Delta Encoding Image Archives

Total Page:16

File Type:pdf, Size:1020Kb

Delta Encoding Image Archives DEGREE PROJECT, IN COMPUTER SCIENCE , FIRST LEVEL STOCKHOLM, SWEDEN 2015 Delta encoding image archives COMPARING DELTA ENCODING AND PNG AS COMPRESSION METHODS FOR IMAGE ARCHIVES ISAK JÄGBERG, MATS STICHEL KTH ROYAL INSTITUTE OF TECHNOLOGY CSC SCHOOL Delta encoding image archives Comparing delta encoding and PNG as compression methods for image archives ISAK JÄGBERG, MATS STICHEL Degree project in Computer Science DD143X Supervisor: Jens Lagergren Examiner: Örjan Ekeberg 2015-05-08 Abstract This thesis studies the effect of using delta encoding to compress archives of images. The results are compared with two types of lossless PNG compression. The tests show that the most sophisticated PNG method tested compresses the archives around 2-12% higher than the delta en- coding methods, but at the cost of taking more than 10 times as long. The conclusion is therefore drawn that delta encoding could be a useful method for compressing image archives in environments where speed is more important than storage. Referat Denna rapport undersöker effekten av att använda delta encoding för att komprimera bildarkiv. Resultaten jämförs med two typer av förlust- fri PNG-komprimering. Testerna visar att den mest sofistikerade PNG- komprimeringen som testats komprimerar arkiven omkring 2-12% mer än delta encoding-komprimeringen, men att den samtidigt är över 10 gånger långsammare. Slutsatsen är därför att delta encoding kan va- ra en användbar komprimeringsteknik i datorsystem där hastighet är viktigare än lagringsutrymme. Contents 1 Introduction 1 1.1 Problem Definition . 1 1.2 Background . 2 1.2.1 Compression . 2 1.2.2 Delta encoding . 2 1.2.3 Data differencing and patching . 3 1.2.4 Image compression and image formats . 4 1.2.5 Reading/writing images . 5 1.3 State-of-the-art . 5 1.4 Scope . 6 1.5 Terminology . 6 2 Method 7 2.1 Test phases . 7 2.2 Data sets . 8 2.3 Compression methods . 9 2.4 Test environment . 12 3 Result 13 3.1 Result of test phase 1 . 13 3.2 Result of test phase 2 . 14 3.3 Analysis . 15 4 Discussion 17 4.1 Method limitations . 19 5 Conclusion 21 Bibliography 23 Chapter 1 Introduction Recording everything we see has become a natural part of our world, whether it is by photo or video. Because of this, the need for large storage servers has become greater at a fast pace. In 2009, over 15 billion photos had been uploaded to Face- book and 220 million more were being uploaded weekly[6]. These photos can easily be compressed by Facebook even with a lossy compression algorithm because, most of the time, the users will not notice this. In other archives the data in the image could be of greater importance, for example images associated with a criminal in- vestigation or a patient’s medical records at a hospital. In these cases the photos have to be stored exactly as they are and cannot be compressed unless it is possi- ble to decompress them without data loss. With archives of photos in the sizes of Facebook’s, the amount of storage needed makes such a compression method more relevant to investigate. One common type of compression used on many data formats is delta encoding. Delta encoding is used in most video formats such as MPEG in order to compress frames by utilising the fact that each frame is similar to the one before it[5]. With delta encoding, you describe each frame as a list of differences from the previous frame. Since the two frames are similar, the differences are few, and the storage size needed is reduced. 1.1 Problem Definition The purpose of this study is to find out if and how well delta encoding can be used to compress archives of images compared to PNG compression. To do this the following problem statement has been chosen: 1. How much does the selection of source file affect the compression using delta encoding? 2. How well does delta encoding compress an archive of images compared to PNG compression? 1 CHAPTER 1. INTRODUCTION 3. How well does delta encoding compress an archive of similar images compared to an archive of dissimilar images? 1.2 Background In the following sections the relevant terminology and information necessary to understand the latter portions of the report will be discussed. They will cover which different kinds of compression there are and when they are used. Delta encoding will be introduced and it will be explained how delta encoding can be used to compress data. To understand how images can be compressed some image file formats will be explained, as well as Java’s ImageIO library which can be used to read and write images. 1.2.1 Compression In computer science, compression refers to the practice of reducing the size of data. It is a central part of the modern world of computing. As the usage of technology grows larger and larger, so does the amount of data that we need to store. While compressing a few files on your own hard drive may seem like an unnecessary waste of time since you have so much space anyways, compressing the billions of files stored globally has a much more drastic effect on the total storage space used. This in turn brings positive effects like lesser maintenance and lower costs[7]. There are two types of compression: lossy and lossless. A lossy compression will lose some of the data of the original file(s) and it will not be possible to reproduce all of the original data from the compressed data. This kind of compression is naturally not desired when compressing important data to minimise storage costs but some scenarios where lossy compression is useful include compressing music files and video files. In these cases the lost data is acceptable because you either do not notice the data in the original file(s) or the lesser quality of the music or video file is a necessary cost for higher playback speed or lower bandwidth requirements when streaming[10]. Lossless compression will always prioritise conservation of data over reduction of data size, meaning it will try to reduce the size of a file, but it will only do it if it knows it can decompress the compressed data into an exact copy of the original data[13]. 1.2.2 Delta encoding One common type of compression used by many different industries today is delta encoding (sometimes called delta compression or delta coding). Delta encoding is used to compress sequences of data by describing every item in the sequence in terms of differences to the previous item in the sequence[12]. These alternative descriptions are often referred to as patches, or deltas. Consider this example: we have a large file with source code of a program. We want to add a line of code to test something and want to keep both versions of the 2 1.2. BACKGROUND file in case the code does not work like we want it to. Using delta encoding we only need to store the original file along with a patch telling the version control system that we added a line of code. To achieve the same result without delta encoding we would have to store both files where only one line of code differs. This might not seem so bad considering the usually small file size of source code files and the convenience of actually having the previous version of the file readable but in larger projects where you need to track many different versions of many different files the storage space saved by delta encoding becomes much more significant. The effectiveness of delta encoding depends largely on the similarity between the items in the sequence. Very similar items have very few differences, and as such the patches will be very small. Because of this characteristic, delta encoding lends itself very nicely to compressing already sequential data (audio/video for example). 1.2.3 Data differencing and patching In order to use delta encoding, we need a way to find the differences between two items in the sequence. This process is called data differencing. There are various tools that will perform various types of data differencing, but the core of the practice is the same: you have a source and a target, and you compare them in order to produce what is called a patch - a description of the changes you need to apply to the source in order to turn it into the target. A common data differencing tool is Unix diff, which differentiates text files on a line-by-line basis[4]. Figure 1.1. Two versions of a shopping list, and a patch Differentiating the two shopping lists would generate a patch file describing how to turn the first version of the shopping list into the second version (patch). The patch file is a list of instructions, telling the patch tool exactly what to do, and where. On line 3 of the original file, delete "Cheese". On line 5 of the original file, add "Pasta". As stated earlier, Unix diff is used mainly for differentiating text files. There are other tools designed for other specific types of data differencing, but there are also some tools that can differentiate any pair of files, regardless of file type. This is called binary data differencing, because it treats a file as a series of 1:s and 0:s, instead of a series of characters, or pixels et cetera. A popular tool for binary data differencing and patching is bsdiff and bspatch[2]. Using bsdiff to differentiate two files, and bspatch to apply the patch to the source, one can turn any file into any other file, regardless of file extension.
Recommended publications
  • Compressed Transitive Delta Encoding 1. Introduction
    Compressed Transitive Delta Encoding Dana Shapira Department of Computer Science Ashkelon Academic College Ashkelon 78211, Israel [email protected] Abstract Given a source file S and two differencing files ∆(S; T ) and ∆(T;R), where ∆(X; Y ) is used to denote the delta file of the target file Y with respect to the source file X, the objective is to be able to construct R. This is intended for the scenario of upgrading soft- ware where intermediate releases are missing, or for the case of file system backups, where non consecutive versions must be recovered. The traditional way is to decompress ∆(S; T ) in order to construct T and then apply ∆(T;R) on T and obtain R. The Compressed Transitive Delta Encoding (CTDE) paradigm, introduced in this paper, is to construct a delta file ∆(S; R) working directly on the two given delta files, ∆(S; T ) and ∆(T;R), without any decompression or the use of the base file S. A new algorithm for solving CTDE is proposed and its compression performance is compared against the traditional \double delta decompression". Not only does it use constant additional space, as opposed to the traditional method which uses linear additional memory storage, but experiments show that the size of the delta files involved is reduced by 15% on average. 1. Introduction Differential file compression represents a target file T with respect to a source file S. That is, both the encoder and decoder have available identical copies of S. A new file T is encoded and subsequently decoded by making use of S.
    [Show full text]
  • Implementing Compression on Distributed Time Series Database
    Implementing compression on distributed time series database Michael Burman School of Science Thesis submitted for examination for the degree of Master of Science in Technology. Espoo 05.11.2017 Supervisor Prof. Kari Smolander Advisor Mgr. Jiri Kremser Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the master’s thesis Author Michael Burman Title Implementing compression on distributed time series database Degree programme Major Computer Science Code of major SCI3042 Supervisor Prof. Kari Smolander Advisor Mgr. Jiri Kremser Date 05.11.2017 Number of pages 70+4 Language English Abstract Rise of microservices and distributed applications in containerized deployments are putting increasing amount of burden to the monitoring systems. They push the storage requirements to provide suitable performance for large queries. In this paper we present the changes we made to our distributed time series database, Hawkular-Metrics, and how it stores data more effectively in the Cassandra. We show that using our methods provides significant space savings ranging from 50 to 95% reduction in storage usage, while reducing the query times by over 90% compared to the nominal approach when using Cassandra. We also provide our unique algorithm modified from Gorilla compression algorithm that we use in our solution, which provides almost three times the throughput in compression with equal compression ratio. Keywords timeseries compression performance storage Aalto-yliopisto, PL 11000, 00076 AALTO www.aalto.fi Diplomityön tiivistelmä Tekijä Michael Burman Työn nimi Pakkausmenetelmät hajautetussa aikasarjatietokannassa Koulutusohjelma Pääaine Computer Science Pääaineen koodi SCI3042 Työn valvoja ja ohjaaja Prof. Kari Smolander Päivämäärä 05.11.2017 Sivumäärä 70+4 Kieli Englanti Tiivistelmä Hajautettujen järjestelmien yleistyminen on aiheuttanut valvontajärjestelmissä tiedon määrän kasvua, sillä aikasarjojen määrä on kasvanut ja niihin talletetaan useammin tietoa.
    [Show full text]
  • In-Place Reconstruction of Delta Compressed Files
    In-Place Reconstruction of Delta Compressed Files Randal C. Burns Darrell D. E. Long’ IBM Almaden ResearchCenter Departmentof Computer Science 650 Harry Rd., San Jose,CA 95 120 University of California, SantaCruz, CA 95064 [email protected] [email protected] Abstract results in high latency and low bandwidth to web-enabled clients and prevents the timely delivery of software. We present an algorithm for modifying delta compressed Differential or delta compression [5, 11, compactly en- files so that the compressedversions may be reconstructed coding a new version of a file using only the changedbytes without scratchspace. This allows network clients with lim- from a previous version, can be usedto reducethe size of the ited resources to efficiently update software by retrieving file to be transmitted and consequently the time to perform delta compressedversions over a network. software update. Currently, decompressingdelta encoded Delta compressionfor binary files, compactly encoding a files requires scratch space,additional disk or memory stor- version of data with only the changedbytes from a previous age, used to hold a required second copy of the file. Two version, may be used to efficiently distribute software over copiesof the compressedfile must be concurrently available, low bandwidth channels, such as the Internet. Traditional as the delta file contains directives to read data from the old methods for rebuilding these delta files require memory or file version while the new file version is being materialized storagespace on the target machinefor both the old and new in another region of storage. This presentsa problem. Net- version of the file to be reconstructed.
    [Show full text]
  • Delta Compression Techniques
    D but the concept can also be applied to multimedia Delta Compression and structured data. Techniques Delta compression should not be confused with Elias delta codes, a technique for encod- Torsten Suel ing integer values, or with the idea of coding Department of Computer Science and sorted sequences of integers by first taking the Engineering, Tandon School of Engineering, difference (or delta) between consecutive values. New York University, Brooklyn, NY, USA Also, delta compression requires the encoder to have complete knowledge of the reference files and thus differs from more general techniques for Synonyms redundancy elimination in networks and storage systems where the encoder has limited or even Data differencing; Delta encoding; Differential no knowledge of the reference files, though the compression boundaries with that line of work are not clearly defined. Definition Delta compression techniques encode a target Overview file with respect to one or more reference files, such that a decoder who has access to the same Many applications of big data technologies in- reference files can recreate the target file from the volve very large data sets that need to be stored on compressed data. Delta compression is usually disk or transmitted over networks. Consequently, applied in cases where there is a high degree of data compression techniques are widely used to redundancy between target and references files, reduce data sizes. However, there are many sce- leading to a much smaller compressed size than narios where there are significant redundancies could be achieved by just compressing the tar- between different data files that cannot be ex- get file by itself.
    [Show full text]
  • The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 13, Number 6 (2018) pp. 3296-3414 © Research India Publications. http://www.ripublication.com The Pillars of Lossless Compression Algorithms a Road Map and Genealogy Tree Evon Abu-Taieh, PhD Information System Technology Faculty, The University of Jordan, Aqaba, Jordan. Abstract tree is presented in the last section of the paper after presenting the 12 main compression algorithms each with a practical This paper presents the pillars of lossless compression example. algorithms, methods and techniques. The paper counted more than 40 compression algorithms. Although each algorithm is The paper first introduces Shannon–Fano code showing its an independent in its own right, still; these algorithms relation to Shannon (1948), Huffman coding (1952), FANO interrelate genealogically and chronologically. The paper then (1949), Run Length Encoding (1967), Peter's Version (1963), presents the genealogy tree suggested by researcher. The tree Enumerative Coding (1973), LIFO (1976), FiFO Pasco (1976), shows the interrelationships between the 40 algorithms. Also, Stream (1979), P-Based FIFO (1981). Two examples are to be the tree showed the chronological order the algorithms came to presented one for Shannon-Fano Code and the other is for life. The time relation shows the cooperation among the Arithmetic Coding. Next, Huffman code is to be presented scientific society and how the amended each other's work. The with simulation example and algorithm. The third is Lempel- paper presents the 12 pillars researched in this paper, and a Ziv-Welch (LZW) Algorithm which hatched more than 24 comparison table is to be developed.
    [Show full text]
  • The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on Iot Nodes in Smart Cities
    sensors Article The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities Ammar Nasif *, Zulaiha Ali Othman and Nor Samsiah Sani Center for Artificial Intelligence Technology (CAIT), Faculty of Information Science & Technology, University Kebangsaan Malaysia, Bangi 43600, Malaysia; [email protected] (Z.A.O.); [email protected] (N.S.S.) * Correspondence: [email protected] Abstract: Networking is crucial for smart city projects nowadays, as it offers an environment where people and things are connected. This paper presents a chronology of factors on the development of smart cities, including IoT technologies as network infrastructure. Increasing IoT nodes leads to increasing data flow, which is a potential source of failure for IoT networks. The biggest challenge of IoT networks is that the IoT may have insufficient memory to handle all transaction data within the IoT network. We aim in this paper to propose a potential compression method for reducing IoT network data traffic. Therefore, we investigate various lossless compression algorithms, such as entropy or dictionary-based algorithms, and general compression methods to determine which algorithm or method adheres to the IoT specifications. Furthermore, this study conducts compression experiments using entropy (Huffman, Adaptive Huffman) and Dictionary (LZ77, LZ78) as well as five different types of datasets of the IoT data traffic. Though the above algorithms can alleviate the IoT data traffic, adaptive Huffman gave the best compression algorithm. Therefore, in this paper, Citation: Nasif, A.; Othman, Z.A.; we aim to propose a conceptual compression method for IoT data traffic by improving an adaptive Sani, N.S.
    [Show full text]
  • Compression Techniques
    1 SCIENCE PASSION TECHNOLOGY Architecture of DB Systems 05 Compression Techniques Matthias Boehm Graz University of Technology, Austria Computer Science and Biomedical Engineering Institute of Interactive Systems and Data Science BMK endowed chair for Data Management Last update: Nov 04, 2020 2 Announcements/Org . #1 Video Recording . Link in TeachCenter & TUbe (lectures will be public) . Optional attendance (independent of COVID) . #2 COVID‐19 Restrictions (HS i5) . Corona Traffic Light: Orange + Lockdown max 18/74 . Max 25% room capacity (TC registrations) . Temporarily webex lectures and recording 706.543 Architecture of Database Systems – 05 Compression Techniques Matthias Boehm, Graz University of Technology, WS 2020/21 3 Agenda . Motivation and Terminology . Compression Techniques . Compressed Query Processing . Time Series Compression 706.543 Architecture of Database Systems – 05 Compression Techniques Matthias Boehm, Graz University of Technology, WS 2020/21 4 Motivation and Terminology 706.543 Architecture of Database Systems – 05 Compression Techniques Matthias Boehm, Graz University of Technology, WS 2020/21 Motivation and Terminology 5 Recap: Access Methods and Physical Design . Performance Tuning via Physical Design . Select physical data structures for relational schema and query workload . #1: User‐level, manual physical design by DBA (database administrator) . #2: User/system‐level automatic physical design via advisor tools . Example Base SELECT * FROM R, S, T R S T Tables WHERE R.c = S.d AND S.e = T.f AND R.b BETWEEN 12 AND 73 Mat ⋈ MV Views MV1 2 e=f Parti‐ T c=d tioning 10 σ12≤R.b≤73 S 1000000 Physical B+‐Tree BitMap Hash Access Paths Compression R 706.543 Architecture of Database Systems – 05 Compression Techniques Matthias Boehm, Graz University of Technology, WS 2020/21 Motivation and Terminology 6 Motivation Storage Hierarchy .
    [Show full text]
  • An Inter-Data Encoding Technique That Exploits Synchronized Data for Network Applications
    1 An Inter-data Encoding Technique that Exploits Synchronized Data for Network Applications Wooseung Nam, Student Member, IEEE, Joohyun Lee, Member, IEEE, Ness B. Shroff, Fellow, IEEE, and Kyunghan Lee, Member, IEEE Abstract—In a variety of network applications, there exists significant amount of shared data between two end hosts. Examples include data synchronization services that replicate data from one node to another. Given that shared data may have high correlation with new data to transmit, we question how such shared data can be best utilized to improve the efficiency of data transmission. To answer this, we develop an inter-data encoding technique, SyncCoding, that effectively replaces bit sequences of the data to be transmitted with the pointers to their matching bit sequences in the shared data so called references. By doing so, SyncCoding can reduce data traffic, speed up data transmission, and save energy consumption for transmission. Our evaluations of SyncCoding implemented in Linux show that it outperforms existing popular encoding techniques, Brotli, LZMA, Deflate, and Deduplication. The gains of SyncCoding over those techniques in the perspective of data size after compression in a cloud storage scenario are about 12.5%, 20.8%, 30.1%, and 66.1%, and are about 78.4%, 80.3%, 84.3%, and 94.3% in a web browsing scenario, respectively. Index Terms—Source coding; Data compression; Encoding; Data synchronization; Shared data; Reference selection F 1 INTRODUCTION are capable of exploiting previously stored or delivered URING the last decade, cloud-based data synchroniza- data for storing or transmitting new data. However, they D tion services for end-users such as Dropbox, OneDrive, mostly work at the level of files or chunks of a fixed and Google Drive have attracted a huge number of sub- size (e.g., 4MB in Dropbox, 8kB in Neptune [4]), which scribers.
    [Show full text]
  • Context-Aware Encoding & Delivery in The
    Context-Aware Encoding & Delivery in the Web Benjamin Wollmer1[0000−0002−0545−8040], Wolfram Wingerath2[0000−0003−3512−5789], and Norbert Ritter1 1 University of Hamburg, Hamburg, Germany {wollmer, ritter}@informatik.uni-hamburg.de 2 Baqend GmbH, Hamburg, Germany [email protected] Abstract. While standard HTTP caching has been designed for static resources such as files, different conceptual extensions have made itap- plicable to frequently changing data like database query results or server- generated HTML content. But even though caching is an indispensable means to accelerate content delivery on the web, whether or not cached resources can be used for acceleration has always been a binary decision: a cached response is either valid and can be used or has been inval- idated and must be avoided. In this paper, we present an early-stage PhD project on a novel scheme for content encoding and delivery. Our primary goal is minimizing the payload for client requests in the web by enabling partial usage of cached resources. We discuss related work on the topic and analyze why existing approaches have not been established in practice so far, despite significant gains such as reduced bandwidth usage and loading times for end users. We then present open challenges, derive our research question, and present our research goals and agenda. Keywords: web caching · efficiency · compression algorithms · delta encoding · benchmarking · runtime optimization · user experience. 1 Introduction In the web, performance is crucial for user satisfaction and business-critical met- rics such as conversion rate or revenue per session [17]. But even though new devices and browsers are being developed year after year, the principles of data transfer in the web seem stuck.
    [Show full text]
  • Techniques for Inverted Index Compression
    Techniques for Inverted Index Compression GIULIO ERMANNO PIBIRI, ISTI-CNR, Italy ROSSANO VENTURINI, University of Pisa, Italy The data structure at the core of large-scale search engines is the inverted index, which is essentially a collection of sorted integer sequences called inverted lists. Because of the many documents indexed by such engines and stringent performance requirements imposed by the heavy load of queries, the inverted index stores billions of integers that must be searched efficiently. In this scenario, index compression is essential because it leads to a better exploitation of the computer memory hierarchy for faster query processing and, at the same time, allows reducing the number of storage machines. The aim of this article is twofold: first, surveying the encoding algorithms suitable for inverted index compression and, second, characterizing the performance of the inverted index through experimentation. CCS Concepts: • Information systems → Search index compression; Search engine indexing. Additional Key Words and Phrases: Inverted Indexes; Data Compression; Efficiency ACM Reference Format: Giulio Ermanno Pibiri and Rossano Venturini. 2020. Techniques for Inverted Index Compression. ACM Comput. Surv. 1, 1 (August 2020), 35 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Consider a collection of textual documents each described, for this purpose, as a set of terms. For each distinct term t appearing in the collection, an integer sequence St is built and lists, in sorted order, all the identifiers of the documents (henceforth, docIDs) where the term appears. The sequence St is called the inverted list, or posting list, of the term t and the set of inverted lists for all the distinct terms is the subject of this article – the data structure known as the inverted index.
    [Show full text]
  • Computer Networks Cs 45201 Cs 55201
    ' $ ' $ Contents • Presentation Formatting • Data Compression COMPUTER NETWORKS CS 45201 CS 55201 CHAPTER 7 Presentation Protocols P. Farrell and H. Peyravi Department of Computer Science Kent State University Kent, Ohio 44242 [email protected] http://www.cs.kent.edu/~farrell Fall 2001 CS 4/55201: Computer Networks Fall 2001 CS 4/55201: Computer Networks Fall 2001 & % & % Chapter 7: Presentation Protocols Presentation Formatting Chapter 7: Presentation Protocols Presentation Formatting ' $ ' $ Presentation Formatting Difficulties Representation of base types Overview I floating point: IEEE 754 versus non-standard Marshalling (encoding) application data into messages I integer: big-endian versus little-endian (e.g., 34,677,374) Unmarshalling (decoding) messages into application data (2) (17) (34) (126) application application data data big endian 00000010 00010001 00100010 01111110 (126) (34) (17) (2) Presentation Presentation little endian 01111110 00100010 00010001 00000010 Encoding Decoding message message . message high low address address Data types we consider: Compiler layout of structures e.g. padding between fields I integers Read 7.1.1 on Taxonomy I floating point numbers I character strings XDR (External Data Representation) SunRPC I arrays I XDR provides canonical intermediate form I structures I supports C type system except function pointers I Types of data we do not consider (now): uses compiled stub I images I video I multimedia documents CS 4/55201: Computer Networks Fall 2001 1 of ?? CS 4/55201: Computer Networks Fall 2001 2 of ?? & % & % Chapter 7: Presentation Protocols Presentation Formatting Chapter 7: Presentation Protocols Data Compression ' $ ' $ NDR: Network Data Representation Data Compression Defined by DCE Essentially the C type system Data must be encoded into a message.
    [Show full text]
  • CMU SCS 15-721 (Spring 2020) :: Database Compression
    ADVANCED DATABASE SYSTEMS Database Compression @Andy_Pavlo // 15-721 // Spring 2020 Lecture #09 2 UPCOMING DATABASE EVENTS Oracle Tech Talk → Wednesday Feb 12th @ 4:30pm → NSH 4305 15-721 (Spring 2020) 3 L AST CL ASS 15-721 (Spring 2020) 4 Compression Background Naïve Compression OLAP Columnar Compression OLTP Index Compression 15-721 (Spring 2020) 5 OBSERVATION I/O is the main bottleneck if the DBMS has to fetch data from disk. In-memory DBMSs are more complicated. Key trade-off is speed vs. compression ratio → In-memory DBMSs (always?) choose speed. → Compressing the database reduces DRAM requirements and processing. 15-721 (Spring 2020) 6 REAL-WORLD DATA CHARACTERISTICS Data sets tend to have highly skewed distributions for attribute values. → Example: Zipfian distribution of the Brown Corpus Data sets tend to have high correlation between attributes of the same tuple. → Example: Zip Code to City, Order Date to Ship Date 15-721 (Spring 2020) 7 DATABASE COMPRESSION Goal #1: Must produce fixed-length values. → Only exception is var-length data stored in separate pool. Goal #2: Postpone decompression for as long as possible during query execution. → Also known as late materialization. Goal #3: Must be a lossless scheme. 15-721 (Spring 2020) 8 LOSSLESS VS. LOSSY COMPRESSION When a DBMS uses compression, it is always lossless because people don’t like losing data. Any kind of lossy compression must be performed at the application level. Reading less than the entire data set during query execution is sort of like of compression… 15-721 (Spring 2020) 9 DATA SKIPPING Approach #1: Approximate Queries (Lossy) → Execute queries on a sampled subset of the entire table to produce approximate results.
    [Show full text]