<<

The Journal of Symbolic Volume 1 (2006)

Pedal and Skew Pedal of a PhilipTodd SaltireSoftware POBox1565,Beaverton,OR97075 [email protected] Abstract: Propertiesoftheevolute,thepedal,andthe skewpedalcurveareanalyzedwithGeometryExpressions andMaple.Thebasecurveusedistheparabolay=x2 1. GivenapoleP,thepedalcurveisthelocusoftheintersectionofthe totheoriginalcurvewiththeperpendicularfromPtothetangent.This takesavarietyofshapesdependingonthelocationofP. Wederiveanequationforthepedalcurvewithpole(a,b):

(a,b) P

D

Bs Bs (a,b) P

D

Figure1.Pedalcurvefortwodifferentpoles 74 Todd

Wecomputetheequationofthepedalcurve,bothparametricandimplicit:

(a,b) P

D a2bs2s3 X= 14s2 ⇒ sB 2 2 2as+s 4bs Y= 14s2

⇒ 4X2Y+4Y34XYa+a28Y2b+4Yb2+X2(14b)+X(2a+4ab)=0 Figure2:Equationofthepedalcurvewithpole(a,b) WecancomputethelimitofYasstendstoplusandminusinfinity: > limit((-2*s*a+s^2-4*s^2*b)/(-1-4*s^2),s=infinity); 1 - + b 4

> limit((-2*s*a+s^2-4*s^2*b)/(-1-4*s^2),s=-infinity); 1 - + b 4

Soweseethatthepedalcurveisasymptotictothe 1 y = b − 4 Associated Curves of a Parabola 75

D P (a,b) B

(14b) Y= 4

Figure3:Pedalcurveasymptote ExaminingFigure1,weseethat,dependingonthelocationofP,thepedalcurve canhaveoneorthreepointsofcontactwiththeoriginalparabola.Wewill attempttocharacterizethelocationswhichgiverisetothesetwodifferent circumstances.First,wefindthelocationsofthepointsofcontact.Wecando thisinMaplebysimultaneouslysolvingtheimplicitequationofthepedalcurve andtheequationoftheparabola(Y=X 2) > solve({4*Y*X^2+4*Y^3-4*a*Y*X+a^2-8*b*Y^2+4*b^2*Y+(1- 4*b)*X^2+(-2*a+4*b*a)*X = 0,Y=X^2},{X,Y});   3 2 3  Y = RootOf() 2 _Z + ( 1 - 2 b ) _Z - a , X = RootOf() 2 _Z + ( 1 - 2 b ) _Z - a    ,

  3 2 3  Y = RootOf() 2 _Z + ( 1 - 2 b ) _Z - a , X = RootOf() 2 _Z + ( 1 - 2 b ) _Z - a   

TheXlocationsforthepointsofcontactaretherootsofaparticularcubic.We candrawthiscubiconthediagram. 76 Todd

3 3

P (a,b)

2 2

P (a,b) 1 1 D H 3 _Z,2_Z a+_Z(12b)

B B

2 1 1 2 3 2 1 D 1 2 3

1 1 Figure4:Cubicwhoserootsgivethelocationsofpointsofcontact.Thecurvehaseither1or3 realroots Thedividinglinebetweenoneandthreerootswillbewhenthecubichasa doubleroot.Inthiscasetherewillbedoublecontactbetweenthepedalcurve andtheparabola.Twooftherootsofthecubicareexpressedasacomplex conjugatepair. > allvalues(RootOf(2*_Z^3+(1-2*b)*_Z-a)); 1 1 6  - b ()/13   1 2 3 2 6 3 (54 a + 6 6 - 36 b + 72 b - 48 b + 81 a ) -   , 6 ()/13 (54 a + 6 6 - 36 b + 72 b 2 - 48 b 3 + 81 a 2 )

1 1 3  - b ()/13   1 2 3 2 6 3 - (54 a + 6 6 - 36 b + 72 b - 48 b + 81 a ) +   + 12 ()/13 (54 a + 6 6 - 36 b + 72 b 2 - 48 b 3 + 81 a 2 )

  ()/13 1  1 2 3 2 I 3  (54 a + 6 6 - 36 b + 72 b - 48 b + 81 a ) 2  6 

1 1 6  - b   6 3   +    , ()/13  2 3 2  (54 a + 6 6 - 36 b + 72 b - 48 b + 81 a ) 

1 1 3  - b ()/13   1 2 3 2 6 3 1 - (54 a + 6 6 - 36 b + 72 b - 48 b + 81 a ) +   - 12 ()/13 2 (54 a + 6 6 - 36 b + 72 b 2 - 48 b 3 + 81 a 2 ) Associated Curves of a Parabola 77

  ()/13  1 2 3 2 I 3  (54 a + 6 6 - 36 b + 72 b - 48 b + 81 a )  6 

1 1 6  - b   6 3   +    ()/13  2 3 2  (54 a + 6 6 - 36 b + 72 b - 48 b + 81 a ) 

Foradoublesolution,thecomplexpiecehastobe0.Wecansolveforthisin Maple: > solve((1/6*(54*a+6*(6-36*b+72*b^2- 48*b^3+81*a^2)^(1/2))^(1/3)+6*(1/6-1/3*b)/(54*a+6*(6- 36*b+72*b^2-48*b^3+81*a^2)^(1/2))^(1/3))=0,b); 1 ()/23 ()/23 1 54 a + 12 2

> simplify(%); 3 ()/23 ()/23 1 2 a + 4 2

Wecanfeedthisvalueinforb:

2 2 3 3 1 32 a a, + 2 4 P

D B

Figure5:Discriminantcurvedividingtheregionwherethepedalcurvetouchesoncefromthe regionwherethepedalcurvetouchesthreetimes.IfPliesonthisdiscriminantcurve,thepedal curvehastwopointcontact. 78 Todd

Tofindthepointsofcontact,wecangettheparametricequationofthepedal curveandfindvaluesforswheretheXcoordinateofthepedalcurveisequalto s:

2 2 3 3 1 32 a a, + 2 4

P

D B

2 2 3 3 3 1 32 a a2s 2s + 2 4 X= 2 ⇒ 14s

2 2 2 3 2 3 2ass 32 s a Y= 14s2

Figure6:Parametricequationofthepedalcurvewherethepoleliesonthediscriminantcurve: > solve((-a-2*s^3-2*(3/4*abs(a)^(2/3)*2^(2/3)+1/2)*s)/(- 4*s^2-1)=s,s) assuming a>0; ()/13 ()/13 1 ()/13 ()/13 1 ()/13 ()/13 2 a , - 2 a , - 2 a 2 2

Wecanplotthesepointsonthediagram:

2 2 3 3 1 32 a a, + 2 4 1 1 P 3 3 E 2 a

1 1 F 0 3 3 G 2 a 2 9a ⇒ 8

Figure8:Contactpointsforcriticallocationofpole.Areaofatrianglewhoseshortsidesare alignedwiththeaxesandwhosehypotenusejoinsthepointsofcontactisdisplayed. Associated Curves of a Parabola 79

Thexcoordinateofonepointisnegativetwicethexcoordinateoftheother.If wecreatearighttrianglewhosehypotenuseisthelinejoiningthepointsof contact,andwhoseshortsidesarealignedwiththeaxes,weseethattheareaof 9 thistriangleissimply a . 8 Ifwecreatethenormaltotheparabola(seefigure9),itiseasytoseethatthe normaliseverywheretangenttothediscriminantcurve.

2 2 3 3 1 32 a a, + 2 4

P

D

Bs

Figure9:Thenormaltotheparabolaistangenttothediscriminantcurve. Thediscriminantisthustheofthenormalstotheoriginalcurve.The nameforthiscurveisthe.

⇒ 2+27X212Y+24Y216Y3=0

X=4s3 ⇒ 1 2 Y= +3s 2

Bs

Figure10:Theevolutetotheparabola. Itisintuitivelyreasonablethatingeneraldoublecontactbetweenthepedal curveandtheoriginalcurveimpliesapedalpointwhichliesontheevolute. Proofislefttothereader. 80 Todd

2. Skew Pedal Curves Thepedalcurveisdefinedtobetheintersectionofthetangenttothe originalcurvewiththeperpendicularthroughthepedalpointP.Wenowskew thediscussionslightlybyexaminingthelocusoftheintersectionofthetangent totheparabolawiththelinethroughPatangleθtothetangent. Firsthowever,let’sexaminetheskewanalogoftheevolute:theenvelopeofthe linesmakingangleθwiththetangent:

θ

Bs

3 sin(θ)cos(θ) 2 2 3 2 X=4s + +2s sin(θ)cos(θ)+scos(θ) +4s cos(θ) 2 ⇒ 2 1 2 3 cos(θ) 2 2 Y= +3s +ssin(θ)cos(θ)+4s sin(θ)cos(θ) 2s cos(θ) 2 2

Figure11:Skewevolute,theenvelopeofthelinesatconstantangletothetangent WeplacePatparametriclocationrontheskewevolute,andconstructtheskew pedalcurve.Byconstructionthisisthecriticalpedalwithtwopointcontact. Associated Curves of a Parabola 81

D θ r E

θ

sB

4r3sin(θ)+ssin(θ)+6r2ssin(θ)+2s3sin(θ)+ r2+2rss2 cos(θ) X= 2 1+4s sin(θ) ⇒ s 8r3sin(θ)+ssin(θ)+12r2ssin(θ)+ 2r2+4rs2s2 cos(θ) Y= 2 1+4s sin(θ) Figure12:Equationofthecriticalskewpedalcurve SolvingforX=sinMaplegivestheparametriclocationoftheintersectionpoints: > X:=((sin(theta))^((-1))*((sin(theta)*(r)^(3)*(- 4))+(sin(theta)*s)+(sin(theta)*s*(r)^(2)*6)+(sin(theta)*(s) ^(3)*2)+(cos(theta)*(((r)^(2)*(-1))+(s*r*2)+((s)^(2)*(- 1)))))*((1+((s)^(2)*4)))^((-1))); 3 2 3 2 2 -4 sin(θ ) r + sin(θ ) s + 6 sin(θ ) s r + 2 sin(θ ) s + cos(θ ) () -r + 2 s r - s X := 2 sin(θ ) () 4 s + 1

> solve(X=s,s); 1 + 4 tan(θ ) r r, r, - 2 tan()θ

Locatingpointsattheselocationsonthecurveweseetheyareindeedatthe intersections.WecanalsodisplaythecoordinatesofP: 82 Todd

D G (1+4rtan(θ)) r 2tan(θ)

F r

sin(θ)cos(θ) 1 cos(θ) 2 ⇒ 4r3+ +2r2sin(θ)cos(θ)+rcos(θ) 2+4r3cos(θ) 2, +3r2+rsin(θ)cos(θ)+4r3sin(θ)cos(θ) 2r2cos(θ) 2 2 2 2 Figure13:Intersectionsoftheskewpedalwiththeparabola,alongwithcoordinatesofthePedal pointatparametriclocationrontheskewevolute Figure14showstheequationoftheskewpedalcurveforgenerallocationofthe Pedalpoint:

P (a,b) B

θ E

3 2 asin(θ)2bssin(θ)2s sin(θ)+ b2as+s cos(θ) X= 2 14s sin(θ) ⇒ 2 s 2asin(θ)+ssin(θ)4bssin(θ)+ 2b4as+2s cos(θ) Y= 14s2 sin(θ)

Figure14:SkewPedalcurvewithpole(a,b) IfwelookattheratioY/X,weseethishasalimitasXgoestoinfinityor– infinity: Associated Curves of a Parabola 83

> X := (-sin(theta)*a-2*sin(theta)*s*b- 2*sin(theta)*s^3+cos(theta)*(b-2*s*a+s^2))/(sin(theta)*(- 4*s^2-1)); 3 2 -sin(θ ) a - 2 sin(θ ) s b - 2 sin(θ ) s + cos(θ ) ()b - 2 s a + s X := 2 sin(θ ) () -4 s - 1

> Y := (-2*sin(theta)*a+sin(theta)*s- 4*sin(theta)*s*b+cos(theta)*(2*b- 4*s*a+2*s^2))*s/(sin(theta)*(-4*s^2-1)); 2 (-2 sin(θ ) a + sin(θ ) s - 4 sin(θ ) s b + cos(θ ) () 2 b - 4 s a + 2 s ) s Y := 2 sin(θ ) () -4 s - 1

> limit(Y/X,s=infinity); cos()θ - sin()θ

> limit(Y/X,s=-infinity); cos()θ - sin()θ

−1 Let m = tan(θ ) Togettheequationofthelimitlineweneedtosimplyfind C = lim(Y − mX ) s→∞ ThentheasymptoteequationisY=mX+C. > limit(Y+X/tan(theta),s=infinity); 2 4 cos(θ ) a sin()θ - 1 + 4 b - 4 cos()θ b 2 4 sin()θ

Figure15showsthislineimposedonthecurvedrawing.Wealsoshowthe distanceofthepedalcurvefromtheasymptotetobetheconstant 1 4sin(θ ) 84 Todd

P (a,b) 1 ⇒ 4sin(θ)

2 4Xcos(θ) 4bcos(θ) 4acos(θ) 1 4b +Y4+ + =0 2 2 2 sin(θ) sin(θ) sin(θ) sin(θ) sin(θ)

Figure15:Asymptotelineoftheskewpedalcurve