Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 February 2017 doi:10.20944/preprints201702.0059.v1 Peer-reviewed version available at Remote Sens. 2017, 9, 221; doi:10.3390/rs9030221 1 Article 2 Fusing Observational, Satellite Remote Sensing and 3 Air Quality Model Simulated Data to Estimate 4 Spatiotemporal Variations of PM2.5 Exposure in 5 China 6 Tao Xue 1, Yixuan Zheng 1, Guannan Geng 1,2, Bo Zheng 2, Xujia Jiang 1, Qiang Zhang 1,3,*, Kebin 7 He 2,3 8 1 Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, 9 Tsinghua University, Beijing 100084, China; 10 2 State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, 11 Tsinghua University, Beijing 100084, China; 12 3 The Collaborative Innovation Center for Regional Environmental Quality, Beijing 100084, China; 13 * Correspondence:
[email protected] Tel.: +86-10-62795090 14 15 16 17 Abstract: Estimating ground surface PM2.5 with fine spatiotemporal resolution is a critical technique 18 for exposure assessments in epidemiological studies of its health risks. Previous studies have 19 utilized monitoring, satellite remote sensing or air quality modeling data to evaluate the 20 spatiotemporal variations of PM2.5 concentrations, but such studies rarely combined these data 21 simultaneously. Through assembling techniques, including linear mixed effect regressions with a 22 spatial-varying coefficient, a maximum likelihood estimator and the spatiotemporal Kriging 23 together, we develop a three-stage model to fuse PM2.5 monitoring data, satellite-derived aerosol 24 optical depth (AOD) and community multi-scale air quality (CMAQ) simulations together and 25 apply it to estimate daily PM2.5 at a spatial resolution of 0.1˚ over China.