) Tail [Slang], a particular type of inflow band with a relatively broad, flat appearance suggestive of a beaver's tail. It is attached to a supercell's general updraft and is oriented roughly parallel to the pseudo-warm front, i.e., usually east to west or southeast to northwest. As with any inflow band, cloud elements move toward the updraft, i.e., toward the west or northwest. Its size and shape change as the strength of the inflow changes. Spotters should note the distinction between a beaver tail and a tail cloud. A "true" tail cloud typically is attached to the wall cloud and has a cloud base at about the same level as the wall cloud itself. A beaver tail, on the other hand, is not attached to the wall cloud and has a cloud base at about the same height as the updraft base (which by definition is higher than the wall cloud).
    [Show full text]
  • NOTES and CORRESPONDENCE a Funnel Cloud in a Convective
    2786 MONTHLY WEATHER REVIEW VOLUME 136 NOTES AND CORRESPONDENCE A Funnel Cloud in a Convective Cloud Line to the Rear of a Surface Cold Front HOWARD B. BLUESTEIN School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 24 August 2007, in final form 28 November 2008) ABSTRACT This brief case study describes the unusually benign environment in which a funnel cloud formed along a line of convective towers during the summer in Kansas. The parent cloud line was solitary and very narrow, yet organized on the mesoscale. The cloud line appeared to be best correlated with a zone of horizontal temperature gradient to the northwest of cool (evaporatively produced) outflow from an area of precipitation located just to the rear of a cold front. Implications for forecasting such an event are noted. 1. Introduction common. To the best of the author’s knowledge, no comprehensive landspout climatology has appeared in Tornadoes are frequently associated with larger-scale the literature. One must identify days on which surface parent vortices, such as mesocyclones in supercells, and boundaries marked by vertical vorticity are likely loca- ordinary cells that are often in lines (Davies-Jones et al. tions for the initiation of nonsupercell convection, and 2001). Those that form in ordinary cells frequently de- then anticipate that landspouts may occur. rive their vorticity from preexisting vorticity in the On 19 August 2006, the author, while en route from boundary layer (Wakimoto and Wilson 1989; Lee and Boulder, Colorado, to Norman, Oklahoma, serendipi- Wilhelmson 1997), begin near the ground first and tously observed a relatively long-lived landspout funnel build upward, and look visually like many Florida wa- cloud pendant from a line of cumulus congestus in west- terspouts (Bluestein 1985; Brady and Szoke 1989); for ern Kansas, 13 km east of Hays, Kansas.
    [Show full text]
  • Tornadoes – Forecasting, Dynamics and Genesis
    Tornadoes – forecasting, dynamics and genesis Mteor 417 – Iowa State University – Week 12 Bill Gallus Tools to diagnose severe weather risks • Definition of tornado: A vortex (rapidly rotating column of air) associated with moist convection that is intense enough to do damage at the ground. • Note: Funnel cloud is merely a cloud formed by the drop of pressure inside the vortex. It is not needed for a tornado, but usually is present in all but fairly dry areas. • Intensity Scale: Enhanced Fujita scale since 2007: • EF0 Weak 65-85 mph (broken tree branches) • EF1 Weak 86-110 mph (trees snapped, windows broken) • EF2 Strong 111-135 mph (uprooted trees, weak structures destroyed) • EF3 Strong 136-165 mph (walls stripped off buildings) • EF4 Violent 166-200 mph (frame homes destroyed) • EF5 Violent > 200 mph (steel reinforced buildings have major damage) Supercell vs QLCS • It has been estimated that 60% of tornadoes come from supercells, with 40% from QLCS systems. • Instead of treating these differently, we will concentrate on mesocyclonic versus non- mesocyclonic tornadoes • Supercells almost always produce tornadoes from mesocyclones. For QLCS events, it is harder to say what is happening –they may end up with mesocyclones playing a role, but usually these are much shorter lived. Tornadoes - Mesocyclone-induced a) Usually occur within rotating supercells b) vertical wind shear leads to horizontal vorticity which is tilted by the updraft to produce storm rotation, which is stretched by the updraft into a mesocyclone with scales of a few
    [Show full text]
  • Research Overview and Cognitive Approaches
    1/29/2013 Research overview and cognitive approaches Partha P. Sarkar, Ph.D. Professor WESEP 594 January 24, 2013 1 • My Background • My Research Overview and Approach • My Perspectives 2 1 1/29/2013 My Background Education: • Ph.D., Johns Hopkins University, 1989-1992 • M.S., Washington State University, 1985-1986 • B.Tech, Indian Institute of Technology (Kanpur), 1980-1985 Academic Experience (20 yrs+): • Texas Tech University, 1992-2000 • Iowa State University, 2000-present Industrial Experience (2 yrs): • Structural Engineering Research Center (SERC), Chennai, India, 1988-89 • DCPL (Kuljian Corporation, USA), Mumbai, India, 1987-88 3 Professional Highlights • TA Wilson Endowed Chair in Engineering, 2000-2008 • Guest Professor, 2008-2012, Global Center of Excellence on Wind Engineering, Tokyo Polytechnic University, Atsugi, Japan • Invited talk to US Congressional Staff, 2005 • President, American Assoc. for Wind Engineering (2011-12) • Member, Ed. Board, J. of Wind Engr. and Ind. Aero. & 2 Other Journals • Appearance on several National/Intl.TV Channels, Museum, Public Radio Research Interests Wind Engineering/Wind Energy • Wind-tunnel and full-scale testing of CE structures • Aerodynamics of flexible structures • Wind loads on low-rise buildings/structures • Design of next generation wind tunnels • Study of tornado-, microburst-, gust front-induced wind loads 4 2 1/29/2013 Research Highlights Sponsors: Federal - NSF, NOAA, NAVY, DOE, State - TxDOT, IAWIND, Industry Projects: 40+ projects with a total budget of +16.5M Students: Advised 4 postdocs, 11 PhD (8 graduated), 13 MS, 50+ undergrads Publications: +125 articles (~50 Journal Papers), 3 Proceedings (Ed), 1 CD- ROM, 4 Patents 5 Faculty Collaborators Dr. Vinay Dayal, Associate Professor of Aerospace Engineering Dr.
    [Show full text]
  • El Reno Tornado (May 31 2013)
    Online Summary Damage from the 31 May 2013 Tornado in El Reno, OK (Image Courtesy of http://www.weather.com/news/tornado-central/storm-damage-friday-20130531) University of Florida Wind Hazard Damage Assessment Team PI: David O. Prevatt, Ph.D., PE [email protected] Contributing Authors: Jeandona Doreste Alyssa Egnew June 6, 2013 Wind Hazard Damage Assessment Team Engineering School of Sustainable Infrastructure and Environment University of Florida June 6, 2013 Executive Summary Just two weeks after a tornado caused extensive damage to Moore, OK, on 31 May 2013, El Reno, OK, was hit by another powerful tornado. El Reno is a little less than 30 miles to the north-west of Moore, and it has a population of 17,510 in 6,752 homes. The tornado tracked through mainly rural areas south of the town itself (south of Interstate 40). The unsettled weather spawned multiple vortices and several (nine) tornadoes in El Reno, Yukon, Mustang, near Moore, Del City, Watova and Oklahoma City. The most deadly was the El Reno. NWS reports a 16.2-mile curvilinear path of the tornado, and a maximum damage swath of 2.6 miles, making it the widest tornado on record. Building damage was relatively limited due to the rural track taken by this tornado. There were 20 confirmed fatalities, including the three storm chasers, Tim Samaras, his son, Paul and a videographer with his team. This was indeed a tragic loss to forecasting community. This report was prepared from online sources by University of Florida civil engineering students in Prof.
    [Show full text]