Charged-Particle Interactions in Matter

Total Page:16

File Type:pdf, Size:1020Kb

Charged-Particle Interactions in Matter Introduction Charged-Particle • Charged particles have surrounding Coulomb field • Always interact with electrons or nuclei of atoms in Interactions in Matter matter • In each interaction typically only a small amount of particle’s kinetic energy is lost (“continuous slowing- Chapter 8 down approximation” – CSDA) • Typically undergo very large number of interactions, F.A. Attix, Introduction to Radiological therefore can be roughly characterized by a common Physics and Radiation Dosimetry path length in a specific medium (range) Charged-particle interactions in Types of charged-particle matter interactions in matter Impact parameter b • “Soft” collisions (b>>a) • “Soft” collisions (b>>a) – The influence of the particle’s Coulomb force • Hard (“Knock-on” field affects the atom as a whole collisions (b~a) – Atom can be excited to a higher energy level, or • Coulomb interactions ionized by ejection of a valence electron with nuclear field (b<<a) – Atom receives a small amount of energy (~eV) • Nuclear interactions by – The most probable type of interactions; accounts a - classical for about half of energy transferred to the medium heavy charged particles radius of atom Types of charged-particle Types of charged-particle interactions in matter interactions in matter • Hard (“Knock-on”) collisions (b~a) • Coulomb interactions with nuclear field (b<<a) – Interaction with a single atomic electron (treated – Most important for electrons as free), which gets ejected with a considerable • In all but 2-3% of cases electron is deflected through almost elastic scattering, losing almost no energy kinetic energy • In 2-3% of cases electron loses almost all of its energy – Interaction probability is different for different through inelastic radiative (bremsstrahlung) interaction particles – Important for high Z materials, high energies (MeV) – Ejected -ray dissipates energy along its track • For antimatter only: in-flight annihilations – Characteristic x-ray or Auger electron is also – Two photons are produced produced 1 Types of charged-particle Stopping Power interactions in matter dT • Nuclear interactions by heavy charged particles dx – A heavy charged particle with kinetic energy ~ 100 Y ,T ,Z MeV and b<a may interact inelastically with the nucleus • The expectation value of the rate of energy – One or more individual nucleons may be driven out of loss per unit of path length x the nucleus in an intranuclear cascade process – Charged particle of type Y – The highly excited nucleus decays by emission of so- – Having kinetic energy T called evaporation particles (mostly nucleons of – Traveling in a medium of atomic number Z relatively low energy) and -rays • Units: MeV/cm or J/m – Dose may not be deposited locally, the effect is <1-2% Mass Stopping Power Mass Collision Stopping Power dT • Only collision stopping power contributes to the energy deposition (dose to medium) dx Y ,T ,Z • Can be further subdivided into soft and hard • - density of the absorbing medium collision contributions • Units: MeVcm2 J m2 or dT dTs dTh g kg dxc dxc dxc • May be subdivided into two terms: – collision - contributes to local energy deposition • Separately calculated for electrons and heavy particles – radiative - energy is carried away by photons Mass Collision Stopping Power Mass Collision Stopping Power H T dT s max h TQc dT TQc dT T H min dxc 1. T´ is the energy transferred to the atom or electron 4. T´max is related to T´min by 2. H is the somewhat arbitrary energy boundary between 2 2 2 6 2 2 Tmax 2m0c 1.02210 eV soft and hard collisions, in terms of T´ Tmin I I 3. T´max is the maximum energy that can be transferred in a head-on collision with an atomic electron (unbound) where I is the mean excitation potential of the atom 2 s h – For a heavy particle with kinetic energy < than its M0c 5. Q c and Q c are the respective differential mass 2 2 T 2m c2 1.022 MeV, v/c max 0 2 2 collision coefficients for soft and hard collisions, 1 1 2 2 – For positrons incident, T´max = T if annihilation does not occur typically in units of cm /g MeV or m /kg J – For electrons T´max T/2 2 Soft-Collision Term Soft-Collision Term dT 2Cm c2 z 2 2m c2 2 H s 0 ln 0 2 • The mean excitation potential I is the geometric-mean 2 2 2 dxc I 1 value of all the ionization and excitation potentials of an atom of the absorbing medium here C (N Z/A)r 2 = 0.150Z/A cm2/g; in which N Z/A is the A 0 A • In general I for elements cannot be calculated number of electrons per gram of the stopping medium, and r0 = 2 2 -13 e /m0c = 2.818 10 cm is the classical electron radius • Must instead be derived from stopping-power or range measurements • For either electrons or heavy particles (z- elem. charges) – Experiments with cyclotron-accelerated protons, due to their • Based on Born approximation: particle velocity is much availability with high -values and the relatively small effect greater than that of the atomic electrons (v = c>>u) of scattering as they pass through layers of material • Verified with cyclotron-accelerated protons • Appendices B.1 and B.2 list some I-values Mass Collision Stopping Power Hard-Collision Term for Heavy Particles • The form of the hard-collision term depends on dT Zz 2 2 0.3071 13.8373 ln 2 ln I whether the charged particle is an electron, positron, 2 2 dx A 1 or heavy particle c • For heavy particles, having masses much greater • Combines both soft and hard collision contributions than that of an electron, and assuming that H << • Depends on Z - stopping medium, z - particle charge, T´max, the hard-collision term may be written as particle velocity through =v/c (not valid for very low ) • The term –ln I provides even stronger variation with Z dTh Tmax 2 (the combined effect results in (dT/dx) for Pb less than kln c dxc H that for C by 40-60 % within the -range 0.85-0.1) • No dependence on particle mass Mass Collision Stopping Power for Heavy Particles Shell Correction =v/c • When the velocity of the passing particle ceases to be much greater than that of the atomic electrons in the Accounts for stopping medium, the mass-collision stopping power is Bragg peak over-estimated • Since K-shell electrons have the highest velocities, they are the first to be affected by insufficient particle velocity, the slower L-shell electrons are next, and so on The kinetic energy • The so-called “shell correction” is intended to account required by any particle to reach a for the resulting error in the stopping-power equation given velocity is proportional to its • The correction term C/Z is the same for all charged 2 rest energy, M0c particles of the same , and is a function of the medium 3 Mass Collision Stopping Power for Electrons and Positrons Polarization Effect • Atoms near the particle track get polarized, decreasing the Coulomb dT 2 2 2C kln F force field and corresponding interaction dx 2 2 Z c 2I / m0c • Introduce density-effect correction influencing soft collisions T m c2 • The correction term, , is a function of the composition and density 0 of the stopping medium, and of the parameter log p / m c log / 1 2 • Combines both soft and hard collision contributions 10 0 10 • F() term – depends on and for the particle, in which p is its relativistic momentum mv, and m0 • Includes two corrections: is its rest mass - shell correction 2C/Z • Mass collision stopping power decreases in condensed media - correction for polarization effect • Relevant in measurements with ion chambers at energies > 2 MeV Polarization Effect Polarization Effect Appendix E contains tables of electron stopping powers, ranges, radiation yields, and density-effect corrections • increases almost linearly as a function of above 1 for a 2 variety of condensed media The steep rise in collision stopping power for < m0c is not shown, but the 2 • It is somewhat larger for low-Z than for high-Z media minimum at 3 m0c is evident, as is the continuing rise at still higher energy Mass Radiative Stopping Power Mass Radiative Stopping Power • Only electrons and positrons are light enough to • The mass radiative stopping power is generate significant bremsstrahlung (1/m2 dependence 2 proportional to NAZ /A, while the mass for particles of equal velocities) collision stopping power is proportional to • The rate of bremsstrahlung production by electrons or positrons is expressed by the mass radiative stopping NAZ/A, the electron density power (in units of MeV cm2/g) • Ratio of radiative to collision stopping power 2 dT N AZ 2 dT dx TZ T m c B r dx 0 A 0 r r dT dxc n 1 2 2 2 -28 here the constant 0 = /137(e /m0c ) = 5.80 10 cm2/atom, T is the particle kinetic energy in MeV, T – kinetic energy, Z – atomic number, n ~700 or 800 and ̅Br is a slowly varying function of Z and T MeV 4 Mass Stopping Powers vs. Energy and Z Restricted Stopping Power • Energy cutoff allows to account for escaping Relatively delta-rays independent of Z • Linear Energy Transfer Range Radiation Yield • The range of a charged particle of a given type • The radiation yield Y(T0) of a charged particle of initial and energy in a given medium is the expectation kinetic energy T0 is the total fraction of that energy that value of the pathlength p that it follows until it is emitted as electromagnetic radiation while the particle comes to rest (discounting thermal motion) slows and comes to rest • The projected range <t> of a charged particle
Recommended publications
  • Glossary Physics (I-Introduction)
    1 Glossary Physics (I-introduction) - Efficiency: The percent of the work put into a machine that is converted into useful work output; = work done / energy used [-]. = eta In machines: The work output of any machine cannot exceed the work input (<=100%); in an ideal machine, where no energy is transformed into heat: work(input) = work(output), =100%. Energy: The property of a system that enables it to do work. Conservation o. E.: Energy cannot be created or destroyed; it may be transformed from one form into another, but the total amount of energy never changes. Equilibrium: The state of an object when not acted upon by a net force or net torque; an object in equilibrium may be at rest or moving at uniform velocity - not accelerating. Mechanical E.: The state of an object or system of objects for which any impressed forces cancels to zero and no acceleration occurs. Dynamic E.: Object is moving without experiencing acceleration. Static E.: Object is at rest.F Force: The influence that can cause an object to be accelerated or retarded; is always in the direction of the net force, hence a vector quantity; the four elementary forces are: Electromagnetic F.: Is an attraction or repulsion G, gravit. const.6.672E-11[Nm2/kg2] between electric charges: d, distance [m] 2 2 2 2 F = 1/(40) (q1q2/d ) [(CC/m )(Nm /C )] = [N] m,M, mass [kg] Gravitational F.: Is a mutual attraction between all masses: q, charge [As] [C] 2 2 2 2 F = GmM/d [Nm /kg kg 1/m ] = [N] 0, dielectric constant Strong F.: (nuclear force) Acts within the nuclei of atoms: 8.854E-12 [C2/Nm2] [F/m] 2 2 2 2 2 F = 1/(40) (e /d ) [(CC/m )(Nm /C )] = [N] , 3.14 [-] Weak F.: Manifests itself in special reactions among elementary e, 1.60210 E-19 [As] [C] particles, such as the reaction that occur in radioactive decay.
    [Show full text]
  • A Basic Firearm Tutorial by John Kraemer, F-ABMDI April 2009
    A Basic Firearm Tutorial By John Kraemer, F-ABMDI April 2009 Statistics for Firearm-Related Deaths According to a 2005 study conducted by the Centers for Disease Control and Prevention (CDC), there were almost 31, 000 firearm‐related deaths within the United States. Of the 31, 000 deaths, 55% of those deaths were certified as suicides, 40% certified as homicides, 3% certified as accidents, and the remaining 2% were certified as undetermined. A previous study by the CDC covering the years 1993 to 1998 also found that most firearm‐related deaths were again caused by self‐inflicted acts and men and individuals between the ages of 15 and 34 comprised a majority of those firearm‐related deaths. Every medical examiner or coroner’s office across the country has investigated a firearm‐ related death. Depending on your jurisdiction, these types of deaths may comprise a large portion of your caseload or a small portion. Regardless of the number of firearm‐related deaths your office investigates, every medicolegal death investigator must be knowledgeable in the safe handling of firearms, basic ballistics terminology and the parts of a particular firearm, whether it be a semi‐automatic handgun, revolver, shotgun or rifle. General Safety Practices The safe approach to and subsequent handling of firearms is your personal responsibility. Safety is the number one priority when handling such weapons. At any death scene involving a firearm, the death investigator MUST ALWAYS ASSUME THE FIREARM IS LOADED! Most accidental discharges of a firearm are the result of not following safe gun handling practices and failure to use common sense.
    [Show full text]
  • The Governor's Guidelines for Firearms and Scare Devices for Protection
    THE GOVERNOR OF SVALBARD’s GUIDELINES FOR FIREARMS AND PROTECTION AND SCARING DEVICES AGAINST POLAR BEARS Adopted and enters into force on 20.07.2021 pursuant to Act No. 7 of 20 April,2018 relating to firearms, firearm accessories and ammunition (the Firearms Act) and Sections 5-7 and 6-11 of regulation No. 1452 of 7 May 2021 relating to firearms, firearm accessories and ammunition etc. (the Firearms Regulations). 1.Types of firearms 1.1 Rifle - Rifles are permitted to be acquired for use as polar bear protection in Svalbard pursuant to the Firearms Act and the Firearms Regulations - The person applying to acquire firearms for this purpose must meet the general requirements for conduct, sobriety and suitability in Section 15 of the Firearms Act, as well as document "sufficient proficiency" in the use of the firearm in question, cf. Section 5-7 of the Firearms Regulations. - Polar bear protection rifles must use ammunition of calibre 308 or 30.06. An expanding bullet shall be used where the projectile will weigh at least 10 grams and provide an estimated energy of at least 2,200 joule at a distance of 100 meters. Out of consideration for precision, range, stopping power, functionality and reliability in cold conditions, the Governor of Svalbard recommends the use of a rifle as primary protection against polar bears rather than other types of weapons. Acquisition permits for single-handed weapons will only be granted in exceptional cases, cf. Section 5-7 of the Firearms Regulations. Legal basis: Sections 15 to 17 of the Firearms Act, Sections 5-7 of the Firearms Regulations.
    [Show full text]
  • The Five Common Particles
    The Five Common Particles The world around you consists of only three particles: protons, neutrons, and electrons. Protons and neutrons form the nuclei of atoms, and electrons glue everything together and create chemicals and materials. Along with the photon and the neutrino, these particles are essentially the only ones that exist in our solar system, because all the other subatomic particles have half-lives of typically 10-9 second or less, and vanish almost the instant they are created by nuclear reactions in the Sun, etc. Particles interact via the four fundamental forces of nature. Some basic properties of these forces are summarized below. (Other aspects of the fundamental forces are also discussed in the Summary of Particle Physics document on this web site.) Force Range Common Particles It Affects Conserved Quantity gravity infinite neutron, proton, electron, neutrino, photon mass-energy electromagnetic infinite proton, electron, photon charge -14 strong nuclear force ≈ 10 m neutron, proton baryon number -15 weak nuclear force ≈ 10 m neutron, proton, electron, neutrino lepton number Every particle in nature has specific values of all four of the conserved quantities associated with each force. The values for the five common particles are: Particle Rest Mass1 Charge2 Baryon # Lepton # proton 938.3 MeV/c2 +1 e +1 0 neutron 939.6 MeV/c2 0 +1 0 electron 0.511 MeV/c2 -1 e 0 +1 neutrino ≈ 1 eV/c2 0 0 +1 photon 0 eV/c2 0 0 0 1) MeV = mega-electron-volt = 106 eV. It is customary in particle physics to measure the mass of a particle in terms of how much energy it would represent if it were converted via E = mc2.
    [Show full text]
  • Fundamentals of Particle Physics
    Fundamentals of Par0cle Physics Particle Physics Masterclass Emmanuel Olaiya 1 The Universe u The universe is 15 billion years old u Around 150 billion galaxies (150,000,000,000) u Each galaxy has around 300 billion stars (300,000,000,000) u 150 billion x 300 billion stars (that is a lot of stars!) u That is a huge amount of material u That is an unimaginable amount of particles u How do we even begin to understand all of matter? 2 How many elementary particles does it take to describe the matter around us? 3 We can describe the material around us using just 3 particles . 3 Matter Particles +2/3 U Point like elementary particles that protons and neutrons are made from. Quarks Hence we can construct all nuclei using these two particles -1/3 d -1 Electrons orbit the nuclei and are help to e form molecules. These are also point like elementary particles Leptons We can build the world around us with these 3 particles. But how do they interact. To understand their interactions we have to introduce forces! Force carriers g1 g2 g3 g4 g5 g6 g7 g8 The gluon, of which there are 8 is the force carrier for nuclear forces Consider 2 forces: nuclear forces, and electromagnetism The photon, ie light is the force carrier when experiencing forces such and electricity and magnetism γ SOME FAMILAR THE ATOM PARTICLES ≈10-10m electron (-) 0.511 MeV A Fundamental (“pointlike”) Particle THE NUCLEUS proton (+) 938.3 MeV neutron (0) 939.6 MeV E=mc2. Einstein’s equation tells us mass and energy are equivalent Wave/Particle Duality (Quantum Mechanics) Einstein E
    [Show full text]
  • Introduction to Particle Physics
    SFB 676 – Projekt B2 Introduction to Particle Physics Christian Sander (Universität Hamburg) DESY Summer Student Lectures – Hamburg – 20th July '11 Outline ● Introduction ● History: From Democrit to Thomson ● The Standard Model ● Gauge Invariance ● The Higgs Mechanism ● Symmetries … Break ● Shortcomings of the Standard Model ● Physics Beyond the Standard Model ● Recent Results from the LHC ● Outlook Disclaimer: Very personal selection of topics and for sure many important things are left out! 20th July '11 Introduction to Particle Physics 2 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 233 … für Chester war das nur ein Weg das Geld für das eigentlich theoretische Zeugs aufzubringen, was ihn interessierte … die Erforschung Dunkler Materie, …ähm… Quantenpartikel, Neutrinos, Gluonen, Mesonen und Quarks. Subatomare Teilchen Die Geheimnisse des Universums! Theoretisch gesehen sind sie sogar die Bausteine der Wirklichkeit ! Aber niemand weiß, ob sie wirklich existieren !? 20th July '11 Introduction to Particle PhysicsX Files: Season 2, Episode 234 The First Particle Physicist? By convention ['nomos'] sweet is sweet, bitter is bitter, hot is hot, cold is cold, color is color; but in truth there are only atoms and the void. Democrit, * ~460 BC, †~360 BC in Abdera Hypothesis: ● Atoms have same constituents ● Atoms different in shape (assumption: geometrical shapes) ● Iron atoms are solid and strong with hooks that lock them into a solid ● Water atoms are smooth and slippery ● Salt atoms, because of their taste, are sharp and pointed ● Air atoms are light and whirling, pervading all other materials 20th July '11 Introduction to Particle Physics 5 Corpuscular Theory of Light Light consist out of particles (Newton et al.) ↕ Light is a wave (Huygens et al.) ● Mainly because of Newtons prestige, the corpuscle theory was widely accepted (more than 100 years) Sir Isaac Newton ● Failing to describe interference, diffraction, and *1643, †1727 polarization (e.g.
    [Show full text]
  • Decays of the Tau Lepton*
    SLAC - 292 UC - 34D (E) DECAYS OF THE TAU LEPTON* Patricia R. Burchat Stanford Linear Accelerator Center Stanford University Stanford, California 94305 February 1986 Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Techni- cal Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. Price: Printed Copy A07, Microfiche AOl. JC Ph.D. Dissertation. Abstract Previous measurements of the branching fractions of the tau lepton result in a discrepancy between the inclusive branching fraction and the sum of the exclusive branching fractions to final states containing one charged particle. The sum of the exclusive branching fractions is significantly smaller than the inclusive branching fraction. In this analysis, the branching fractions for all the major decay modes are measured simultaneously with the sum of the branching fractions constrained to be one. The branching fractions are measured using an unbiased sample of tau decays, with little background, selected from 207 pb-l of data accumulated with the Mark II detector at the PEP e+e- storage ring. The sample is selected using the decay products of one member of the r+~- pair produced in e+e- annihilation to identify the event and then including the opposite member of the pair in the sample. The sample is divided into subgroups according to charged and neutral particle multiplicity, and charged particle identification. The branching fractions are simultaneously measured using an unfold technique and a maximum likelihood fit. The results of this analysis indicate that the discrepancy found in previous experiments is possibly due to two sources.
    [Show full text]
  • Read About the Particle Nature of Matter
    READING MATERIAL Read About the Particle Nature of Matter PARTICLES OF MATTER DEFINITION Matter is anything that has weight and takes up space. A particle is the smallest possible unit of matter. Understanding that matter is made of tiny particles too small to be seen can help us understand the behavior and properties of matter. To better understand how the 3 states of matter work…. LET’S BREAK IT DOWN! All matter is made of particles that are too small to be seen. Everything you can see and touch is made of matter. It is all the “stuff” in the universe. Things that are not made of matter include energy, and ideas like peace and love. Matter is made up of small particles that are too small to be seen, even with a powerful microscope. They are so small that you would have to put about 100,000 particles in a line to equal the width of a human hair! Page 1 The arrangement of particles determines the state of matter. Particles are arranged and move differently in each state of matter. Solids contain particles that are tightly packed, with very little space between particles. If an object can hold its own shape and is difficult to compress, it is a solid. Liquids contain particles that are more loosely packed than solids, but still closely packed compared to gases. Particles in liquids are able to slide past each other, or flow, to take the shape of their container. Particles are even more spread apart in gases. Gases will fill any container, but if they are not in a container, they will escape into the air.
    [Show full text]
  • The Pistol in British Military Service During the Great War
    Centre for First World War Studies The Pistol in British Military Service during the Great War A dissertation submitted by David Thomas (SRN 592736) in partial fulfilment of the requirements for the degree of MA in British First World War Studies September 2010 1 Contents Introduction 3 Current Literature Review 3 Questions to be Addressed 5 Chapter One-Use and Issue 6 Chapter Two-Technique and Training 11 Accessories 14 Ammunition 16 Chapter Three-Procurement 18 History 18 Army Procurement 19 Royal Navy Procurement 23 Private Purchase 24 Overall Numbers 26 Conclusions. 26 Bibliography 28 Appendix 33 Acknowledgements 37 All rights reserved. No part of this work may be reproduced in any form or by any means without the written permission of the author. 2 Introduction The British military services made considerable use of pistols during the Great War but it is evident that there is widespread ignorance and poor literary coverage of the weapons and their use. It is proposed to examine the pistol in British military service in the Great War, covering issue and use, technique and training, and procurement. Approximately half a million pistols were procured during the war, making it one of the numerically most widely issued weapons. A number of Corps, including the Machine Gun Corps, Tank Corps, and Royal Flying Corps were issued pistols as personal weapons, as well as extensive distribution in other arms. It is known that pistol use was widespread in trench warfare and critical on occasions. Decorations, including several Victoria Crosses, are recorded as being won by men using them aggressively.
    [Show full text]
  • Milton's Use of the Epic Simile in Paradise Lost
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1941 Milton's Use of the Epic Simile in Paradise Lost Francis Louis Martinsek Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the English Language and Literature Commons Recommended Citation Martinsek, Francis Louis, "Milton's Use of the Epic Simile in Paradise Lost" (1941). Master's Theses. 289. https://ecommons.luc.edu/luc_theses/289 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1941 Francis Louis Martinsek J3 MILTON'S USE OF THE EPIC SIMILE IN PARADISE -LOST by Francis Louis Martinsek, S.J. JUNE 1941 A THESIS SUBMITTED IN PARTIAL FULFILL~ffiNT OF THE REQUIREMENTS FOR THE DEGREE OF W~STER OF ARTS IN LOYOLA UNIVERSITY VITA AUCTORIS Francis L. ~~rtinsek, S.J., was born at Export, Pennsylvania, on November 12, 1912. He received his elementary training at Export Public Schools, and his high-school training at Export Junior High School and Trafford City High School. He entered Xavier University, Cincinnati, in 1932 and transferred to West Baden College of Loyola University in 1935, where he received his Bachelor of Arts degree in 1936. TABLE OF CONTENTS INTRODUCTION PAGE Purpose of Thesis; Method~ Procedure •••••••••••1 CHAPTER I The Familz ~~~Epic Simile •••••••••••••••~ CHAPTER II The Function£!~ Simile••••••••••••••••••••••!! CHAPTER III ~Epic Simile in Paradise Lost ••••••••••••••••~ CHAPTER IV The Epic Simile~ Milton's Style ••••••••••••••~ COl\fCLUSION •••••••••••••••••••••••••••••••••••••••••• •~ BIBLIOGRAPIIT • ••••••••••••••••••••••••••••••••••••••••§1_ L.D.S.
    [Show full text]
  • Home Defense Handgun Recommendations
    Home Defense Handgun Recommendations Kalle often jounce corporeally when osteoplastic Buck equalised bountifully and avers her mandrels. blinksFundamentalism centrically ifand thysanuran unhealable Aldrich Herculie manumit stipple: or wifely.which Urson is constructional enough? Raymund Consider for home defense weapon can come with where people are guns on. In some cases, you can buy install or three defensive shotguns for the price of one tactical rifle. This lever does what again? Thanks so again for money kind words, Brooks! The sound will make aiming position, but part of rentals at home defense rounds in law enforcement interviews, or girlfriend of carbines, you must train. But a home defense of. Nobody should have to thick with that! Also thanks for two free targets. What handgun may want. Never chance a firearm as a bluff; if still have a gun his hand, shower must be prepared to same it at whoever or seeing is threatening you. Ball ammo and handguns? SHTF event or broken End table the medieval as should Know It. If a home defense handguns chambered, i recommend a lightweight handgun is recommended is being in my wife compared them. Hey Stan, awesome to hear! Are perfectly safe will surely like this, also recommend several limitations, recoil of defensive skills, but for defense systems in! Magazine loaded, round chambered. The recommended is there would recommend further statements and grab your inbox plus an event of his weapon in most states have proper hardware like i am. How wonder I Help You Find the example Home Defense Weapon? Eric about not carrying a handgun with it external safety but substantial legal reasons I would be modify the factory safety.
    [Show full text]
  • Charged Particle Radiotherapy
    Corporate Medical Policy Charged Particle Radiotherapy File Name: charged_particle_radiotherapy Origination: 3/12/96 Last CAP Review: 5/2021 Next CAP Review: 5/2022 Last Review: 5/2021 Description of Procedure or Service Cha rged-particle beams consisting of protons or helium ions or carbon ions are a type of particulate ra dia tion therapy (RT). They contrast with conventional electromagnetic (i.e., photon) ra diation therapy due to several unique properties including minimal scatter as particulate beams pass through tissue, and deposition of ionizing energy at precise depths (i.e., the Bragg peak). Thus, radiation exposure of surrounding normal tissues is minimized. The theoretical advantages of protons and other charged-particle beams may improve outcomes when the following conditions a pply: • Conventional treatment modalities do not provide adequate local tumor control; • Evidence shows that local tumor response depends on the dose of radiation delivered; and • Delivery of adequate radiation doses to the tumor is limited by the proximity of vital ra diosensitive tissues or structures. The use of proton or helium ion radiation therapy has been investigated in two general categories of tumors/abnormalities. However, advances in photon-based radiation therapy (RT) such as 3-D conformal RT, intensity-modulated RT (IMRT), a nd stereotactic body ra diotherapy (SBRT) a llow improved targeting of conventional therapy. 1. Tumors located near vital structures, such as intracranial lesions or lesions a long the a xial skeleton, such that complete surgical excision or adequate doses of conventional radiation therapy are impossible. These tumors/lesions include uveal melanomas, chordomas, and chondrosarcomas at the base of the skull and a long the axial skeleton.
    [Show full text]