Newcombssnaildraftrp.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kathryn E. Perez, Ph.D. Department of Biology, University of Texas Rio Grande Valley 1201 W
2019 CV Kathryn E. Perez, Ph.D. Department of Biology, University of Texas Rio Grande Valley 1201 W. University Dr., Edinburg, TX 78539 Phone: 956-665-7145 Email: [email protected] URL: http://northamericanlandsnails.org/ Education 2005 Ph.D. Biological Sciences, University of Alabama. 2001 M.S. Biology, Angelo State University. 1998 B.S. Biology, Angelo State University. Professional Experience Assistant Professor, University of Texas Rio Grande Valley, 2014-present. Assistant Professor, University of Texas Pan-American/University of Texas Rio Grande Valley, 2014-2015. Undergraduate Program Coordinator, Biology, University of Texas Rio Grande Valley, 2017-present. Associate Professor, University of Wisconsin at La Crosse, 2012-2014. Assistant Professor, University of Wisconsin at La Crosse, 2008-2012. Member, Assessment of Competence in Experimental Design in Biology (ACED-Bio) Research Coordination Network 2014-2019. Associate, UWL Institute for Latina/o and Latin American Studies. 2008-2014. Research Associate, Section of Mollusks, Carnegie Museum of Natural History, 2005-present. Postdoctoral Fellow, Seeding Postdoctoral Innovators in Research and Education (NIH-SPIRE), 2005-2008. University of North Carolina at Chapel Hill. Visiting Research Scholar, Duke University, Durham NC, Postdoctoral Research with Dr. Cliff Cunningham, 2005-2008. Visiting Assistant Professor, North Carolina Central University, Durham NC, 2007. Graduate Fellow, Integrative Graduate Education and Research Traineeship (NSF-IGERT) program in the Freshwater Sciences, -
Predatory Poiretia (Stylommatophora, Oleacinidae) Snails: Histology and Observations
Vita Malacologica 13: 35-48 20 December 2015 Predatory Poiretia (Stylommatophora, Oleacinidae) snails: histology and observations Renate A. HELWERDA Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands email: [email protected] Key words: Predation, predatory snails, drilling holes, radula, pedal gland, sole gland, acidic mucus ABSTRACT The Mediterranean species occur in rather dry, often rocky habitats, which are openly to sparsely vegetated. The predatory behaviour of Poiretia snails is studied. One However, they also occur in anthropogenically affected areas aspect of this behaviour is the ability to make holes in the such as gardens and parks (Kittel, 1997). The snails are main - shells of prey snails. The radula and the histology of the ly active at night and are hidden away under rocks and leaf mucous glands support the assumption that Poiretia secretes litter during the day, although they can also be found crawling acidic mucus to produce these holes. Observation of a around during daytime if the weather is rainy or cloudy and Poiretia compressa (Mousson, 1859) specimen yielded the moist (Wagner, 1952; Maassen, 1977; Kittel, 1997). During insight that its activities relied on the availability of moisture the hot summer months, Poiretia snails aestivate by burying and not on light conditions. It preyed on a wide range of snail themselves in soil or under rocks and sealing their apertures species, but only produced holes in shells when the aperture with an epiphragm (Kittel, 1997). was blocked. It usually stabbed its prey with a quick motion Poiretia snails prey on a wide variety of pulmonate snails. -
Observations on Neritina Turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions
Hristov, K.K. AvailableInd. J. Pure online App. Biosci. at www.ijpab.com (2020) 8(5), 1-10 ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2582-2845.8319 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2020) 8(5), 1-10 Research Article Peer-Reviewed, Refereed, Open Access Journal Observations on Neritina turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions Kroum K. Hristov* Department of Chemistry and Biochemistry, Medical University - Sofia, Sofia - 1431, Bulgaria *Corresponding Author E-mail: [email protected] Received: 15.08.2020 | Revised: 22.09.2020 | Accepted: 24.09.2020 ABSTRACT Neritina turrita (Gmelin 1791) along with other Neritina, Clithon, Septaria, and other fresh- water snails are popular animals in ornamental aquarium trade. The need for laboratory-bred animals, eliminating the potential biohazard risks, for the ornamental aquarium trade and the growing demand for animal model systems for biomedical research reasons the work for optimising a successful breading protocol. The initial results demonstrate N. turrita as tough animals, surviving fluctuations in pH from 5 to 9, and shifts from a fresh-water environment to brackish (2 - 20 ppt), to sea-water (35 ppt) salinities. The females laid over 630 (at salinities 0, 2, 10 ppt and temperatures of 25 - 28oC) white oval 1 by 0.5 mm egg capsules continuously within 2 months after collecting semen from several males. Depositions of egg capsules are set apart 6 +/-3 days, and consist on average of 53 (range 3 to 192) egg capsules. Production of viable veligers was recorded under laboratory conditions. Keywords: Neritina turrita, Sea-water, Temperatures, Environment INTRODUCTION supposably different genera forming hybrids Neritininae are found in the coastal swamps of with each other, suggesting their close relation. -
The Rosy Wolf Snail – a Welcome Garden Inhabitant in the Southeastern US
The Rosy Wolf Snail – A Welcome Garden Inhabitant in the Southeastern US Growing up in a nursery, we were taught that all snails no matter how big or small were bad. Snails, slugs included, eat plants and so should be destroyed immediately, right? Whoa, not so fast, there are a few snails who have advanced well beyond getting their nutrients directly from plants and instead garner them from the gatherers. The Rosy Wolf Snail, Euglandina rosea, is likely the most noticeable and most common carnivorous snail in our area. It has a broad native distribution across the Gulf Coast region ranging naturally from Louisiana (east Texas according to some) to the Carolinas. Because of its voracious appetite it has been introduced in California as well as in other parts of the world to control invasive land snails. In Hawaii, along with several other islands in the region, the Rosy Wolf Snail was introduced to combat the invasive Giant African Land Snails. Unfortunately that didn’t turn out so well for many of the native Hawaiian land snails but it does eat the Giant Land Snails as well. At this point the Rosy Wolf Snail is now itself considered an invasive species in some parts of the world, it has even earned a spot in the top 100 worst invasive species. Here in its native habitat it should be a revered and welcome garden guest where it helps to keep the herbivorous snails and slugs in check. A cheetah among land snails, the Rosy Wolf Snail can travel at speeds up to 3-4 times faster than your average, leaf eating garden snail or slug. -
Observations on the Shells of Some Fresh-Water Neritid Gastropods from Hawaii and Guam1
Observations on the Shells of Some Fresh-Water Neritid Gastropods from Hawaii and Guam1 Geerat J. VERMEJJ Department of Biology, Yale University Abstract Observations on the fresh-water neritid prosobranch gastropods Neritina vespertina Sowerby 1849 and N. granosa Sowerby 1825 from Hawaii, and N. pul /igera conglobata von Martens 1879 and Septaria porce/lana (Linnaeus 1758) from Guam, have yielded a qualitative correlation between clinging ability of the animal and the degree of development of limpet-like shell characters. The hypothesis is put forth that the granular ornamentation on the shell of N. granosa, and possibly the presence of egg capsules on the shells of many fluviatile neritids (notably N. pu/ligera conglobata and S. porcellana) may create turbulence and minimize the effects of the strong current in which the animals live. Methods Shell dimensions were measured to the nearest tenth millimeter with Vernier calipers. Length was taken as the greatest distance from the apex to a point on the outer lip and usually coincides with the greatest linear dimension of the shell. Width is the greatest distance parallel to the outer edge of the parietal septum. Height is the greatest distance from a point on the dorsal surface to the plane of the opening of the shell measured perpendicular to the length and width dimensions. Attempts at quantitatively measuring the force by which the animal clings to the substratum and the resistance against shear were not successful, but the quali tative differences in these properties between the various species are striking. Names for the species discussed in this paper have been taken from Baker (1923), Kira (1962), and Rabe (1964), and have been confirmed and augmented by Drs. -
Gastropoda: Stylommatophora)1 John L
EENY-494 Terrestrial Slugs of Florida (Gastropoda: Stylommatophora)1 John L. Capinera2 Introduction Florida has only a few terrestrial slug species that are native (indigenous), but some non-native (nonindigenous) species have successfully established here. Many interceptions of slugs are made by quarantine inspectors (Robinson 1999), including species not yet found in the United States or restricted to areas of North America other than Florida. In addition to the many potential invasive slugs originating in temperate climates such as Europe, the traditional source of invasive molluscs for the US, Florida is also quite susceptible to invasion by slugs from warmer climates. Indeed, most of the invaders that have established here are warm-weather or tropical species. Following is a discus- sion of the situation in Florida, including problems with Figure 1. Lateral view of slug showing the breathing pore (pneumostome) open. When closed, the pore can be difficult to locate. slug identification and taxonomy, as well as the behavior, Note that there are two pairs of tentacles, with the larger, upper pair ecology, and management of slugs. bearing visual organs. Credits: Lyle J. Buss, UF/IFAS Biology as nocturnal activity and dwelling mostly in sheltered Slugs are snails without a visible shell (some have an environments. Slugs also reduce water loss by opening their internal shell and a few have a greatly reduced external breathing pore (pneumostome) only periodically instead of shell). The slug life-form (with a reduced or invisible shell) having it open continuously. Slugs produce mucus (slime), has evolved a number of times in different snail families, which allows them to adhere to the substrate and provides but this shell-free body form has imparted similar behavior some protection against abrasion, but some mucus also and physiology in all species of slugs. -
Achatina Fulica Background
Giant African Land Snail, Achatina fulica Background • Originally from coastal East Africa and its islands • Has spread to other parts of Africa, Asia, some Pacific islands, Australia, New Zealand, South America, the Caribbean, and the United States • Can be found in agricultural areas, natural forests, planted forests, riparian zones, wetlands, disturbed areas, and even urban areas in warm tropical climates with high humidity • Also known scientifically as Lissachatina fulica • Common names include giant African land snail and giant African snail Hosts Image citation: Cotton - Charles T. Bryson, USDA Agricultural Research Service, www.bugwood.org, #1116132 Banana - Charles T. Bryson, USDA Agricultural Research Service, www.bugwood.org, #1197011 Papaya - Forest & Kim Starr, Starr Environmental, www.bugwood.org, #5420178 Pumpkin - Howard F. Schwartz, Colorado State University, www.bugwood.org, #5365883 Cucumber - Howard F. Schwartz, Colorado State University, www.bugwood.org., #5363704 Carrots - M.E. Bartolo, www.bugwood.org, #5359190 Environmental Impacts • Consumes large quantities and numbers of species of native plants – May cause indirect damage to plants due to the sheer numbers of snails being so heavy that the plants beak under their weight – May also be a vector of several plant pathogens • Outcompetes and may even eat native snails • It eats so much it can alter the nutrient cycling • Their shells can neutralize acid soils and therefore damage plants that prefer acidic soils • Indirectly, the biocontrol and chemical control that is used on this species can affect native snail species as well. Structural Concerns and Nuisance Issues Image citation: Florida Department of Agriculture and Consumer Services, Division of Plant Industry Public Health Concerns • Intermediate host that vectors: – rat lungworm, Angiostrongylus cantonensis (roundworm) – A. -
Euglandina Rosea (Stylommatophora: Spiraxidae) Problem Statement: The
Chapter 6 Research Activities 6-2 Euglandina rosea (Stylommatophora: Spiraxidae) Problem statement: The rosey wolfsnail, (Euglandina rosea), a medium, pink-hued, predatory land snail, is native to the southeast United States. Purposely brought to Hawai‘i in 1955 to serve as a biocontrol, E. rosea failed to reduce populations of its intended target, the giant African snail, Achatina fulca. A generalist predator, E. rosea proved adept at finding prey in varied habitats, including native forests, where it became associated with the decline and endangerment of endemic snail species. Native snail populations in Maritius and French Polynesia responded similarly to E. rosea invasion. Goals: Examine the feeding behavior and ecology of E. rosea in native Hawaiian forest, assess their impacts on native snails based on population numbers and use results to aid in the development of an effective control program. Action: Occasionally, NRS provide funds and field assistance to University of Hawai‘i at Mānoa (UH) graduate students whose projects achieve OANRP goals. One such project, addressing problems associated with E. rosea, has been underway for one year and OANRP has committed to supporting this research through the upcoming year. Research is carried out by Wallace Martin Meyer III (UH, Center for Conservation Research and Training) as part of his PhD thesis. NRS assists in monthly field surveys for E. rosea and collect E. rosea and (non-native) prey items for use in feeding experiments. Results from year one of this project, written by W. M. Meyer, appear in Appendix 10. Proposed research for the upcoming year includes an investigation of E. -
Taxonomy, Conservation, and the Future of Native Aquatic Snails in the Hawaiian Islands
diversity Perspective Taxonomy, Conservation, and the Future of Native Aquatic Snails in the Hawaiian Islands Carl C. Christensen 1,2, Kenneth A. Hayes 1,2,* and Norine W. Yeung 1,2 1 Bernice Pauahi Bishop Museum, Honolulu, HI 96817, USA; [email protected] (C.C.C.); [email protected] (N.W.Y.) 2 Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA * Correspondence: [email protected] Abstract: Freshwater systems are among the most threatened habitats in the world and the biodi- versity inhabiting them is disappearing quickly. The Hawaiian Archipelago has a small but highly endemic and threatened group of freshwater snails, with eight species in three families (Neritidae, Lymnaeidae, and Cochliopidae). Anthropogenically mediated habitat modifications (i.e., changes in land and water use) and invasive species (e.g., Euglandina spp., non-native sciomyzids) are among the biggest threats to freshwater snails in Hawaii. Currently, only three species are protected either federally (U.S. Endangered Species Act; Erinna newcombi) or by Hawaii State legislation (Neritona granosa, and Neripteron vespertinum). Here, we review the taxonomic and conservation status of Hawaii’s freshwater snails and describe historical and contemporary impacts to their habitats. We conclude by recommending some basic actions that are needed immediately to conserve these species. Without a full understanding of these species’ identities, distributions, habitat requirements, and threats, many will not survive the next decade, and we will have irretrievably lost more of the unique Citation: Christensen, C.C.; Hayes, books from the evolutionary library of life on Earth. K.A.; Yeung, N.W. Taxonomy, Conservation, and the Future of Keywords: Pacific Islands; Gastropoda; endemic; Lymnaeidae; Neritidae; Cochliopidae Native Aquatic Snails in the Hawaiian Islands. -
Variación Fenotípica De La Concha En Neritinidae (Gastropoda: Neritimorpha) En Ríos De Puerto Rico
Variación fenotípica de la concha en Neritinidae (Gastropoda: Neritimorpha) en ríos de Puerto Rico Juan Felipe Blanco1, Silvana Tamayo1 & Frederick N. Scatena2,3 1. Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Calle 67 # 53-108, Medellín, Colombia. Apartado Aéreo 1226; [email protected]; [email protected] 2. Departamento de Ciencias de la Tierra y Ambientales, Universidad de Pensilvania, Filadelfia, Estados Unidos. 3. Fallecido Recibido 12-XII-2013. Corregido 20-I-2014. Aceptado 13-II-2014. Abstract: Phenotypic variability of the shell in Neritinidae (Gastropoda: Neritimorpha) in Puerto Rican rivers. Gastropods of the Neritinidae family exhibit an amphidromous life cycle and an impressive variability in shell coloration in Puerto Rican streams and rivers. Various nominal species have been described, but Neritina virginea [Linné 1758], N. punctulata [Lamarck 1816] and N. reclivata [Say 1822] are the only broadly reported. However, recent studies have shown that these three species are sympatric at the river scale and that species determination might be difficult due to the presence of intermediate color morphs. Individuals (8 751) were collected from ten rivers across Puerto Rico, and from various segments and habitats in Mameyes River (the most pristine island-wide) during three years (2000-2003), and they were assigned to one of seven phenotypes corresponding to nominal species and morphs (non-nominal species). The “axial lines and dots” morph cor- responding to N. reclivata was the most frequent island-wide, while the patelliform N. punctulata was scant, but the only found in headwater reaches. The “yellowish large tongues” phenotype, typical of N. -
Thành Phần Loài Động Vật Đáy Ở Vịnh Xuân Đài, Tỉnh Phú Yên
Tạp chí Khoa học Đại học Huế: Khoa họ c Tự nhiên; ISSN 1859–1388 Tập 127, Số 1B, 2018, Tr. 59–72; DOI: 10.26459/hueuni-jns.v127i1B.4837 THÀNH PHẦN LOÀI ĐỘNG VẬT ĐÁY Ở VỊNH XUÂN ĐÀI, TỈNH PHÚ YÊN Hoàng Đình Trung* Trường Đại học Khoa học, Đại học Huế, 77 Nguyễn Huệ, Huế, Việt nam Tóm tắt: Bài báo công bố kết quả điều tra tổng hợp về thành phần loài động đáy ở vịnh Xuân Đài thuộc thị xã Sông Cầu, tỉnh Phú Yên trong hai năm 2017–2018. Cho đến nay đã xác định được 144 loài động vật đáy (Zoobenthos) thuộc 92 giống, 52 họ, 22 bộ của 4 ngành: Da gai (Echinodermata), Giun đốt (Annelida), Thân mềm (Mollusca) và Chân khớp (Arthropoda). Trong đó, Ngành Da gai (Echinodermata) có 19 loài thuộc 6 bộ, 12 họ, 14 giống. Ngành Giun đốt (Annelida) gồm 2 bộ, 4 họ, 8 giống và 11 loài. Ngành Thân mềm gồm lớp Chân bụng (Gastropoda) có 36 loài thuộc 6 bộ, 14 họ và 20 giống; lớp Hai mảnh vỏ (Bivalvia) có 37 loài thuộc 6 bộ, 11 họ, 24 giống. Ngành Chân khớp (Arthropoda) chỉ có lớp giáp xác (Crustacea) gồm 2 bộ, 11 họ, 26 giống và 41 loài. Nghiên cứu đã bổ sung mới cho khu hệ Động vật đáy vịnh Xuân Đài 31 họ, 95 loài, 56 giống nằm trong 7 lớp (Sao biển, Hải sâm, Cầu gai, Giun nhiều tơ, Chân bụng, Hai mảnh vỏ, Giáp xác). Từ khóa: Động vật đáy, vịnh Xuân Đài, tỉnh Phú Yên 1 Đặt vấn đề Phú Yên là tỉnh ven biển Nam Trung Bộ với chiều dài bờ biển 189 km, có nhiều dãy núi ăn nhô ra biển hình thành các eo vịnh, đầm kín, thuận lợi cho phát triển nuôi trồng thủy sản. -
Euglandina Rosea Global Invasive
FULL ACCOUNT FOR: Euglandina rosea Euglandina rosea System: Terrestrial Kingdom Phylum Class Order Family Animalia Mollusca Gastropoda Stylommatophora Spiraxidae Common name Rosige Wolfsschnecke (German), rosy wolf snail (English), cannibal snail (English) Synonym Similar species Summary The carnivorous rosy wolfsnail Euglandina rosea was introduced to Indian and Pacific Ocean Islands from the 1950s onwards as a biological control agent for the giant African snail (Achatina fulica). E. rosea is not host specific meaning that native molluscs species are at risk of expatriatioin or even extinction if this mollusc-eating snail is introduced. Partulid tree snails of the French Polynesian Islands were particularly affected; having evolved separately from each other in isolated valleys, many Partulid tree snails have been lost and today almost all the survivors exist only in zoos. view this species on IUCN Red List Species Description The shell is large (up to 76 mm in height, 27.5 mm in diameter), thick and has prominent growth lines (University of Florida 2009). The shape of the shell is fusiform with a narrow ovate-lunate aperture and a truncated columella; typically, the shell color is brownish-pink (University of Florida 2009). Adult Euglandina grow from about seven to 10 cm long (Clifford et al. 2003). Habitat Description Euglandina rosea is usually found singly in hardwood forests, roadsides and urban gardens in its native range in Florida (Hubricht 1985, University of Florida 2009). Reproduction Euglandina rosea is a cross-fertilising egg-laying hermaphrodite. Chiu and Chou (1962, in Univeristy of Florida 2009) gave details of the biology of Euglandina in Taiwan. Individuals live up to 24 months.