Forensic Analysis of Epic Privacy Browser on Windows Operating Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nvme-Based Caching in Video-Delivery Cdns
NVMe-Based Caching In Video-Delivery CDNs Thomas Colonna 1901942 Double Degree INSA Rennes Supervisor: Sébastien Lafond Faculty of Science and Engineering Åbo Akademi University 2020 In HTTP-based video-delivery CDNs (content delivery networks), a critical compo- nent is caching servers that serve clients with content obtained from an origin server. These caches store the content they obtain in RAM or onto disks for serving additional clients without fetching them from the origin. For most use cases, access to the disk remains the limiting factor, thus requiring a significant amount of RAM to avoid these accesses and achieve good performance, but increasing the cost. In this master’s thesis, we benchmark various approaches to provide storage such as regular disks and NVMe-based SSDs. Based on these insights, we design a caching mod- ule for a web server relying on kernel-bypass, implemented using the reference framework SPDK. The outcome of the master’s thesis is a caching module leveraging specific proper- ties of NVMe disks, and benchmark results for the various types of disks with the two approaches to caching (i.e., regular filesystem based or NVMe-specific). Contents 1 Introduction 1 2 Background 3 2.1 Caching in the context of CDNs . .3 2.2 Performances of the different disk models . .4 2.2.1 Hard-Disk Drive . .4 2.2.2 Random-Access Memory . .5 2.2.3 Solid-State Drive . .6 2.2.4 Non-Volatile Main Memory . .6 2.2.5 Performance comparison of 2019-2020 storage devices . .6 2.3 Analysing Nginx . .7 2.3.1 Event processing . -
Private Browsing
Away From Prying Eyes: Analyzing Usage and Understanding of Private Browsing Hana Habib, Jessica Colnago, Vidya Gopalakrishnan, Sarah Pearman, Jeremy Thomas, Alessandro Acquisti, Nicolas Christin, and Lorrie Faith Cranor, Carnegie Mellon University https://www.usenix.org/conference/soups2018/presentation/habib-prying This paper is included in the Proceedings of the Fourteenth Symposium on Usable Privacy and Security. August 12–14, 2018 • Baltimore, MD, USA ISBN 978-1-939133-10-6 Open access to the Proceedings of the Fourteenth Symposium on Usable Privacy and Security is sponsored by USENIX. Away From Prying Eyes: Analyzing Usage and Understanding of Private Browsing Hana Habib, Jessica Colnago, Vidya Gopalakrishnan, Sarah Pearman, Jeremy Thomas, Alessandro Acquisti, Nicolas Christin, Lorrie Faith Cranor Carnegie Mellon University {htq, jcolnago, vidyag, spearman, thomasjm, acquisti, nicolasc, lorrie}@andrew.cmu.edu ABSTRACT Prior user studies have examined different aspects of private Previous research has suggested that people use the private browsing, including contexts for using private browsing [4, browsing mode of their web browsers to conduct privacy- 10, 16, 28, 41], general misconceptions of how private brows- sensitive activities online, but have misconceptions about ing technically functions and the protections it offers [10,16], how it works and are likely to overestimate the protections and usability issues with private browsing interfaces [41,44]. it provides. To better understand how private browsing is A major limitation of much prior work is that it is based used and whether users are at risk, we analyzed browsing on self-reported survey data, which may not always be reli- data collected from over 450 participants of the Security able. -
Tinkertool System 7 Reference Manual Ii
Documentation 0642-1075/2 TinkerTool System 7 Reference Manual ii Version 7.5, August 24, 2021. US-English edition. MBS Documentation 0642-1075/2 © Copyright 2003 – 2021 by Marcel Bresink Software-Systeme Marcel Bresink Software-Systeme Ringstr. 21 56630 Kretz Germany All rights reserved. No part of this publication may be redistributed, translated in other languages, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of the publisher. This publication may contain examples of data used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. The publisher may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice. Make sure that you are using the correct edition of the publication for the level of the product. The version number can be found at the top of this page. Apple, macOS, iCloud, and FireWire are registered trademarks of Apple Inc. Intel is a registered trademark of Intel Corporation. UNIX is a registered trademark of The Open Group. Broadcom is a registered trademark of Broadcom, Inc. Amazon Web Services is a registered trademark of Amazon.com, Inc. -
ICP and the Squid Web Cache* 1 Introduction
ICP and the Squid Web Cache Duane Wessels k cla y August 13, 1997 Abstract We describ e the structure and functionality of the Internet Cache Proto col ICP and its implementation in the Squid Web Caching software. ICP is a lightweight message format used for communication among Web caches. Caches exchange ICP queries and replies to gather information to use in selecting the most appropriate lo cation from which to retrieve an ob ject. We present background on the history of ICP, and discuss issues in ICP deployment, e- ciency, security, and interaction with other asp ects of Web trac b ehavior. We catalog successes, failures, and lessons learned from using ICP to deploy a global Web cache hierarchy. 1 Intro duction Ever since the World-Wide Web rose to p opularity around 1994, much e ort has fo cused on reducing latency exp erienced by users. Sur ng the Web can b e slow for many reasons. Server systems b ecome slow when overloaded, esp ecially when hot sp ots suddenly app ear. Congestion can also o ccur at network exchange p oints or across links, and is esp ecially prevalent across trans-o ceanic links that often cost millions of dollars p er month. A common, alb eit exp ensiveway to alleviate such problems is to upgrade the overloaded resource: get a faster server, another E1, a bigger switch. However, this approach is not only often eco- nomically infeasible, but p erhaps more imp ortantly, it also fails to consider the numerous parties involved in even a single, simple Web transaction. -
Squirrel: a Decentralized Peer-To-Peer Web Cache
To appear in the 21th ACM Symposium on Principles of Distributed Computing (PODC 2002) Squirrel: A decentralized peer-to-peer web cache ∗ Sitaram Iyer Antony Rowstron Peter Druschel Rice University Microsoft Research Rice University 6100 Main Street, MS-132 7 J J Thomson Close 6100 Main Street, MS-132 Houston, TX 77005, USA Cambridge, CB3 0FB, UK Houston, TX 77005, USA [email protected] [email protected] [email protected] ABSTRACT There is substantial literature in the areas of cooperative This paper presents a decentralized, peer-to-peer web cache web caching [3, 6, 9, 20, 23, 24] and web cache workload char- called Squirrel. The key idea is to enable web browsers on acterization [4]. This paper demonstrates how it is possible, desktop machines to share their local caches, to form an ef- desirable and efficient to adopt a peer-to-peer approach to ficient and scalable web cache, without the need for dedicated web caching in a corporate LAN type environment, located hardware and the associated administrative cost. We propose in a single geographical region. Using trace-based simula- and evaluate decentralized web caching algorithms for Squir- tion, it shows how most of the functionality and performance rel, and discover that it exhibits performance comparable to of a traditional web cache can be achieved in a completely a centralized web cache in terms of hit ratio, bandwidth us- self-organizing system that needs no extra hardware or ad- age and latency. It also achieves the benefits of decentraliza- ministration, and is fault-resilient. The following paragraphs tion, such as being scalable, self-organizing and resilient to elaborate on these ideas. -
Performance Guide 3.7.0.123608
Vizrt Community Expansion Performance Guide 3.7.0.123608 Copyright © 2010-2012 Vizrt. All rights reserved. No part of this software, documentation or publication may be reproduced, transcribed, stored in a retrieval system, translated into any language, computer language, or transmitted in any form or by any means, electronically, mechanically, magnetically, optically, chemically, photocopied, manually, or otherwise, without prior written permission from Vizrt. Vizrt specifically retains title to all Vizrt software. This software is supplied under a license agreement and may only be installed, used or copied in accordance to that agreement. Disclaimer Vizrt provides this publication “as is” without warranty of any kind, either expressed or implied. This publication may contain technical inaccuracies or typographical errors. While every precaution has been taken in the preparation of this document to ensure that it contains accurate and up-to-date information, the publisher and author assume no responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained in this document. Vizrt’s policy is one of continual development, so the content of this document is periodically subject to be modified without notice. These changes will be incorporated in new editions of the publication. Vizrt may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time. Vizrt may have patents or pending patent applications covering subject matters in this document. The furnishing of this document does not give you any license to these patents. Technical Support For technical support and the latest news of upgrades, documentation, and related products, visit the Vizrt web site at www.vizrt.com. -
Forensic Study and Analysis of Different Artifacts of Web Browsers in Private Browsing Mode
|| Volume 5 || Issue 6 || June 2020 || ISSN (Online) 2456-0774 INTERNATIONAL JOURNAL OF ADVANCE SCIENTIFIC RESEARCH AND ENGINEERING TRENDS FORENSIC STUDY AND ANALYSIS OF DIFFERENT ARTIFACTS OF WEB BROWSERS IN PRIVATE BROWSING MODE Rinchon Sanghkroo1, Dr. Deepak Raj Rao G.2 and Kumarshankar Raychaudhuri3 M.Sc. (Forensic Science) Final Semester Student, Cyber Forensic Division, LNJN National Institute of Criminology and Forensic Science (MHA), Delhi, India 1 Assistant Professor, Cyber Forensic Division, LNJN National Institute of Criminology and Forensic Science (MHA), Delhi, India2 Junior Research Fellow, Cyber Forensic Division, LNJN National Institute of Criminology and Forensic Science (MHA), Delhi, India3 [email protected], [email protected], [email protected] ------------------------------------------------------ ***-------------------------------------------------- Abstract: - Web browsers today have become one of the most commonly used applications in digital devices, storing and maintaining huge information on user activities. The privacy mode has been introduced to combat the privacy issues related with browsers. This feature keeps the browsing activities of a user private by not storing or removing the traces of artifacts related to the browsing session on the system. In this study, we test the effectiveness of this claim and to ensure ways in which a forensic investigation may be done in such cases. The private modes of different browsers have been tested in Windows and MAC OS by performing pre-defined browsing activities in each of the browsers in both the operating systems. Moreover, the default locations of normal web browser artifacts are also examined to find whether artifacts of private browsing activities are stored in such locations or not. Keywords: - Private Browsing, Windows, MAC, Safari, Microsoft Edge, Brave Browser ------------------------------------------------------ ***-------------------------------------------------- I INTRODUCTON artifacts related to it on the end device. -
Tracking Users Across the Web Via TLS Session Resumption
Tracking Users across the Web via TLS Session Resumption Erik Sy Christian Burkert University of Hamburg University of Hamburg Hannes Federrath Mathias Fischer University of Hamburg University of Hamburg ABSTRACT modes, and browser extensions to restrict tracking practices such as User tracking on the Internet can come in various forms, e.g., via HTTP cookies. Browser fingerprinting got more difficult, as trackers cookies or by fingerprinting web browsers. A technique that got can hardly distinguish the fingerprints of mobile browsers. They are less attention so far is user tracking based on TLS and specifically often not as unique as their counterparts on desktop systems [4, 12]. based on the TLS session resumption mechanism. To the best of Tracking based on IP addresses is restricted because of NAT that our knowledge, we are the first that investigate the applicability of causes users to share public IP addresses and it cannot track devices TLS session resumption for user tracking. For that, we evaluated across different networks. As a result, trackers have an increased the configuration of 48 popular browsers and one million of the interest in additional methods for regaining the visibility on the most popular websites. Moreover, we present a so-called prolon- browsing habits of users. The result is a race of arms between gation attack, which allows extending the tracking period beyond trackers as well as privacy-aware users and browser vendors. the lifetime of the session resumption mechanism. To show that One novel tracking technique could be based on TLS session re- under the observed browser configurations tracking via TLS session sumption, which allows abbreviating TLS handshakes by leveraging resumptions is feasible, we also looked into DNS data to understand key material exchanged in an earlier TLS session. -
Forensic Investigation of User's Web Activity on Google Chrome Using
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016 123 Forensic Investigation of User’s Web Activity on Google Chrome using various Forensic Tools Narmeen Shafqat, NUST, Pakistan Summary acknowledged browsers like Internet Explorer, Google Cyber Crimes are increasing day by day, ranging from Chrome, Mozilla Firefox, Safari, Opera etc. but should confidentiality violation to identity theft and much more. The also have hands on experience of less popular web web activity of the suspect, whether carried out on computer or browsers like Erwise, Arena, Cello, Netscape, iCab, smart device, is hence of particular interest to the forensics Cyberdog etc. Not only this, the forensic experts should investigator. Browser forensics i.e forensics of suspect’s browser also know how to find artifacts of interest from older history, saved passwords, cache, recent tabs opened etc. , therefore supply ample amount of information to the forensic versions of well-known web browsers; Internet Explorer, experts in case of any illegal involvement of the culprit in any Chrome and Mozilla Firefox atleast, because he might activity done on web browsers. Owing to the growing popularity experience a case where the suspected person is using and widespread use of the Google Chrome web browser, this older versions of these browsers. paper will forensically analyse the said browser in windows 8 According to StatCounter Global market share for the web environment, using various forensics tools and techniques, with browsers (2015), Google Chrome, Mozilla Firefox and the aim to reconstruct the web browsing activities of the suspect. Microsoft’s Internet Explorer make up 90% of the browser The working of Google Chrome in regular mode, private usage. -
Incognito (Private Browsing) for AHA Online Testing
Incognito (private browsing) for AHA Online Testing Go Incognito on Google Chrome 1. Open Google Chrome and click the wrench icon in the top right corner. 2. Click ‘new incognito window’. 3. Alternatively, you can press Ctrl + Shift + N. *You can also open a link in a web page in Incognito Mode. 1. Right-click on the link you want to open in an Incognito window. 2. Click ’Open in new incognito window’ from the context menu. **You can tell if you’re browsing privately by looking for the logo of the person in disguise in the top-left corner of the window. He’s wearing sunglasses, a hat and a raincoat. Go Incognito on Mozilla Firefox 1. Open Firefox and click the hamburger Menu button – it looks like three parallel lines. 2. Click ‘New private window’. *You can also open a link in a web page in a private window. 1. Right-click on the link you want to open in a private window. 2. Click ’Open in New Private Window’ from the context menu. **You can tell if you’re browsing privately by looking for an icon of a purple mask in the top-right corner of the window. Go Incognito on Safari on the Mac 1. In Yosemite and later, open Safari and click on ‘File’. 2. Click ‘New Private Window’. 3. Alternatively, click Command + Shift + N. 4. In Mavericks 10.9 or older, open Safari and click Safari in the browser’s Menu bar and select ‘Private Browsing’. **Private browsing tabs in Safari are separated from non-private tabs. -
An Analysis of Private Browsing Modes in Modern Browsers
An Analysis of Private Browsing Modes in Modern Browsers Gaurav Aggarwal Elie Bursztein Collin Jackson Dan Boneh Stanford University CMU Stanford University Abstract Even within a single browser there are inconsistencies. We study the security and privacy of private browsing For example, in Firefox 3.6, cookies set in public mode modes recently added to all major browsers. We first pro- are not available to the web site while the browser is in pose a clean definition of the goals of private browsing private mode. However, passwords and SSL client cer- and survey its implementation in different browsers. We tificates stored in public mode are available while in pri- conduct a measurement study to determine how often it is vate mode. Since web sites can use the password man- used and on what categories of sites. Our results suggest ager as a crude cookie mechanism, the password policy that private browsing is used differently from how it is is inconsistent with the cookie policy. marketed. We then describe an automated technique for Browser plug-ins and extensions add considerable testing the security of private browsing modes and report complexity to private browsing. Even if a browser ad- on a few weaknesses found in the Firefox browser. Fi- equately implements private browsing, an extension can nally, we show that many popular browser extensions and completely undermine its privacy guarantees. In Sec- plugins undermine the security of private browsing. We tion 6.1 we show that many widely used extensions un- propose and experiment with a workable policy that lets dermine the goals of private browsing. -
EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware Internet
EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware Internet Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and Adrian Perrig, ETH Zurich https://www.usenix.org/conference/usenixsecurity20/presentation/legner This paper is included in the Proceedings of the 29th USENIX Security Symposium. August 12–14, 2020 978-1-939133-17-5 Open access to the Proceedings of the 29th USENIX Security Symposium is sponsored by USENIX. EPIC: Every Packet Is Checked in the Data Plane of a Path-Aware Internet Markus Legner, Tobias Klenze, Marc Wyss, Christoph Sprenger, and Adrian Perrig Department of Computer Science, ETH Zurich, Switzerland {markus.legner, tobias.klenze, marc.wyss, sprenger, adrian.perrig}@inf.ethz.ch Abstract as compliance, when data is not allowed to leave a particular An exciting insight of recent networking research has been jurisdiction; privacy leaks, when BGP hijacking attacks are that path-aware networking architectures are able to funda- used to de-anonymize users [43]; or re-routing attacks being mentally solve many of the security issues of today’s Internet, used to obtain fake certificates [10]. Another shortcoming of while increasing overall efficiency and giving control over the current Internet is that there is no way for an end user to path selection to end hosts. In this paper, we consider three verify the actual path a packet took on its way to the recipi- traceroute important issues related to this new networking paradigm: ent. While applications such as enable network First, network operators still need to be able to impose their probing, the obtained information cannot be trusted due to own policies to rule out uneconomical paths and to enforce the lack of authentication [2,4].