Nuisance Wasps and Bees Fact Sheet No

Total Page:16

File Type:pdf, Size:1020Kb

Nuisance Wasps and Bees Fact Sheet No Nuisance Wasps and Bees Fact Sheet No. 5.525 Insect Series|Home and Garden by W.S. Cranshaw* Wasps and bees can be a serious nuisance Quick Facts problem throughout Colorado, particularly late in the summer when certain yellowjacket • Most wasps develop by wasps forage at garbage and outdoor food feeding on insects. Bees areas. In overall balance, however, these develop on a diet of nectar or insects are beneficial in their activities, pollen. particularly as predators of pest insects and as pollinators. It is important to distinguish • Almost all insect stings result between the various wasps and bees because from yellowjackets and an their potential as problems and their insect newly established in control differ. the state, the European paper Figure 1: Yellowjacket entering nest wasp. underneath wall. Social Wasps • Yellowjackets, hornets and Several wasps are social insects that paper wasps make nests produce a colony. Colonies begin anew each of paper. Honey bees and spring, initiated by a single fertilized female bumblebees make nests of (queen) that has survived winter. The social wax. Solitary bees and wasps wasps construct their nest of paper, which nest in holes in the ground, they produce by chewing on wood, scraps of rotten wood or natural paper and cardboard. cavities. Some wasps even Social wasp colonies are very small early make mud nests. in the season, but expand rapidly through the summer as more wasps are raised that assist in colony development. By the end of summer, a colony may include dozens, or even several hundred, individuals. Some Figure 2: Baldfaced hornet. wasps reared at the end of the season are fertile females (potential queens) and a nectar, however, social wasps are generally few males. In fall, colonies are abandoned, not important plant pollinators. never to be reused, and the fertilized females All social wasps are capable of producing scatter to find protection during winter. The a painful sting but none leave the stinger remaining members of the colony perish with embedded, as do honey bee workers. cold weather. Most stings occur when the colony is Most social wasps rear their young on accidentally disturbed. a diet of live insects. Several types of social Yellowjackets (Vespula spp.) are wasps are important in controlling insect banded yellow or orange and black and pests such as caterpillars. An exception are commonly mistaken for honey bees, to this is the western yellowjacket, which but they lack the hairy body and are more primarily scavenges dead insects, earthworms intensely colored. Yellowjackets typically and other carrion, including garbage. This nest underground using existing hollows. scavenging habit is usually why yellowjackets Occasionally nests can be found in dark, © Colorado State University become serious nuisance problems. Male enclosed areas of a building, such as crawl Extension. 4/96. Revised 12/12. wasps occasionally visit flowers to feed on spaces or wall voids. www.ext.colostate.edu Nests are enclosed in a paper envelope, *Colorado State University Extension entomologist but they are not exposed nor observed and professor, bioagricultural sciences and pest unless excavated. The nest entrance is small management. 12/2012 and inconspicuous. Colonies are readily fall. The nest can be safely removed in the defended and yellowjackets will sting when winter or, if left alone, will break up during the nest area is disturbed. late fall and winter. Thewestern yellowjacket (V. Reducing paper wasps nesting sites pensylvanica) is, by far, the most important is possible before the colonies become stinging insect in Colorado. Late in the established in early spring. This is done season, when colonies may include up by sealing all openings that allow access to 200 individuals, they become serious to hollow tubing or similar materials. nuisance pests around outdoor sources of The interior of many kinds of children’s food or garbage. The western yellowjacket playground equipment are suitable nesting is estimated to cause at least 90 percent of sites by this wasp and should be given Figure 3: Western yellowjacket. the “bee stings” in the state. special attention. Hornets (Dolicho vespula spp.) produce Active nests causing problems can be large, conspicuous grayish paper nests in destroyed with an insecticide. Insecticide trees, shrubs and under building eaves. The applications are best made during late most common species is the baldfaced evening or cool periods in early morning, hornet (D. maculata) which is stout- when the wasps do not readily fly and most bodied and marked with dark and white foragers have returned to the colony. A striping. Hornets feed their young live variety of insecticides are currently sold insects and do not share the scavenging for this purpose with active ingredients habit of yellowjackets. Nests often attract including permethrin, deltamethrin, attention because of their large size, but tralomethrin, bifenthrin, tetramethrin, hornets rarely sting unless the colony is allethrin, and esfenvalerate. Many of these seriously disturbed. are combination products that include a Figure 4: Baldfaced hornet nest cutaway to Paper wasps (Polistes spp. and the fast-acting, short-lived ingredient (e.g., expose paper comb. western paper wasp, Mischocyttarus allethrin, tetramethrin) with an insecticide flavitarsus) make paper, open cell nests that is more persistent in ability to control that are not covered by a papery envelope. wasps (e.g., permethrin). Often these nests are produced under For exposed nesting species, such as building overhangs. However, a new species paper wasps, insecticides can easily be to Colorado, the European paper wasp applied directly to the nest and control (Polistes dominula), will also nest in small should be excellent. However, ground cavities in the sides of buildings, within nesting yellowjackets with only a small metal gutters and poles, outdoor grills, external entrance can be much more and similar items. Paper wasps are more difficult to control since the nest may slender-bodied than other social wasps. actually be some distance from the Most native paper wasps are reddish-brown opening. Repeated insecticide applications and marked with yellow, but the European are often required to destroy existing paper wasp is marked with shiny black and yellowjacket nests. Figure 5: The western paper wasp, a native yellow, allowing it to be easily mistaken for Social wasps nests are more easily species of paper wasp. a yellowjacket. controlled early in the season when Paper wasps are beneficial predators colonies are small. of caterpillars and other insects and do Nuisance problems with scavenging not scavenge. However, the habit of the yellowjackets are difficult to manage unless European paper wasp to nest in many all the nests are found and destroyed. locations around a yard has greatly However, nests are inconspicuously located increased the incidence of stings associated and the wasps may fly as far as 1,000 yards with this group of wasps. from the colony while foraging, so complete control is difficult. Control of Social Wasps Many concerns with social wasps occur Commonly sold wasp traps only late in the season when colonies grow large are effective for yellowjackets. They and the above-ground nests of hornets and are not attractive for paper wasps or paper wasps become apparent. If the wasps hornets and will not assist in control of are not causing a problem, the best solution these types of wasps. Figure 6: European paper wasp. is to wait until the nest is abandoned in the Table 1. Physical description of the most common bees and wasps. Honey bee (Apis mellifera): Very hairy. General color orange or yellow-orange, sometimes with dark gray. Individuals collecting pollen will pack it into clumps in special structures (pollen baskets) on the hind legs. Bumble bees (Bombus spp.): Very hairy and stout bodied. Black and yellow markings on all species but many are marked with orange or orange-red on the abdomen. European paper wasp (Polistes dominulus): Not hairy. General color black and bright yellow. Overall body form more elongate than the other species. Hind pair of legs long and trail conspicuously when flying. Western yellowjacket (Vespula pensylvanica): Not hairy. General color black and bright yellow. Overall body form slightly more compact than European paper wasp. Baldfaced hornet (Dolichovespula maculata): Not hairy. General color is black and creamy white. Overall body form similar to yellowjacket, but larger. Figure 7: Yellowjacket traps. Yellowjackets will regularly return of spider wasps, the sting is quite mild to sites where food and water sources compared to that of social wasps. are available. Therefore, it is important An unusual wasp common in prairie to deter yellowjackets from visiting an areas are the velvet ants. Females are area by eliminating all food sources (e.g., wingless, hairy, extremely active and open garbage cans, pet foods). Water possess a painful sting. Velvet ants develop sources around the yard may also attract as parasites on ground-nesting bees. yellowjackets during hot, drought- Another important group of wasps are stricken periods. the parasitic wasps. These wasps lay their There has been some success using baits eggs in other insects and the developing Figure 8: Mud dauber. and traps for control of yellowjackets. The wasp larva slowly consumes and ultimately (Photo from the K. Gray collection.) western yellowjacket is attracted to the kills the host insects. Parasitic wasps are chemical heptyl butyrate, which is included non-aggressive, only sting when handled, as a lure in many wasp traps. Such traps can and are considered beneficial for their be helpful when used early in the season, role in controlling a wide variety of pest June and early July, when the number of insects. They are discussed further in fact yellowjackets is small and the colonies are sheet 5.550, Beneficial Insects and other struggling to become established. However, Arthropods. these traps will not attract European paper wasp and are worthless for control of this species.
Recommended publications
  • Honey Bee Immunity — Pesticides — Pests and Diseases
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Distance Master of Science in Entomology Projects Entomology, Department of 2017 A GUIDEBOOK ON HONEY BEE HEALTH: Honey Bee Immunity — Pesticides — Pests and Diseases Joey Caputo Follow this and additional works at: https://digitalcommons.unl.edu/entodistmasters Part of the Entomology Commons This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Distance Master of Science in Entomology Projects by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Photo by David Cappaert, Bugwood.org 1 A GUIDEBOOK ON HONEY BEE HEALTH Honey Bee Immunity — Pesticides— Pests and Diseases By Joey Caputo A graduate degree project submitted as partial fulfillment of the Option III requirements for the de- gree of Masters of Science in Entomology at the graduate school of the University of Nebraska- Lincoln, 2017. Last updated April 2017 — Version 1.2 i Contents Introduction 1 Honey Bee Immune System 2 Mechanical and Biochemical Immunity 2 Innate and Cell-Mediated Immunity 2 Humoral Immunity 2 Social Immunity 3 Detoxification Complexes 5 Problems in Beekeeping 5 Colony Collapse Disorder (CCD) 5 Bacterial, Fungal and Microsporidian Diseases 6 American foulbrood 6 European foulbrood 7 Nosemosis 8 Chalkbrood 10 Crithidia 10 Stonebrood 11 Varroa Mite and Viruses 11 Varroa Biology and Life Cycle 12 Varroa Mite Damage and Parasitic Mite
    [Show full text]
  • Rainfall and Parasitic Wasp (Hymenoptera: Ichneumonoidea
    Agricultural and Forest Entomology (2000) 2, 39±47 Rainfall and parasitic wasp (Hymenoptera: Ichneumonoidea) activity in successional forest stages at Barro Colorado Nature Monument, Panama, and La Selva Biological Station, Costa Rica B. A. Shapiro1 and J. Pickering Institute of Ecology, University of Georgia, Athens, GA 30602-2602, U.S.A. Abstract 1 In 1997, we ran two Malaise insect traps in each of four stands of wet forest in Costa Rica (two old-growth and two 20-year-old stands) and four stands of moist forest in Panama (old-growth, 20, 40 and 120-year-old stands). 2 Wet forest traps caught 2.32 times as many ichneumonoids as moist forest traps. The average catch per old-growth trap was 1.89 times greater than the average catch per second-growth trap. 3 Parasitoids of lepidopteran larvae were caught in higher proportions in the wet forest, while pupal parasitoids were relatively more active in the moist forest. 4 We hypothesize that moisture availability is of key importance in determining parasitoid activity, community composition and trophic interactions. Keywords Barro Colorado Nature Monument, Ichneumonoidea, La Selva, parasitoids, precipitation, tropical moist forest, tropical wet forest. istics of each parasitoid species and abiotic factors. Seasonal Introduction patterns of insect activity are often correlated with temperature, One of the largest groups of parasitic Hymenoptera is the as processes such as development and diapause are often superfamily Ichneumonoidea, which consists of two families intimately associated with temperature change (Wolda, 1988). (the Ichneumonidae and the Braconidae), 64 subfamilies and an Fink & VoÈlkl (1995) gave several examples of small insects for estimated 100 000 species world-wide (Gauld & Bolton, 1988; which low humidity and high temperature have detrimental Wahl & Sharkey, 1993).
    [Show full text]
  • Alien Dominance of the Parasitoid Wasp Community Along an Elevation Gradient on Hawai’I Island
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck U.S. Geological Survey, [email protected] Paul C. Banko U.S. Geological Survey Marla Schwarzfeld U.S. Geological Survey Melody Euaparadorn U.S. Geological Survey Kevin W. Brinck U.S. Geological Survey Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Peck, Robert W.; Banko, Paul C.; Schwarzfeld, Marla; Euaparadorn, Melody; and Brinck, Kevin W., "Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island" (2008). USGS Staff -- Published Research. 652. https://digitalcommons.unl.edu/usgsstaffpub/652 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biol Invasions (2008) 10:1441–1455 DOI 10.1007/s10530-008-9218-1 ORIGINAL PAPER Alien dominance of the parasitoid wasp community along an elevation gradient on Hawai’i Island Robert W. Peck Æ Paul C. Banko Æ Marla Schwarzfeld Æ Melody Euaparadorn Æ Kevin W. Brinck Received: 7 December 2007 / Accepted: 21 January 2008 / Published online: 6 February 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Through intentional and accidental increased with increasing elevation, with all three introduction, more than 100 species of alien Ichneu- elevations differing significantly from each other. monidae and Braconidae (Hymenoptera) have Nine species purposely introduced to control pest become established in the Hawaiian Islands.
    [Show full text]
  • Insects Parasitoids: Natural Enemies of Helicoverpa
    Queensland the Smart State insects Parasitoids: Natural enemies of helicoverpa Introduction Helicoverpa caterpillars (often called heliothis) are serious pests of many crops in Australia. A range of parasitoid and predatory insects attack helicoverpa. Identifying and conserving these beneficial insects is fundamental to implementing pest management with a reduced reliance on chemical insecticides. This brochure describes the most important parasitoids of helicoverpa in Australian broadacre crops. Parasitoids versus parasites: What’s the difference? Parasitoids kill their hosts; parasites (such Figure 1. Netelia producta is one of the as lice and fleas) do not. All the insects most commonly encountered parasitoids in this brochure are parasitoids. Despite of helicoverpa. Females lay their eggs onto this difference, the terms parasitoid and caterpillars, and the hatching wasp larva parasite are often used interchangeably, if feeds on its host, eventually killing it. inaccurately. Parasitoids such as Netelia can be important biological control agents of helicoverpa in crops. (Photo: K. Power) All comments about parasitoid abundance in this publication are based on field observations in southern Queensland farming systems. These patterns may not occur in all parts of Australia. About parasitoids What is a parasitoid? How do parasitoids find their A parasitoid is an insect that kills (parasitises) hosts? its host — usually another insect — in Many adult parasitoids find their host by order to complete its lifecycle. In Australia, smell. They can detect the direct odour of helicoverpa are parasitised by many species the host itself, or odours associated with host of wasps and flies. All helicoverpa immature activity, such as plant damage or caterpillar stages are parasitised (that is, egg, caterpillar frass (dung).
    [Show full text]
  • The Buzz About Bees: Honey Bee Biology and Behavior
    4-H Honey Bee Leaders Guide Book I The Buzz About Bees: 18 U.S.C. 707 Honey Bee Biology and Behavior Publication 380-071 2009 To the 4-H Leader: The honey bee project (Books Grade 5 1 - 4) is intended to teach young people the basic biology and behavior of honey bees in addition to Living Systems 5.5 hands-on beekeeping management skills. The honey The student will investigate and understand that bee project books begin with basic honey bee and organisms are made up of cells and have distin- insect information (junior level) and advance to guishing characteristics. Key concepts include: instruction on how to rear honey bee colonies and • vertebrates and invertebrates extract honey (senior level). These project books are intended to provide in-depth information related Grade 6 to honey bee management, yet they are written for the amateur beekeeper, who may or may not have Life Science 5 previous experience in rearing honey bees. The student will investigate and understand how organisms can be classified. Key concepts include: Caution: • characteristics of the species If anyone in your club is known to have severe Life Science 8 allergic reactions to bee stings, they should not The student will investigate and understand that participate in this project. interactions exist among members of a population. The honey bee project meets the following Vir- Key concepts include: ginia State Standards of Learning (SOLs) for the • competition, cooperation, social hierarchy, and fourth, fifth, and sixth grades: territorial imperative Grade 4 Acknowledgments Authors: Life Processes 4.4 Dini M.
    [Show full text]
  • Chemical and Thermal Characterization of the Construction Material of Nests of Seven Species of Wasps from Norte De Santander - Colombia
    Respuestas, 24 (2), May - August 2019,, pp. 27-38, ISSN 0122-820X - E ISSN: 2422-5053 Journal of Engineering Sciences rigin rie https://doi.org/10.22463/0122820X.1828 Chemical and thermal characterization of the construction material of nests of seven species of wasps from Norte de Santander - Colombia. Caracterización química y térmica del material de construcción de nidos de siete especies de avispas del Norte de Santander - Colombia. María Del Carmen Parra Hernández1, Diana Alexandra Torres Sánchez2* 1Chemistry, [email protected], orcid.org/0000-0003-2034-4495, Universidad de Pamplona, Pamplona, Colombia 2*PhD in Chemistry Sciences, [email protected], orcid.org/0000-0002-0602-9299, Universidad de Pamplona, Pamplona, Colombia. How to cite: M.C. Parra-Hernadez y D.A. Torres-Sanchez , “Chemical and thermal characterization of the construction material of nests of seven species of wasps from Norte de Santander - Colombia.”. Respuestas, vol. 24, no. 2, pp. 27-38, 2019. Received on August 09, 2018; Approved on November 10, 2018 ABSTRACT Social wasps are insects that construct their nests using wood pulp, plant and themselves secretions for Keywords: the accomplishment of their activities as a colony. Currently in Colombia, there is little knowledge about this interesting material due to its characteristics, which could be used in promising applications. In this Wasps, work the chemical and thermal characterization of nests of seven species of wasps (Agelaia pallipes, Nests, Agelaia multipicta, Agelaia areata, Polybia aequatorialis, Parachartergus apicalis, Mischucytharus imitator, Thermogravimetric Brachygastra lecheguana) living in Norte de Santander, was carried out with the purpose of establishing if there are significant differences between species and provide information that could be used as a model or Analysis (TGA), precursors for the synthesis in biomimetics and / or nanotechnology.
    [Show full text]
  • Hymenoptera (Stinging Wasps)
    Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Hymenoptera (Stinging Wasps) Life Cycle–Complete metamorphosis: Queens or solitary adults lay eggs. Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause the larvae to pupate. Inside a cell (in nests) or a pupal case (solitary), they change in form and color and develop wings. The adults look completely different from the larvae. Solitary wasps: Social wasps: Adults–Stinging wasps have hard bodies and most have membranous wings (some are wingless). The forewing is larger than the hindwing and the two are hooked together as are all Hymenoptera, hence the name "married wings," but this is difficult to see. Some species fold their wings lengthwise, making their wings look long and narrow. The head is oblong and clearly separated from the thorax, and the eyes are compound eyes, but not multifaceted. All have a cinched-in waist (wasp waist). Eggs are laid from the base of the ovipositor, while the ovipositor itself, in most species, has evolved into a stinger. Thus only females have stingers. (Click images to enlarge or orange text for more information.) Oblong head Compound eyes Folded wings but not multifaceted appear Cinched in waist long & narrow Return to insect order home Page 2 of 3 Eggs–Colonies of social wasps have at least one queen that lays both fertilized and unfertilized eggs. Most are fertilized and all fertilized eggs are female. Most of these become workers; a few become queens.
    [Show full text]
  • Wisconsin Bee Identification Guide
    WisconsinWisconsin BeeBee IdentificationIdentification GuideGuide Developed by Patrick Liesch, Christy Stewart, and Christine Wen Honey Bee (Apis mellifera) The honey bee is perhaps our best-known pollinator. Honey bees are not native to North America and were brought over with early settlers. Honey bees are mid-sized bees (~ ½ inch long) and have brownish bodies with bands of pale hairs on the abdomen. Honey bees are unique with their social behavior, living together year-round as a colony consisting of thousands of individuals. Honey bees forage on a wide variety of plants and their colonies can be useful in agricultural settings for their pollination services. Honey bees are our only bee that produces honey, which they use as a food source for the colony during the winter months. In many cases, the honey bees you encounter may be from a local beekeeper’s hive. Occasionally, wild honey bee colonies can become established in cavities in hollow trees and similar settings. Photo by Christy Stewart Bumble bees (Bombus sp.) Bumble bees are some of our most recognizable bees. They are amongst our largest bees and can be close to 1 inch long, although many species are between ½ inch and ¾ inch long. There are ~20 species of bumble bees in Wisconsin and most have a robust, fuzzy appearance. Bumble bees tend to be very hairy and have black bodies with patches of yellow or orange depending on the species. Bumble bees are a type of social bee Bombus rufocinctus and live in small colonies consisting of dozens to a few hundred workers. Photo by Christy Stewart Their nests tend to be constructed in preexisting underground cavities, such as former chipmunk or rabbit burrows.
    [Show full text]
  • Biological Control of Insect Pests in Wheat
    E-310 BIOLOGICAL CONTROL OF INSECT PESTS IN WHEAT Allen Knutson, Extension entomologist; Emory P. Boring, III Extension entomologist; G. J. Michels Jr. Associate professor of Entomology, Texas AgriLife Extension Service; and Frank Gilstrap Professor, Department of Entomology, Texas A&M University. All insects have natural enemies which, in addition to weather and food supply, limit their populations. This process, unaided and often unrecognized by man, is termed natural control. It is important to recognize the impact of natural control factors and, where possible, encourage their action. Biological control is the use of natural enemies to control insect pests. The ancient Chinese distributed nests of predatory ants among citrus trees to control caterpillars and borers. Today, biological control is an increasingly important component of integrated pest management (IPM) programs for agriculture as well as for urban environments. Biological control does not present the human health and environmental concerns associated with chemical pesticide use. Nor is there much chance pests will develop resistance to natural enemies, as commonly occurs with insecticides. However, there should be different expectations for biological control than for chemical control. Natural enemies are living organisms with specific environmental requirements and behaviors. While insecticides often produce rapid, uniform control of insect pests, weeks, months or even years may be required before natural enemies effectively control pests. As biological control takes effect and pests become scarce, their natural enemies may leave the area. Adverse weather conditions or changes in crop production practices also can reduce populations of natural enemies. In both cases, pest outbreaks may recur. Using biological control effectively requires a good understanding of the biology of the pest and its natural enemies, as well as the ability to identify their life stages in the field.
    [Show full text]
  • Paper Wasps Ocelli General Information Wasps, Ants, and Bees Belong to an Order of Insects Called Hymenoptera
    Status ☑ Venomous sting ☑ Possible health threat Paper Wasps Ocelli General Information Wasps, ants, and bees belong to an order of insects called Hymenoptera. Over 103,000 species of Hymenoptera are known in the world, with over 17,000 known in the U.S. Some, such as paper wasps, are social and live in colonies. There are over 900 species of social wasps known in the world. Most capture and eat other insects (predators) or feed and grow inside of another insect (parasitoids). Almost every insect species has at least one wasp species that eats it, making wasps critically important in the natural control of other insects. What Do They Look Like? Paper wasps have two pairs of membranous wings, two antennae, and six legs. In most species, the connection between thorax and abdomen is long and narrow. Their hard exoskeleton is smooth and usually hairless. They have two large compound eyes and three or more simple light-sensing Adult Paper Wasp eyes (ocelli) that are typically arranged in a triangle on top of the head. Their excellent eyesight allows them to easily track predators while protecting their nests. Females have a stinger, which is actually a modified egg-laying device (ovipositor). Adult Paper Wasp on a Nest Stinger Health Risks Paper wasp females have a lance-like stinger with smooth edges and can sting repeatedly. The venom of a single sting is usually not dangerous; however, Life Cycle the venom of several stings may cause problems. Victims who Wasps have four stages in their life cycle: egg, larva, pupa, and are allergic to the venom may have an anaphylactic reaction adult.
    [Show full text]
  • Identification Key to the Subfamilies of Ichneumonidae (Hymenoptera)
    Identification key to the subfamilies of Ichneumonidae (Hymenoptera) Gavin Broad Dept. of Entomology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Notes on the key, February 2011 This key to ichneumonid subfamilies should be regarded as a test version and feedback will be much appreciated (emails to [email protected]). Many of the illustrations are provisional and more characters need to be illustrated, which is a work in progress. Many of the scanning electron micrographs were taken by Sondra Ward for Ian Gauld’s series of volumes on the Ichneumonidae of Costa Rica. Many of the line drawings are by Mike Fitton. I am grateful to Pelle Magnusson for the photographs of Brachycyrtus ornatus and for his suggestion as to where to include this subfamily in the key. Other illustrations are my own work. Morphological terminology mostly follows Fitton et al. (1988). A comprehensively illustrated list of morphological terms employed here is in development. In lateral views, the anterior (head) end of the wasp is to the left and in dorsal or ventral images, the anterior (head) end is uppermost. There are a few exceptions (indicated in figure legends) and these will rectified soon. Identifying ichneumonids Identifying ichneumonids can be a daunting process, with about 2,400 species in Britain and Ireland. These are currently classified into 32 subfamilies (there are a few more extralimitally). Rather few of these subfamilies are reconisable on the basis of simple morphological character states, rather, they tend to be reconisable on combinations of characters that occur convergently and in different permutations across various groups of ichneumonids.
    [Show full text]
  • Honey Bees Identification, Biology, and Lifecycle Speaker: Donald Joslin  Hive Consists of Three Types of Bees ◦ Queen, Drone and Worker
    Honey Bees Identification, Biology, and Lifecycle Speaker: Donald Joslin Hive consists of three types of bees ◦ Queen, Drone and Worker For Year Color: Ending In: White 1 or 6 Yellow 2 or 7 Red 3 or 8 Green 4 or 9 Blue 5 or 0 Queen Marking Colors Queen Only Fertile female in the Hive Can lay 2000 eggs each day She can live 5 years, 3-years average One per colony usually Mates in flight with 7-150 drones Queen Her thorax is slightly larger No pollen baskets or wax glands Stinger is smoother and curved (and reusable) The Honey Bee Colony Queen Pheromones ◦ The “social glue” of the hive ◦ Gives the colony its identity and temperament ◦ Sends signals to the workers Mates once, in flight, with 7 to 150 drones Lays both fertilized and unfertilized eggs Fertilized eggs become workers or Queens Unfertilized eggs become drones How does an egg become a queen instead of a worker? ◦ Royal Jelly is fed to the larvae for a much longer period of time ◦ Royal Jelly is secreted from the hypopharynx of worker bees Royal Jelly Supercedure Cell (Never cut these unless you have a replacement queen ready) Basic Anatomy Worker ◦ Sterile female ◦ Does the work of the hive ◦ Have specialized body structures Brood food glands – royal jelly Scent glands (pheromones) Wax glands Pollen baskets Barbed stingers – Ouch! The Honey Bee Colony Worker Bees Perform Roles ◦ Nurse ◦ Guard ◦ Forager Castes Worker bees progress through very defined growth stages ◦ When first hatched they become Nurse Bees Clean cells, keeps brood warm, feed larvae Receive
    [Show full text]