Master Thesis Master's Programme in Renewable Energy Systems, 60 Credits

Total Page:16

File Type:pdf, Size:1020Kb

Master Thesis Master's Programme in Renewable Energy Systems, 60 Credits Master Thesis Master's Programme in Renewable Energy Systems, 60 credits Prospective of Tidal Energy Dissertation in Engineering Energy, 15 credits Halmstad 2019-09-13 Keval Patel HALMSTAD UNIVERSITY Preface This thesis is made as a completion of the master education in Renewable Energy systems. This Master thesis covered 15 credits. Master program in Renewable Energy systems conducted at the Halmstad University, Sweden. I would like to thank my supervisors Mei Gong, Ph. D, Docent, Associate Professor for their excellent guidance and support during this process. She helped me in giving advices in methods of writing report and providing feedback and gave me suggestion on writing a report. I also wish to thank all the respondents, my colleagues and friends for their support. I would like to thank you for your wonderful support as well. I also benefitted from debating issues with my friends. A grateful support forms my family and friends for being helpful during my time studying Master in Renewable Energy Systems at Halmstad University. I hope you enjoy your reading. Keval Patel 1 Abstract Oceans give significant renewable energy choices to produce environmentally friendly and clean energy. At present time there are issues over the world climate changes and awareness required for lessening greenhouse gas outflows. In a feasible energy future, the tidal energy has the potential to play a valuable part. This paper presents the prospects of tidal energy and its potentials. It covers a brief review of tidal energy and technology which harness this renewable energy. It also contains the detail survey of accessible energy transformation innovations and case studies with focus on tidal power potential. The demonstrated choice for tidal energy conversion is tidal barrage technology. A tidal barrage uses the potential energy of the tides and has demonstrated to be productive, despite restriction from environmental groups. Kinetic energy can also be harnessed from tidal currents to produce power by installing tidal current turbine. This can be the more desired strategy of capturing the energy within the tides. Tidal current turbine technology is as of now not economically practical, because it is still in an early phase of advancement. Sammanfattning Oceaner ger betydande alternativ för förnybar energi för att producera miljövänlig och ren energi. För närvarande finns det problem över världens klimatförändringar och medvetenhet som krävs för att minska växthusgas utflöden. I en möjlig energi framtid har tidvatten energin potential att spela en värdefull roll. Detta dokument presenterar utsikterna för tidvattenenergi och dess potentialer. Det omfattar en kort genomgång av tidvattenenergi och teknik som utnyttjar denna förnybara energi. Den innehåller också detaljerad undersökning av tillgängliga innovationer energiomvandling och fallstudier med fokus på tidvattenkraft potential. Det demonstrerade valet för tidvattens energiomvandling är Tidal Barrage teknik. En tidvattens fördämning använder den potentiella energin i tidvattnet och har visat sig vara produktiv, trots restriktioner från miljögrupper. Kinetisk energi kan också utnyttjas från tidvattenströmmar att producera kraft genom att installera tidvattenström turbin. Detta kan vara den mer önskade strategin att fånga energin inom tidvattnet. Tidvattens-ström turbin teknologi är som av nu inte economically praktiskt, därför att den är stilla i en tidig sort arrangerar gradvis av befordran. 2 TABLE OF CONTENTS Preface .................................................................................................................................................... 1 Abstract ................................................................................................................................................... 2 Sammanfattning ...................................................................................................................................... 2 1 Introduction ......................................................................................................................................... 5 1.1 World Energy Scenario ............................................................................................................ 5 1.2 Renewable Energy Tidal Energy .............................................................................................. 6 1.3 What are Tides? ...................................................................................................................... 7 1.4 What causes Tides? ................................................................................................................. 7 1.5 Gravity, Inertia, and the two bulges ....................................................................................... 8 1.6 Aim of the thesis ..................................................................................................................... 9 2 State of the art ................................................................................................................................ 9 2.1 La Rance Tidal Power Plant ..................................................................................................... 9 2.2 Lake Sihwa Tidal Power Plant ............................................................................................... 10 2.3 Annapolis Tidal Power Plant ................................................................................................. 10 2.4 Jiangxia Tidal Range Power Plant .......................................................................................... 11 2.5 Tidal Power Plant in China .................................................................................................... 11 3 Tidal Energy Technology ............................................................................................................... 12 3.1 Tidal Range ............................................................................................................................ 12 3.1.1 Tidal barrage ................................................................................................................. 13 I.) One Way Power Generation at Ebb Side .................................................................................. 14 II) One Way Power Generation at Flood Tide ............................................................................... 14 III) Two Way Power Generation .................................................................................................... 15 3.1.2 Tidal current or tidal stream technologies .................................................................... 15 3.1.3 Horizontal-axis axial and vertical-axis cross flow turbines ........................................... 15 3.1.4 Reciprocating devices ................................................................................................... 15 3.1.5 Other designs ................................................................................................................ 16 3.1.6 Hybrid Forms ................................................................................................................. 17 4 Tidal energy calculation ................................................................................................................ 17 4.1 Suitable locations for tidal barrage power plants ................................................................. 17 4.2 Prospect in Brest (Atlantic coast) France .............................................................................. 18 4.3 Turbine .................................................................................................................................. 20 4.3.1 Single basin one-way turbine for Brest (Atlantic Coast) France ................................... 20 4.3.2 Single basin two-way turbine for Brest (Atlantic coast) France .................................... 22 3 5 Discussion ...................................................................................................................................... 24 5.1 Example for pump using ....................................................................................................... 24 5.2 Site: gulf of cambay or gulf of Khambhat ............................................................................. 25 5.3 How to produce continuous power form tidal power generation ....................................... 25 5.4 Why was the power discontinuous or intermittent? ............................................................ 26 6 Conclusion ..................................................................................................................................... 27 7 References .................................................................................................................................... 28 8 Nomenclature ............................................................................................................................... 32 LIST OF FIGURES Figure 1 As the tides rise and fall, they create flood and ebb currents [14] .......................................... 7 Figure 2 Two tidal bulges due to moon's gravitational force and inertias [14] ...................................... 8 Figure 3 La Rance Tidal Power Plant [14] ................................................................................................ 9 Figure 4 Sihwa Tidal Power Plant [25] .................................................................................................. 10 Figure
Recommended publications
  • OCCASION This Publication Has Been Made Available to the Public on The
    OCCASION This publication has been made available to the public on the occasion of the 50th anniversary of the United Nations Industrial Development Organisation. DISCLAIMER This document has been produced without formal United Nations editing. The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations Industrial Development Organization (UNIDO) concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries, or its economic system or degree of development. Designations such as “developed”, “industrialized” and “developing” are intended for statistical convenience and do not necessarily express a judgment about the stage reached by a particular country or area in the development process. Mention of firm names or commercial products does not constitute an endorsement by UNIDO. FAIR USE POLICY Any part of this publication may be quoted and referenced for educational and research purposes without additional permission from UNIDO. However, those who make use of quoting and referencing this publication are requested to follow the Fair Use Policy of giving due credit to UNIDO. CONTACT Please contact [email protected] for further information concerning UNIDO publications. For more information about UNIDO, please visit us at www.unido.org UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION Vienna International Centre, P.O. Box 300, 1400 Vienna, Austria Tel: (+43-1) 26026-0 · www.unido.org · [email protected] UNIDO INVESTMENT AND TECHNOLOGY PROMOTION OFFICE For China in Beijing The Work Report 2012 December , 2012 1 TABLE OF CONTENTS Forward by Hu Yuandong, Head of the Office Yearly Special Programs under Implementation I.
    [Show full text]
  • Action Points to Advance Commercialisation of the Dutch Tidal Energy Sector
    Action points to advance commercialisation of the Dutch tidal energy sector An analysis of the tidal energy Technological Innovation System in combination with lessons learned from the development of the wind energy industry Master thesis J.P. van Zuijlen Figure 1. Eastern Scheldt storm surge barrier. Source: http://dutchmarineenergy.com/ Name: Johannes Petrus (Jan) van Zuijlen Student nr: 5610494 Email: [email protected] Utrecht University University supervisors: 1st: Prof. dr. Gert Jan Kramer 2nd: Dr. Paul Schot University innovation supervisor: Dr. Maryse M.H. Chappin ECTS: 30 Company: Dutch Marine Energy Centre Supervisor: Britta Schaffmeister MSc Date: 19/01/2018 2 Abstract Water management has traditionally been focused on water safety, hygiene and agricultural problems, however, given the current need for sustainability in order to combat climate change, the possible production of sustainable energy is a desirable extension of integral water management. Tidal energy is a form of ocean energy which harnesses energy from the tides and has the potential to contribute significantly to sustainable energy solutions in certain coastal regions, thereby reducing carbon emissions and fighting climate change worldwide. Activities surrounding tidal energy have grown substantially over the last 10 years in Europe as well as in the Netherlands, however the technology is diffusing slowly. The aim of this thesis is finding action points that will advance commercialisation of the Dutch tidal energy sector. The method consists of a desk study on the evolution of wind energy in combination with a Technological Innovation System analysis of the Dutch tidal energy sector for which 12 professionals have been interviewed. This study showed that the following three aspects of the tidal energy TIS performance poorly and need attention: Market formation, the creation of legitimacy and knowledge development.
    [Show full text]
  • An Overview of the Best Suitable Locations for Marine Renewable
    An overview of the best suitable locations for marine renewable energy (MRE) development in the PECC economies given local constraints and opportunities: ‘The best locations worldwide’ Marc Le Boulluec Energy Transition 2013-2014 Transition Energy [email protected] June 24-25, 2014 | Santiago, Chile | 2014 June24-25, Ifremer, Centre de Bretagne Laboratoire Comportement des Structures en Mer PECC International Project: Project: PECCInternational From Prototype to Market: Development of marine renewable energy policies and regional cooperation 1 What are : ‘The best locations worldwide’ ? Energy Transition 2013-2014 Transition Energy June 24-25, 2014 | Santiago, Chile | 2014 June24-25, No definite answer but a combination of items to address PECC International Project: Project: PECCInternational and some possible tracks From Prototype to Market: Development of marine renewable energy policies and regional cooperation 2 Best locations = Combination of Resource availability versus Loads on structures Energy use at short distance or Energy transport on long distance Grid connection and energy storage Industry and transport infrastructures : shipyards, harbours,… Energy Transition 2013-2014 Transition Energy June 24-25, 2014 | Santiago, Chile | 2014 June24-25, Facilities and associated manpower (training and education) Installation Operation and maintenance Dismantling PECC International Project: Project: PECCInternational Monitoring Environmental and Social acceptability From Prototype to Market: Development of marine renewable energy policies and regional cooperation 3 Resource and loads addressed during PECC Seminar 2 on Marine Resources: Oceans as a Source of Renewable Energy Wind Currents Waves Energy Transition 2013-2014 Transition Energy June 24-25, 2014 | Santiago, Chile | 2014 June24-25, Thermal + Biomass + Salinity gradient PECC International Project: Project: PECCInternational From Prototype to Market: Development of marine renewable energy policies and regional cooperation 4 Wind energy Wind energy is an intermittent resource.
    [Show full text]
  • Tidal Energy in Korea
    APEC Youth Scientist Journal Vol. 5 TIDAL ENERGY IN KOREA ∗ Jeong Min LEE 1 1 Goyang Global High School, 1112 Wi city 4-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do, Korea 410-821 ABSTRACT Tidal energy is one of the few renewable energy resources Korean government is planning on to implant in Korean Peninsula. Due to its continuity and environmental friendliness, tidal energy is getting its attention as appropriate alternative energy for Korea that can replace conventional fossil fuels. On the other hand, while Korean government is pushing forward to build tidal plants using Korea’s geographical advantages following the construction of tidal plants, many locals are holding demonstrations in order to stop tidal plants from being built. These disputes are holding off government’s original plan to construct tidal plants in Incheon Bay area. In this study, concept of using tidal energy and various methods will be introduced, followed by Korea’s geographical conditions for constructing tidal power plants. Concerning construction of tidal plants in Korea, problems regarding the issue will also be covered. This will provide current status of tidal energy as renewable resource in Korea, and how it will change to impact the country. Keywords: tidal power, geographical advantage, tidal plant sites, ecological impact, conflict ∗ Correspondence to : Jeong Min L EE ([email protected]) - 174 - APEC Youth Scientist Journal Vol. 5 1. INTRODUCTION Energy we use to produce electricity and heat has brought great changes on how we live today. However, nowadays despite successful contribution to improvements of human lives, conventional resources are losing its stature for creating many problems to global society.
    [Show full text]
  • Tidal Energy and How It Pertains to the Construction Industry
    Tidal Energy and how it Pertains to the Construction Industry Armin Latifi California Polytechnic State University San Luis Obispo Renewable Energy is on the forefront of many global discussions. The concern of numerous scientific findings on the impact humanity has had on the environment has grown in recent years. Since alternative energy sources, such as solar and wind, have already made substantial progress, I have decided to focus my attention on tidal energy specifically. This topic will serve as the main focus of this essay. Within this essay, I will examine how tidal energy pertains to the construction industry through four distinguished chapters: (1) What kind of tidal technology exist and what does the construction aspect of these tidal technologies require? (2) What are some of the risks and rewards of building a tidal energy plant and is it profitable for a general contractor? (3) What would make tidal energy a more desirable source of renewable energy when compared to others? (4) What would be considered a good site to develop a tidal energy plant? Hopefully, my research will provide general contractors with a better idea of what tidal energy projects will entail and if it’s a viable option to pursue. Keywords: Tidal Energy, Tidal Energy Plant, Tidal Energy Profitability, Tidal Energy Sites, Renewable Energy Introduction Tidal Energy is an underutilized source of energy. Although it is a form of renewable energy, like solar and wind, it differs in that it is produced from hydropower. More specifically, tidal generators convert the energy obtained from the Earth’s tides into what we would consider a useful form of power (i.e.
    [Show full text]
  • La Rance Barrage
    Case Study: La Rance Barrage Project Name La Rance Barrage Location The Rance estuary in Brittany, France Installed capacity 240MW Technology Type Tidal impoundment barrage Project Type/Phase Full scale experimental power plant Year Operational since 1967 Project Description The Rance tidal power plant is located on the estuary of the Rance River, in Brittany, France (Figure 1). Following twenty-five years of research and six years of construction work, the 240MW La Rance Barrage became the first commercial-scale tidal power plant in the world. It was built as a large scale demonstration project for low-head hydro technology. The construction of the tidal power plant started in 1961, and was completed in 1967 1. The Rance estuary has one of the highest tidal ranges in the world (an average of 8 meters, reaching up to 13.5 metres during equinoctial spring tides) which makes it an attractive site for tidal impoundment power generation. The complete barrage is 750m long and 13m high with a reservoir of 22km 2 capable of impounding 180 million cubic meters 1. The structure includes a dam 330m long in which the turbines are housed, a lock to allow the passage of small craft, a rock-fill dam 165m long and a mobile weir with six gates. Before construction of the tidal barrage, two temporary dams were built across the estuary in order to create a dry construction site; an effort which took two years. In July 1963, the Rance was cut off from the ocean and construction of the tidal barrage commenced. This took another three years 1.
    [Show full text]
  • 1 Combining Flood Damage Mitigation with Tidal Energy
    COMBINING FLOOD DAMAGE MITIGATION WITH TIDAL ENERGY GENERATION: LOWERING THE EXPENSE OF STORM SURGE BARRIER COSTS David R. Basco, Civil and Environmental Engineering Department, Old Dominion University, Norfolk, Virginia, 23528, USA Storm surge barriers across tidal inlets with navigation gates and tidal-flow gates to mitigate interior flood damage (when closed) and minimize ecological change (when open) are expensive. Daily high velocity tidal flows through the tidal-flow gate openings can drive hydraulic turbines to generate electricity. Money earned by tidal energy generation can be used to help pay for the high costs of storm surge barriers. This paper describes grey, green, and blue design functions for barriers at tidal estuaries. The purpose of this paper is to highlight all three functions of a storm surge barrier and their necessary tradeoffs in design when facing the unknown future of rising seas. Keywords: storm surge barriers, mitigate storm damage, maintain estuarine ecology, generate renewable energy INTRODUCTION Accelerating sea levels are impacting the over 600 million people worldwide currently living near tidal estuaries in coastal regions. Residential property, public infrastructure, the economy, ports and navigation interests, and the ecosystem are at risk. Climate change has resulted from the burning of fossil fuels (oil, coal, gas, gasoline, etc.) and is the major reason for rising seas. As a result, conversion to renewable energy sources (solar, wind, wave, and tide.) is taking place. However, tidal energy is the only renewable energy resource that is available 24/7 with no downtime due to no sun or no wind or no waves. The daily tidal variation at the entrance to tidal estuaries is always present and is the driving force for the resulting ecology and water quality.
    [Show full text]
  • Severn Tidal Power
    Department of Energy and Climate Change SEVERN TIDAL POWER Feasibility Study Conclusions and Summary Report OCTOBER 2010 Severn Tidal Power Feasibility Study: Conclusions and Summary Report Contents Executive summary .................................................................................................... 4 How to respond ....................................................................................................... 9 1. Background .......................................................................................................... 10 The UK’s wave and tidal opportunity ..................................................................... 10 Tidal Stream ...................................................................................................... 12 Wave ................................................................................................................. 12 Tidal range ......................................................................................................... 13 The Severn ........................................................................................................... 14 Schemes studied .................................................................................................. 16 Progress since public consultation ........................................................................ 18 2. The scale of the challenge ................................................................................... 21 2020 – Renewable Energy Strategy ....................................................................
    [Show full text]
  • Dynamic Tidal Power (Dtp): a Review of a Promising Technique for Harvesting Sustainable Energy at Sea
    DYNAMIC TIDAL POWER (DTP): A REVIEW OF A PROMISING TECHNIQUE FOR HARVESTING SUSTAINABLE ENERGY AT SEA From : Harmen Talstra, Tom Pak (Svašek Hydraulics) To : ir. W.L. Walraven (Stichting DTP Netherlands) Date : 29 July 2020 Reference : 2037/U20232/A/HTAL Checked by : A.J. Bliek Status : Draft on behalf of whitepaper 1 INTRODUCTION This memorandum describes the technique of Dynamic Tidal Power (DTP), a conceptually new way of harvesting large-scale tidal energy at open sea; in particular we focus upon the hydrodynamic aspects of it. At present, most existing installations exploiting tidal energy encompass a structure at the mouth of a river, estuary or tidal basin. This rather small scale limits the amount of sustainable energy that can be extracted, whereas these type of exploitations may cause conflicts with other (e.g. economical or ecological) functions of vulnerable coastal or estuarine waters. The concept of DTP includes a truly large-scale sustainable energy production by utilizing the tidal wave propagation at open sea. This can be done by creating a water head difference over a (very) long dike, roughly perpendicular to the local tidal flow direction, taking advantage of the oscillatory dynamic behaviour of tidal waves. These dikes can be considered as long sequences of pre-fab solid dike modules, containing a large concentration of energy turbines. Dikes can be either attached to an existing coast line, or be constructed at a detached “stand-alone” location at open sea (for instance in combination with an offshore wind farm). The presence of such long dikes at open sea can possibly be utilized for additional economical and environmental functionalities as well.
    [Show full text]
  • Tidal Power: an Effective Method of Generating Power
    International Journal of Scientific & Engineering Research Volume 2, Issue 5, May-2011 1 ISSN 2229-5518 Tidal Power: An Effective Method of Generating Power Shaikh Md. Rubayiat Tousif, Shaiyek Md. Buland Taslim Abstract—This article is about tidal power. It describes tidal power and the various methods of utilizing tidal power to generate electricity. It briefly discusses each method and provides details of calculating tidal power generation and energy most effectively. The paper also focuses on the potential this method of generating electricity has and why this could be a common way of producing electricity in the near future. Index Terms — dynamic tidal power, tidal power, tidal barrage, tidal steam generator. —————————— —————————— 1 INTRODUCTION IDAL power, also called tidal energy, is a form of ly or indirectly from the Sun, including fossil fuels, con- Thydropower that converts the energy of tides into ventional hydroelectric, wind, biofuels, wave power and electricity or other useful forms of power. The first solar. Nuclear energy makes use of Earth's mineral depo- large-scale tidal power plant (the Rance Tidal Power Sta- sits of fissile elements, while geothermal power uses the tion) started operation in 1966. Earth's internal heat which comes from a combination of Although not yet widely used, tidal power has poten- residual heat from planetary accretion (about 20%) and tial for future electricity generation. Tides are more pre- heat produced through radioactive decay (80%). dictable than wind energy and solar power. Among Tidal energy is extracted from the relative motion of sources of renewable energy, tidal power has traditionally large bodies of water.
    [Show full text]
  • Review of Water Quality in Rocky Mouth Creek
    Review of water quality in Rocky Mouth Creek FINAL REPORT 27 May, 2012 Review of water quality in Rocky Mouth Creek To Richmond River County Council FINAL REPORT 27 May, 2012 ABN 33 134 851 522 PO Box 409 Brunswick Heads 2483 0402 689 817 [email protected] Aquatic Biogeochemical & Ecological Research Review of water quality in Rocky Mouth Creek FINAL REPORT This report was prepared by ABER Pty Ltd for Richmond River County Council Authors: J. Gay and A. Ferguson Disclaimer This report has been prepared on behalf of and for the exclusive use of Richmond River County Council, and is subject to and issued in accordance with the agreement between Richmond River County Council and ABER Pty Ltd . ABER Pty Ltd accepts no liability or responsibility whatsoever for it in respect of any use of or reliance upon this report by any third party. Copying this report without the permission of Richmond River County Council or ABER Pty Ltd is not permitted. Aquatic Biogeochemical & Ecological Research i Review of water quality in Rocky Mouth Creek FINAL REPORT Executive summary Rocky Mouth Creek drains a small backswamp sub-catchment of the Richmond River catchment and is impacted by severe seasonal acidification due to acid sulphate soil runoff and summer hypoxia due to blackwater and monosulphic black ooze (MBO) inputs. A tidal barrage situated approximately 3.8 km upstream of the confluence with the Richmond River is currently kept open outside of flooding times to promote tidal flushing of poor quality creek water, and only closed during floods to prevent flooding of the low lying Rocky Mouth Creek catchment due to ingress of floodwaters from the main river.
    [Show full text]
  • Research Report 3 - Severn Barrage
    Tidal Power in the UK Research Report 3 - Severn barrage proposals An evidence-based report by Black & Veatch for the Sustainable Development Commission October 2007 Tidal Power in the UK Research Report 3 – Review of Severn Barrage Proposals Final Report July 2007 In association with ABPmer, IPA Consulting Ltd., Econnect Consulting Ltd., Clive Baker, and Graham Sinden (Environmental Change Institute) Sustainable Development Commission Review of Severn Barrage Proposals REVIEW OF SEVERN BARRAGE PROPOSALS EXECUTIVE SUMMARY This evidence-based report has been prepared for the Sustainable Development Commission (SDC) as research report 3 to support and inform the SDC’s Tidal Power in the UK project. Background Following an introduction to the importance of the Severn estuary, an overview is provided of the extensive studies carried out on the Severn estuary mainly over the last 25 years covering both single basin and two-basin barrage schemes. The studies have shown consistently that tidal power schemes requiring long lengths of embankment (two-basin schemes) result in significantly higher unit costs of energy than equivalent schemes where length of embankment is kept to a minimum. The study considers two schemes for more detailed analysis as follows: • The Cardiff-Weston barrage, as developed and promoted by the Severn Tidal Power Group (STPG) and located between Cardiff, Wales and Weston-super-Mare, Somerset, South West England • The Shoots barrage (formerly the English Stones barrage) as presently proposed by Parsons Brinkerhoff (PB) and located just downstream of the second Severn crossing Studies using various models have shown ebb generation is the preferred mode of operation at the Shoots barrage sites and ebb generation with flood pumping optimises energy output at Cardiff- Weston providing about 3% more energy output than simple ebb generation.
    [Show full text]