Host Preference and Performance of Cabbage Aphid Brevicoryne Brassicae L

Total Page:16

File Type:pdf, Size:1020Kb

Host Preference and Performance of Cabbage Aphid Brevicoryne Brassicae L Vol. 13(52), pp. 2936-2944, 27 December, 2018 DOI: 10.5897/AJAR2018.13596 Article Number: D76434D59651 ISSN: 1991-637X Copyright ©2018 African Journal of Agricultural Author(s) retain the copyright of this article http://www.academicjournals.org/AJAR Research Full Length Research Paper Host preference and performance of cabbage aphid Brevicoryne brassicae L. (Homoptera: Aphididae) on four different brassica species Amlsha Mezgebe1*, Ferdu Azerefegne2 and Yibrah Beyene2 1Adigrat University, College of Agriculture and Environmental Sciences, P. O. Box 5, Adigrat, Ethiopia. 2Hawassa University, College of Agriculture, P. O. Box 5, Hawassa, Ethiopia. Received 3 October, 2018; Accepted 4 December, 2018 Host preference and performance of cabbage aphid Brevicoryne brassicae were studied on seven brassica varieties under Greenhouse. Nymphs, apterous and alate aphids were significantly different on day three and day 15 among tested varieties. Higher total number of aphids per plant was recorded on Brassica carinata and lower on Brassica oleracea. Alates of B. brassicae preferred more to feed and reproduce on B. carinata varieties than the other tested varieties. Developmental and reproduction periods, fecundity and longevity of B. brassicae were significantly different among tested varieties. Shortest and longest developmental period were recorded on Holeta-1 (6.4 days) and Kale (8.9 days), respectively. The aphid had the highest fecundity on B. niger (79.5 nymphs/adult) and the lowest on cabbage (62.4 nymphs/adult).The reproductive rate, intrinsic rate of increase, generation time, doubling time of B. brassicae were significantly different among tested varieties. The intrinsic rate of increase of B. brassicae was 0.337, 0.310, 0.286, 0.276, 0.262, 0.250 and 0.239 days-1 on Holeta-1, Yellow Dodola, Axana, Blinda, B. niger, Cabbage, and kale respectively. Varieties of B. carinata were more suitable for cabbage aphid feeding and reproduction than the other tested varieties. Key words: B. brassicae, reproduction, development, intrinsic rate of increase, fecundity, Ethiopian mustard. INTRODUCTION Cabbage aphid Brevicoryne brassicae (L.) (Hemiptera: disrupting the normal plant growth and development Aphididae) is a specialized aphid on brassica plants and (Colette et al., 2008) and indirect damage through the creates problem worldwide with a significant negative transmission of viral diseases (Jahan et al., 2013). impact on brassica crops (Pontoppidan et al., 2003; Brassicaceae plants are most popular vegetable crops Bashir et al., 2013). Aphid cause direct damage by consumed all over the world and good source of bioactive causing chlorosis and leaf curling on the leaves while phytochemicals (Beekwilder et al., 2008) and they are *Corresponding author. E-mail: [email protected]. Tel: ±251913306383. Fax: ± 251(3)44452115. Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Mezgebe et al. 2937 characterized by their secondary metabolites were reared for two generations on respective host plants prior to (Glucosinolates) (Al-Gendy et al., 2010; Polat, 2010). The the experiment. Aphids were transferred in to new potted plants type and concentration of glucosinolates have been when required to maintain the high aphid density for further experiment. The potted plants were kept under green house in found to vary between Brassica species, cultivars and ambient conditions at temperature of 28.86±0.82°C and 51.43±2 between the plant parts within the same plant relative humidity. (Rangkadilok et al., 2002; Windsor et al., 2005; Zytynska and Preziosi, 2011).Variation in plant quality such as physical, chemical or biological traits influences Host preference of alate aphids of B. brassicae herbivores’ performance such as growth rates, fecundity, The experiment was conducted in the greenhouse by placing the and survivorship (Awmack and Leather, 2002; Zehnder stock culture in one side and the aphid free plants in the opposite and Hunter, 2008). side direction two meters away. Forty two brassica plants; six plants The cabbage aphid B. brassicae is a phloem sucking for each of the seven varieties with high alate cabbage aphid insects that have a strategy for manipulating toxic densities on one side were used as aphid stock culture. Winged substance from Brassicaceae crops, which is harmful to cabbage aphids were allowed to disperse and to feed on the healthy plants on another side. A total of twenty eight aphid free other brassica insects (Rebecca et al., 2011). These plants consisted of seven varieties replicated four times were used. substances are important as plant defense response and Aphid free plants were approximately equal size with only five provoked consequently after insect herbivore feeding on young, fully expanded leaves. The plants were labeled and the plant (Muhammad et al., 2009; Bones et al., 2011). randomly arranged on the opposite side in four rows. The number Glucosinolates are strong stimulant substances for of nymphs, winged and non-winged adults on each plant were cabbage aphid, and used as signal to select its host recorded three and fifteen days after the plants were exposed. plants (Gabrys and Tjallingii, 2002). The toxic effect of the plant substance on cabbage aphid B. brassicae is Performance of B. brassicae avoided by elimination, detoxification, sequestration methods and behavioral responses of the aphid (Hopkins Two seeds of each variety were sown on a plastic pot and thinned et al., 2009). Mirmohammadi et al. (2009) and Aziz et al. to one plants per pot two weeks after germination. To have a same age (<24 h) of the first nymphal stage; one young apterous adult (2016) studied the effect of B. napas and B. oleracae was randomly collected from the stock culture and placed on the cultivars on the performance of cabbage aphid. However, undersurface of the leaf on each plants. After 24 hours, one the effect of Ethiopian mustard varieties on the newborn nymph was left on the leaf and excess nymphs and adults performance of cabbage aphid has not been studied. The were removed. Then all experimental pots were caged individually variation on quantity and quality of phytochemicals and arranged in completely randomized design with ten among plant genotypes, tissues and ontogenetic stages replications. Period for first, second, third and fourth instar, nymph developmental period, pre-reproductive, reproductive period, post- has an effect on insect performance (Ode, reproductive period, adult longevity, lifetime and fecundity were 2006).Therefore, the aim of the present study was to calculated. evaluate the effect of different brassica species on the preference and performance of cabbage aphid B. brassicae in Ethiopia. Statistical analysis Number of aphids per plant, developmental and reproduction period, intrinsic rate of natural increase, generation time, number of MATERIALS AND METHODS offspring per female and survivorship (%) on each tested varieties were subjected to PROC GLM analysis of variance procedure in Host plant material SAS software version 9.0 (SAS Institute, 2002). Means were compared using Tukey’s test at p=0.05. The preference and performance of cabbage aphid was studied on Age specific life table were calculated for cabbage aphids on seven different brassica varieties; six varieties from three species seven different brassica varieties. Parameters were calculated (two varieties from each species) and one local variety of B. niger using Euler–Lotka Equation (Begon et al. 2006). The intrinsic rate (red mustard) (Table 1). Seeds of the brassica were sown on plastic of natural increase was calculated with the following equation. pots (15:15:10 cm height, bottom and top diameter respectively) -rmx* containing 3:2:1 proportion of soil, sandy and manure, respectively ∑ Lxmxe =1 to ensure the fertility of the soil for the plant growth and development. The pots were kept under the greenhouse of the, College of Agriculture, Hawassa University. Lx = lx+lx+1 and x* = pivotal x= xl+ xl+l 2 2 Aphid source and rearing Where, lx is the fraction of individuals of the initial cohort alive at The aphid B. brassicae was collected from infected cabbage plants age x, mx the number of female progeny produced per female in x at Hawassa and introduced to each of the corresponding varieties and rm the intrinsic rate of natural increase. The net reproductive planted on pot as stock culture. The plants were kept inside cages rate (Ro = ∑ Lxmx), generation time (T = lnRo /rm), population covered with fine net to prevent aphids from escaping and doubling time (DT = ln2 /rm) and finite rate of increase (λ = exp.(rm)) parasitoids and predators of the aphid from entering. The aphids were calculated. 2938 Afr. J. Agric. Res. Table 1. Brassica varieties used for the experiment and their sources. Varieties Species Source Yellow Dodolla B. carinata Holeta research Center Holeta-1 B. carinata Holeta research Center Cabbage B. oleracea var. capitata Copenhagen Market Kale B. oleracea var. Aciphala Local Market Axana B. napus Kulumsa Research Center Blinda B. napus Kulumsa Research Center Red mustard B. niger Local Market Table 2. Numbers of alate, nymph and apterae of cabbage aphid on seven brassica varieties after three and fifteen days of infestation. Number of aphids per plant Varieties Day 3 Day 15 Alate Nymph Total Alate Apterae Nymph Total Holeta-1 15.8a 29.0a 44.8a 67.50a 183.3a 642.5a 893.3a Yellow dodola 13.3b 26.3a 39.5b 65.50a 157.3ab 568.0ab 790.8ab Axana 10.5c 17.0b 27.5c 49.50ab 133.3bcd 510.5bcd 693.3bcd Blinda 9.3cd 12.8c 22.0d 46.50b 143.5abc 538.5bc 728.5bc Cabbage 8.3cd 11.8c 20.0d 33.25bc 108.8cd 451.8cd 593.8de Kale 7.8cd 10.0c 17.8d 29.50c 97.8d 424.8d 552.0e B. niger 8.0cd 12.0c 20.0d 39.25bc 112.3ab 507.5bcd 659.3cd Means in the same column followed by the same letters do not differ significantly at P=0.05 (Tukey’s test).
Recommended publications
  • 4Th National IPM Symposium
    contents Foreword . 2 Program Schedule . 4 National Roadmap for Integrated Pest Management (IPM) . 9 Whole Systems Thinking Applied to IPM . 12 Fourth National IPM Symposium . 14 Poster Abstracts . 30 Poster Author Index . 92 1 foreword Welcome to the Fourth National Integrated Pest Management The Second National IPM Symposium followed the theme “IPM Symposium, “Building Alliances for the Future of IPM.” As IPM Programs for the 21st Century: Food Safety and Environmental adoption continues to increase, challenges facing the IPM systems’ Stewardship.” The meeting explored the future of IPM and its role approach to pest management also expand. The IPM community in reducing environmental problems; ensuring a safe, healthy, has responded to new challenges by developing appropriate plentiful food supply; and promoting a sustainable agriculture. The technologies to meet the changing needs of IPM stakeholders. meeting was organized with poster sessions and workshops covering 22 topic areas that provided numerous opportunities for Organization of the Fourth National Integrated Pest Management participants to share ideas across disciplines, agencies, and Symposium was initiated at the annual meeting of the National affiliations. More than 600 people attended the Second National IPM Committee, ESCOP/ECOP Pest Management Strategies IPM Symposium. Based on written and oral comments, the Subcommittee held in Washington, DC, in September 2001. With symposium was a very useful, stimulating, and exciting experi- the 2000 goal for IPM adoption having passed, it was agreed that ence. it was again time for the IPM community, in its broadest sense, to come together to review IPM achievements and to discuss visions The Third National IPM Symposium shared two themes, “Putting for how IPM could meet research, extension, and stakeholder Customers First” and “Assessing IPM Program Impacts.” These needs.
    [Show full text]
  • Cabbage Aphid Brevicoryne Brassicae Linnaeus (Insecta: Hemiptera: Aphididae)1 Harsimran Kaur Gill, Harsh Garg, and Jennifer L
    EENY577 Cabbage aphid Brevicoryne brassicae Linnaeus (Insecta: Hemiptera: Aphididae)1 Harsimran Kaur Gill, Harsh Garg, and Jennifer L. Gillett-Kaufman2 Introduction The cabbage aphid belongs to the genus Brevicoryne. The name is derived from the Latin words “brevi” and “coryne” and which loosely translates as “small pipes”. In aphids, there are two small pipes called cornicles or siphunculi (tailpipe-like appendages) at the posterior end that can be seen if you look with a hand lens. The cornicles of the cab- bage aphid are relatively shorter than those of other aphids with the exception of the turnip aphid Lipaphis erysimi (Kaltenbach). These short cornicles and the waxy coating found on cabbage aphids help differentiate cabbage aphids from other aphids that may attack the same host plant Figure 1. Cabbage aphids, Brevicoryne brassicae Linnaeus, on cabbage. (Carter and Sorensen 2013, Opfer and McGrath 2013). Credits: Lyle Buss, UF/IFAS Cabbage aphids cause significant yield losses to many crops of the family Brassicaceae, which includes the mustards and Identification crucifers. It is important to have a comprehensive under- The cabbage aphid is difficult to distinguish from the turnip standing of this pest and its associated control measures so aphid (Lipaphis erysimi (Kaltenbach)). The cabbage aphid that its spread and damage can be prevented. is 2.0 to 2.5 mm long and covered with a grayish waxy covering, but the turnip aphid is 1.6 to 2.2 mm long and has Distribution no such covering (Carter and Sorensen 2013). The cabbage aphid is native to Europe, but now has a world- The cabbage aphid and green peach aphid (Myzus persicae wide distribution (Kessing and Mau 1991).
    [Show full text]
  • Seasonal Abundance of the Cabbage Aphid Brevicoryne Brassicae
    Egypt. J. Plant Prot. Res. Inst. (2020), 3 (4): 1121-1128 Egyptian Journal of Plant Protection Research Institute www.ejppri.eg.net Seasonal abundance of the cabbage aphid Brevicoryne brassicae (Hemiptera : Aphididae) infesting canola plants in relation with associated natural enemies and weather factors in Sohag Governorate Waleed, A. Mahmoud Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt. ARTICLE INFO Abstract: Article History Received: 19 / 10 /2020 Canola (Brassica napus L.) is grown in more than 120 Accepted: 22 / 12 /2020 countries around the world, including Egypt, hold the third position oil crop after palm and soybean oils . the cabbage aphid Keywords Brevicoryne brassicae (L.) (Hemiptera : Aphididae) is distributed in many parts of the world and is present in Egypt, especially in Brevicoryne brassicae, Upper Egypt. Its damage occurs on the plant leaves and transmit population, canola, plant viruses. The present studies were carried at The Experimental parasitoid, predators, Farm of Shandweel Agricultural Research Station, Sohag temperature and Governorate, Egypt during the winter seasons of 2017/2018 and humidity. 2018/2019 to investigate the population density of the cabbage aphid B. brassicae infesting canola in relation to some biotic and abiotic factors in Sohag Governorate. Data revealed that aphid started to take place in canola fields during the first week of December in both seasons (36 days after planting), then increased to reach its peak in at 20th and 13th February in the two seasons (Between 106 to 113 days after planting), respectively. The parasitism rate by Diaeretiella rapae (MacIntosh) (Hymenoptera: Braconidae) simultaneously increased as aphid populations increased in both seasons, also, the highest parasitism percentages were synchronization of the aphid numbers reduction in both seasons.
    [Show full text]
  • Hedgerows for California Agriculture
    Hedgerows for California Agriculture A Resource Guide By Sam Earnshaw 1=;;C<7BG/::7/<13E7B64/;7:G4/@;3@A P.O. Box 373, Davis, CA 95616 (530) 756-8518 www.caff.org [email protected] A project funded by Western Region Sustainable Agriculture Research and Education Copyright © 2004, Community Alliance with Family Farmers All rights reserved. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage or retrieval systems, without permission in writing from the publisher. Acknowledgements All pictures and drawings by Sam Earnshaw except where noted. Insect photos by Jack Kelly Clark reprinted with permission of the UC Statewide IPM Program. Design and production by Timothy Rice. Thank you to the following people for their time and inputs to this manual: The Statewide Technical Team: John Anderson, Hedgerow Farms, Winters Robert L. Bugg, University of California Sustainable Agriculture Research and Education Program (UC SAREP), Davis Jeff Chandler, Cornflower Farms, Elk Grove Rex Dufour, National Center for Appropriate Technology (NCAT)/ Appropriate Technology Transfer for Rural Areas (ATTRA), Davis Phil Foster, Phil Foster Ranches, San Juan Bautista Gwen Huff, CAFF, Fresno Molly Johnson, CAFF, Davis Rachael Long, University of California Cooperative Extension (UCCE Yolo County), Woodland Megan McGrath, CAFF, Sebastopol Daniel Mountjoy, Natural Resources Conservation Service (NRCS), Salinas Corin Pease, University of California, Davis Paul Robins, Yolo County Resource Conservation District (RCD), Woodland Thank you also to: Jo Ann Baumgartner (Wild Farm Alliance, Watsonville), Cindy Fake (UCCE Placer and Nevada Counties), Josh Fodor (Central Coast Wilds), Tara Pisani Gareau (UC Santa Cruz), Nicky Hughes (Elkhorn Native Plant Nursery), Pat Regan (Rana Creek Habitat Restoration), William Roltsch (CDFA Biological Control Program, Sacramento) and Laura Tourte (UCCE Santa Cruz County).
    [Show full text]
  • Advances in Threat Assessment and Their Application to Forest and Rangeland Management
    Previous Advances in Threat Assessment and Their Application to Forest and Rangeland Management A Multicriteria Framework for Producing Local, Regional, and National Insect and Disease Risk Maps Frank J. Krist, Jr.; Frank J. Sapio; and Borys M. Tkacz framework also enables local knowledge and data to be entered into models, allowing for quick, large-scale assess- Frank J. Krist, Jr. and Frank J. Sapio, USDA Forest Ser- ments. The development of this national framework vice, Forest Health Technology Enterprise Team (FHTET), is described here. Fort Collins, CO 80525-1891; and Borys M. Tkacz, USDA Keywords: Forest health monitoring, GIS, Forest Service, Forest Health Monitoring RPC, Arlington, insect and disease risk, multicriteria modeling, NIDRM, VA 22209. risk map. Abstract Introduction The construction of the 2006 National Insect and Disease Ensuring the health of America’s forests requires the Risk Map, compiled by the USDA Forest Service, State analysis, understanding, and management of complex and and Private Forestry Area, Forest Health Protection Unit, interrelated natural resources. Increasing human-use pres- resulted in the development of a GIS-based, multicriteria sures, a continual threat from native and exotic insects and approach for insect and disease risk mapping that can diseases (USDA FS 2005), and more complex management account for regional variations in forest health concerns policies make natural resource management demanding. and threats. This risk mapping framework, used by all nine To accurately assess where and how forest resources are Forest Service regions and 49 States, provides a consistent, being impacted, resource managers and policymakers repeatable, transparent process through which interactive require information beyond tabular summaries.
    [Show full text]
  • Bio-Efficacy of Botanical Pesticides Against Mealy Cabbage Aphid
    Journal of Entomology and Zoology Studies 2021; 9(2): 1332-1336 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Bio-efficacy of botanical pesticides against mealy www.entomoljournal.com JEZS 2021; 9(2): 1332-1336 cabbage aphid (Brevicoryne brassicae L.) and bio- © 2021 JEZS Received: 04-01-2021 safety against its natural enemies in cruciferous Accepted: 08-02-2021 vegetable ecosystem of Kashmir Akhtar Ali Khan Division of Entomology, Sher-e-Kashmir University of Agricultural Sciences and Akhtar Ali Khan Technology of Kashmir, Shalimar, Srinagar, Jammu and Abstract Kashmir, India The two concentration of Neem oil (2% and 3%), castor oil (2% and 3%), Artemisia leaf extract (2% and 3%), Neem seed kernel extract (NSKE) @ 5% and6% and Azadirachtin (0.2% and 0.3%) compared with the treated check Dimethoate (Roger) @ 1% concentration with untreated check for their bio-efficacy against mealy cabbage aphid (Brevicoryne brassicae L.) and bio-safety against natural enemies were evaluated. The highest mean reduction of cabbage aphid (66.55%) was recorded against Azadirachtin @ 0.3%followed by 63.01% against same botanical pesticides@ 0.2% concentration while as lowest reduction was recorded 47.10% against Artemisia leaf extract (2%). The mean mortality of natural enemies (35.26%) against Artemisia leaf extract @ 3% followed by Azadirachtin @ 0.3% and was recorded as 32.11%. The least mortality of natural enemies was recorded as 22.92% against Artemisia leaf extract @ 3% as compared to treated check which was recorded as 70.00%. among all, Azadirachtin @ 0.3% exhibited best performance on the basis of reduction of cabbage aphid (66.55%) and also safer for natural enemies among the tested botanicals; hence, can be considered a potential botanical pesticide against cabbage aphid in Kashmir.
    [Show full text]
  • Aphids and Their Host Affinity- Iii: Brevicoryne and Pseudobrevicoryne Spp
    International Journal of Science, Environment ISSN 2278-3687 (O) and Technology, Vol. 6, No 2, 2017, 1542 – 1547 2277-663X (P) APHIDS AND THEIR HOST AFFINITY- III: BREVICORYNE AND PSEUDOBREVICORYNE SPP. 1Y.S. Rathore and 2S.N. Tiwari 1Ex- Principle Scientist, Directorate of Pulse Research, Kanpur 208 026 (U.P.) 2 Professor, Deptt. of Entomology, G.B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar 231 345 (Uttarakhand) E-mail: [email protected] Abstract: Host plant affinity of 9 species of Brevicoryne and 3 species of Pseudobrevicoryne revealed that B. arctica, B. barbareae, B. jiayuguanensis were monophagous on Brassicaceae; B. fraterna on Salicaceae and B. lonicerina and B. shaposhnikovi on Caprifoliaceae. B. crambe, B. nigrisiphunculata and Brevicoryne sp. were oligophagous, whereas B. brassicae was categorized as polyphagous feeding on 78 plant species. All the three Pseudobrevicoryne species were Brassica feeders. Keywords: Aphids, Brevicoryne, Pseudobrevicoryne, dicotyledons, monocotyledons, lignosae, herbaceae. INTRODUCTION Aphis species which belong to genera Brevicoryne and Pseudobrevicoryne (Aphidini: Macrosiphini) are mostly of palaearctic origin except B. arctica which is found in arctic region of northern Canada. Both the genera are closely related except species of Pseudobrassicae possess short siphunculi, first tarsal segment with 3, 3, 2 hairs and secondary shinaria in apterae [1]. Genus Brevicoryne contains 9 species and Pseudobevicoryne 3 species. These aphid species suck the plant sap from phloem and devitalize the plant, secrete honeydew which adversely affects photosynthesis and some of them act as vector of several viruses. We have tried to study their host relationships based on the information published in the literature.
    [Show full text]
  • Encyclopaedia of Pests and Natural Enemies in Field Crops Contents Introduction
    Encyclopaedia of pests and natural enemies in field crops Contents Introduction Contents Page Integrated pest management Managing pests while encouraging and supporting beneficial insects is an Introduction 2 essential part of an integrated pest management strategy and is a key component of sustainable crop production. Index 3 The number of available insecticides is declining, so it is increasingly important to use them only when absolutely necessary to safeguard their longevity and Identification of larvae 11 minimise the risk of the development of resistance. The Sustainable Use Directive (2009/128/EC) lists a number of provisions aimed at achieving the Pest thresholds: quick reference 12 sustainable use of pesticides, including the promotion of low input regimes, such as integrated pest management. Pests: Effective pest control: Beetles 16 Minimise Maximise the Only use Assess the Bugs and aphids 42 risk by effects of pesticides if risk of cultural natural economically infestation Flies, thrips and sawflies 80 means enemies justified Moths and butterflies 126 This publication Nematodes 150 Building on the success of the Encyclopaedia of arable weeds and the Encyclopaedia of cereal diseases, the three crop divisions (Cereals & Oilseeds, Other pests 162 Potatoes and Horticulture) of the Agriculture and Horticulture Development Board have worked together on this new encyclopaedia providing information Natural enemies: on the identification and management of pests and natural enemies. The latest information has been provided by experts from ADAS, Game and Wildlife Introduction 172 Conservation Trust, Warwick Crop Centre, PGRO and BBRO. Beetles 175 Bugs 181 Centipedes 184 Flies 185 Lacewings 191 Sawflies, wasps, ants and bees 192 Spiders and mites 197 1 Encyclopaedia of pests and natural enemies in field crops Encyclopaedia of pests and natural enemies in field crops 2 Index Index A Acrolepiopsis assectella (leek moth) 139 Black bean aphid (Aphis fabae) 45 Acyrthosiphon pisum (pea aphid) 61 Boettgerilla spp.
    [Show full text]
  • Suitability of an Artificial Diet for Rape Aphid, Brevicoryne Brassicae, Using Life Table Parameters
    African Journal of Biotechnology Vol. 8 (18), pp. 4663-4666, 15 September, 2009 Available online at http://www.academicjournals.org/AJB ISSN 1684–5315 © 2009 Academic Journals Full Length Research Paper Suitability of an artificial diet for rape aphid, Brevicoryne brassicae, using life table parameters A. Balvasi1*, G. R. Rassoulian1, A. R. Bandani1 and J. Khalghani2 1Plant Protection Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. 2 Ministry of Jihad-e-Agriculture, Iran. Accepted 14 May, 2009 Experiments based on life tables are suitable for the understanding of the population dynamics of insects. In this work, suitability of an artificial diet was studied through age-specific life tables. Development, survival, reproduction rate and population growth parameters of the rape aphid, Brevicoryne brassicae (Hom: Aphididae) were evaluated on leaf discs of Brassica oleracea, and a liquid artificial diet enclosed in parafilm sachets under incubator condition. Life parameters of 2 treatments were close to each other. The artificial diet that was used in this study had no significance differences in life table parameters compared with these parameters on leaf of B. oleracea. The results obtained in this study indicated that this artificial diet can be useful for rearing and other tests based on artificial diet. Key words: Life table, artificial diet, Brevicoryne brassicae, survival, fecundity. INTRODUCTION In large measure, the success of entomology over the through a life table approach, because its parameters are past century is founded on our ability to rear insects on good index for study on insect dynamic. artificial diets (Cohen, 2004). Insects that are reared on In this experiment a completely defined synthetic diet artificial diets are used in many programs, as agents of which was suitable for rearing of some other aphids was biological control and sterile insect technologies found that with some changes can support continuous (Knipling, 1979), as feed for other animals (Versoi and culturing of rape aphid.
    [Show full text]
  • Seasonal Abundance of Brevicoryne Brassicae L. and Diaeretiella Rapae (M’Intosh) Under Different Cabbage Growing Systems
    EKOLOGIJA. 2008. Vol. 54. No. 4. P. 260–264 DOI: 10.2478/v10055-008-0039-4 © Lietuvos mokslų akademija, 2008 © Lietuvos mokslų akademijos leidykla, 2008 Seasonal abundance of Brevicoryne brassicae L. and Diaeretiella rapae (M’Intosh) under different cabbage growing systems Laisvūnė Duchovskienė, In 2003–2004, the occurrence of cabbage aphid (Brevicoryne brassicae L.) and its main parasite Diaeretiella rapae (M’Intosh) was studied on ecologically growing white cabbage Laimutis Raudonis* versus non manure fertilized and fertilized plots. During the observations, naturally occurring aphids and mummies were counted. D. rapae reduced the populations of cab- Lithuanian Institute of Horticulture, bage aphid by 23.9–26.2% during both experimental years. The abundance of aphids LT-54333 Babtai, Kaunas distr., and parasites was highest (p = 0.05) on fertilized cabbage. The highest parasitation was Lithuania observed in the periods when the number of aphids on the plants was the lowest, at the end of July (2003) and at the beginning of August (2004) at the end of their occurrence on the plants. Key words: Brevicoryne brassicae, cabbage, growing systems, Diaeretiella rapae, parasitation INTRODUCTION cabbages ‘Bielorusiška Dotnuvos’ in 2003–2004. Investigations were conducted according to EPPO standards (Anon, 1997). The cabbage aphidBrevicoryne brassicae L. causes serious losses Each replicate consisted of 12 m2, and the treatment was repeat- of yield in Brasica crops and reduces its marketable value (Liu ed five times at a random plot distribution. et al., 1994; Costello, Altieri, 1995). B. brassicae is one of the Artificial fertilizers and pesticides were not used for eco- most common pests of cabbage crops in Lithuania (Survilienė, logically grown cabbages.
    [Show full text]
  • Systemic Effects of Phytoecdysteroids on the Cabbage Aphid Brevicoryne Brassicae (Sternorrhyncha: Aphididae)
    Eur. J. Entomol. 102: 647–653, 2005 ISSN 1210-5759 Systemic effects of phytoecdysteroids on the cabbage aphid Brevicoryne brassicae (Sternorrhyncha: Aphididae) ROMAN PAVELA1, JURAJ HARMATHA2, MARTIN BÁRNET1 and KAREL VOKÁý2 1Research Institute of Crop Production, Drnovská 507, 161 06 Praha 6 – RuzynČ, Czech Republic; e-mail: [email protected] 2Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic; e-mail: [email protected] Key words. Ecdysteroid, phytoecdysteroid, Leuzea carthamoides, cabbage aphid, Brevicoryne brassicae, systemic action, fecundity, mortality, plant-insect interaction Abstract. The systemic effects of phytoecdysteroids were investigated by applying tested compounds to the roots of the rape plants. Evaluation of the effects was based on mortality, longevity, rate of development and fecundity of the cabbage aphid (Brevicoryne brassicae L., Sternorrhyncha: Aphididae) feeding on the shoot of the treated plants. The major ecdysteroid compounds tested were natural products isolated from a medicinal plant Leuzea carthamoides DC (Willd.) Iljin (Asteraceae): 20-hydroxyecdysone (20E), ajugasterone C (ajuC) and polypodine B (polyB). The compounds were tested in two concentrations (0.07 and 0.007 mg/ml) in water. In addition, we have also investigated the systemic effects of a special Lc-Ecdy 8 fraction isolated from L. carthamoides, which contained 20E, ajuC and polyB and at least six other minor compounds in addition to the above indicated ecdysteroids. HPLC analysis of the Lc-Ecdy 8 fraction indicated the presence of makisterone A and inokosterone in minor quantities. It appeared that all ecdysteroid compounds tested, with the exception of the most common, 20E, decreased the fecundity of cabbage aphids which fed on the contaminated rape plants.
    [Show full text]
  • Auchenorrhyncha & Sternorrhyncha
    Order Hemiptera Auchenorrhyncha & (old orders) Heteroptera Homoptera Sternorrhyncha Sub-order Heteroptera Auchenorrhyncha Sternorrhyncha Families Seed bugs, Cicadas, Psyllids, Hemiptera 2 shield bugs, spittle bugs, whitefly, capsids, bed leafhoppers, aphids, bugs, water planthoppers coccids bugs, etc. Formerly known as the Homoptera RPB 2009; hemiptera2 v. 2.6 Why were they separated? Common diagnostic features Major differences for the ‘Homoptera’ 1. Auchenorrhyncha Auchenorrhyncha / Sternorrhyncha Cicadas and hoppers ¾ Forewings are uniform in texture ¾ Short, bristle like antennae; 3 segmented tarsi; ¾ Wings held roof-like over the abdomen at rest ovipositor well developed; good fliers or jumpers; ¾ Rostrum arises from posterior of head ¾ Evolved towards increased wing development; jumping capacity and acoustic communication (hypognathous) 2. Sternorrhyncha Psyllids, aphids, whiteflies, scales and mealybugs ¾ Longer, filiform antennae; 1-2 segmented tarsi; ovipositor reduced; often relatively inactive (except psyllids) ¾ Evolved towards reduction in structural complexity; Cicadidae increased biological complexity; nymphal sessility and protective devices (e.g. scales and galls) 1. Auchenorrhyncha: 2 super-families Sound production A. Cicadomorph families Cicadidae - the cicadas Males produce characteristic Large long-lived bugs ‘song’ (tymbals Eggs laid in bark on twigs of trees or shrubs on abdomen) Nymphs feed underground on roots and have massive front legs for tunnelling Periodical cicadas have prime number breeding cycles (13-17
    [Show full text]