Electrical Performance Tests for Audio Distortion Analyzers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EN 300 676 V1.2.1 (1999-12) European Standard (Telecommunications Series)
Draft ETSI EN 300 676 V1.2.1 (1999-12) European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Ground-based VHF hand-held, mobile and fixed radio transmitters, receivers and transceivers for the VHF aeronautical mobile service using amplitude modulation; Technical characteristics and methods of measurement 2 Draft ETSI EN 300 676 V1.2.1 (1999-12) Reference REN/ERM-RP05-014 Keywords Aeronautical, AM, DSB, radio, testing, VHF ETSI Postal address F-06921 Sophia Antipolis Cedex - FRANCE Office address 650 Route des Lucioles - Sophia Antipolis Valbonne - FRANCE Tel.:+33492944200 Fax:+33493654716 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Internet [email protected] Individual copies of this ETSI deliverable can be downloaded from http://www.etsi.org If you find errors in the present document, send your comment to: [email protected] Important notice This ETSI deliverable may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European -
Spectrum Analyzer
Test & Measurement Product Catalog 版权所有 仿冒必究 V01-15 Contents Digital Oscilloscope 3 DS6000 Series Digital Oscilloscope 4 MSO/DS4000 Series Digital Oscilloscope 6 DS4000E Series Digital Oscilloscope 8 MSO/DS2000A Series Digital Oscilloscope 10 MSO/DS1000Z Series Digital Oscilloscope 12 DS1000B Series Digital Oscilloscope 14 DS1000D/E Series Digital Oscilloscope 14 Bus Analysis Guide 16 Power Measurement and Analysis 16 Current & Active Probes 17 Probes & Accessories Guide 18 Spectrum Analyzer 19 DSA800/E Series Spectrum Analyzer 20 DSA700 Series Spectrum Analyzer 22 DSA1000/A Series Spectrum Analyzer 24 EMI Test System(S1210) 25 NFP-3 Near Field Probes 25 Common RF Accessories 26 RF Accessories Selection Guide 27 RF Signal Generator 28 DSG3000 Series RF Signal Generator 29 DSG800 Series RF Signal Generator 31 Function/Arbitrary Waveform Generator 33 DG5000 Series Function/Arbitrary Waveform Generator 34 DG4000 Series Function/Arbitrary Waveform Generator 36 DG1000Z Series Function/Arbitrary Waveform Generator 38 DG1000 Series Function/Arbitrary Waveform Generator 40 Digital Multimeter 41 DM3058 5½ Digits Digital Multimeter 41 DM3058E 5½ Digits Digital Multimeter 41 DM3068 6½ Digits Digital Multimeter 41 Data Acquisition/Switch System 43 M300 Series Data Acquisition/Switch System 43 Programmable DC Power Supply 45 DP800 Series Programmable DC Power Supply 46 DP700 Series Programmable DC Power Supply 48 Programmable DC Electronic Load 50 DL3000 Series Programmable DC Electronic Load 50 2 RIGOL Digital Oscilloscope Digital oscilloscope, an essential electronic equipment for By adopting the innovative technique “UltraVision”, R&D, manufacture and maintenance, is used by electronic DS6000 realizes deeper memory depth, higher waveform engineers to observe various kinds of analog and digital capture rate, real time waveform record and multi-level signals. -
An Oscilloscope Correction Method for Vector-Corrected RF Measurements
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 1 An Oscilloscope Correction Method for Vector-Corrected RF Measurements Sebastian Gustafsson, Student Member, IEEE, Mattias Thorsell, Member, IEEE, Jörgen Stenarson, Member, IEEE, and Christian Fager, Member, IEEE Abstract— The transfer characteristics of the RF front-end circuit components. As these errors must be compensated for circuitry of a real-time oscilloscope (RTO) are not only frequency to achieve accurate signal sampling [4], several correction dependent and nonlinear with signal amplitude but also depen- techniques have been introduced [5], [6]. Other correction dent on the voltage range setting of the oscilloscope. A correction table in the frequency domain is proposed to account for the techniques have also been introduced [7]–[12], but they are additional gain and delay introduced when switching between only valid for sampling oscilloscopes. Previous research different voltage ranges. The table was extracted from the has focused on correction techniques for a certain set of measured data in which a continuous-wave signal source was instrument settings, e.g., a particular voltage range. Hence, connected to the oscilloscope ports, whereas the input power, the changing the settings would make the correction invalid. frequency, and voltage ranges were varied. The importance of the corrections is demonstrated by its use in an RTO-based two-port However, changing the range is desirable in some applications, vector-corrected measurement system. Measurements from the to fully utilize the voltage range of the ADC. -
Frequency Domain Measurements: Spectrum Analyzer Or Oscilloscope?
Keysight Technologies Frequency Domain Measurements: Spectrum Analyzer or Oscilloscope? Selection Guide Changes in test and measurement technologies are blurring the lines between platforms and giving engineers new options Introduction For generations, the rules for RF engineers were simple: frequency-domain measurements (output frequency, band power, signal bandwidth, etc.) were done by a spectrum analyzer, and time domain measurements (pulse width and repetition rate, signal timing, etc.) were done by an oscilloscope. As the digital revolution made signal processing techniques easier and more widespread, the lines between the two platforms began to blur. Oscilloscopes started incorporating Fast Fourier Transform (FFT) techniques that converted the time-domain traces to the frequency domain. Spectrum analyzers began capturing their data in the time domain and using post-processing to generate displays. Still, there were some clear distinctions between the two platforms. For example, oscilloscopes were limited in sample speed. They could see signals down to DC, but only up to a few GHz. Spectrum analyzers could see high into the microwave range, but they missed transient signals as they swept. What if you needed to see a signal in the time domain with a carrier frequency of 40 GHz or capture a complete wideband pulse in X-band? As technologies in EW, radar and communications move ahead, the demands on the test equipment become greater. As more possibilities have opened for RF and microwave equipment because of new digital processing technologies, they have also increased opportunities for test equipment. Spectrum analyzers and oscilloscopes can do much more than they could even a few years ago, and as they expand in capabilities, the lines between them become blurred and sometimes even erased. -
TM 11-5099 D E P a R T M E N T O F T H E a R M Y T E C H N I C a L M a N U a L SPECTRUM ANALYZER AN/UPM-58 This Reprint Inclu
TM 11-5099 DEPARTMENT OF THE ARMY TECHNICAL MANUAL SPECTRUM ANALYZER AN/UPM-58 This reprint includes all changes in effect at the time of publication; changes 1 through 3. HEADQUARTERS, DEPARTMENT OF THE ARMY MAY 1957 Changes in force: C 1, C 2, and C 3 TM 11-5099 C3 CHANGE HEADQUARTERS DEPARTMENT OF THE ARMY No. 3 } WASHINGTON, D.C., 4 May 1967 SPECTRUM ANALYZER AN/UPM-58 TM 11-5099, 28 May 1957, is changed as follows: Note. The parenthetical reference to previous Report of errors, omissions, and recommendations for changes (example: page 1 of C 2) indicate that pertinent Improving this manual by the individual user is material was published in that change. encouraged. Reports should be submitted .on DA Form Page 2, paragraph 1.1, line 6 (page 1 of C 2). Delete 2028 (Recommended Changes to DA Publications) and "(types 4, 6, 7, 8, and 9)" and substitute: (types 7, 8, and forwarded direct to Commanding General, U.S. Army 9). Paragraph 2c (page 1 of C 2). Delete subparagraph Electronics Command, ATTN: AMSEL-MR-NMP-AD, c and substitute: Fort Monmouth, N.J. 07703. c. Reporting of Equipment Manual Improvements. Page 77. Add section V after section 1V. Section V. DEPOT OVERHAUL STANDARDS 95.1. Applicability of Depot Overhaul Standards requirements for testing this equipment. The tests outlined in this chapter are designed to b. Technical Publications. The technical measure the performance capability of a repaired publication applicable to the equipment to be tested is equipment. Equipment that is to be returned to stock TM 11-5099. -
The 4 States QRP Group HF Test Set Construction Manual
Copyright 2006, NB6M - Unauthorized Copying or Publication Prohibited The 4 States QRP Group HF Test Set Construction Manual Containing several key pieces of simple Test Equipment that are used to either test or troubleshoot radio circuitry By Wayne McFee, NB6M Revision 0.2 October 21, 2007 Copyright 2006, NB6M - Unauthorized Copying or Publication Prohibited 1 THE HF TEST SET .....................................................................................................................................3 INTRODUCTION............................................................................................................................................3 HF TEST SET SCHEMATIC ...........................................................................................................................5 BOARD LAYOUT..........................................................................................................................................6 PARTS LIST .................................................................................................................................................7 TOOLS AND EQUIPMENT NEEDED................................................................................................................9 PC BOARD, PARTS SIDE ...........................................................................................................................10 PC BOARD, TRACE SIDE...........................................................................................................................11 STARTING -
Keysight 53147A/148A/149A Microwave Frequency Counter/Power Meter/DVM
Keysight 53147A/148A/149A Microwave Frequency Counter/Power Meter/DVM Assembly Level Service Guide Notices U.S. Government Rights Warranty The Software is “commercial computer THE MATERIAL CONTAINED IN THIS Copyright Notice software,” as defined by Federal Acqui- DOCUMENT IS PROVIDED “AS IS,” sition Regulation (“FAR”) 2.101. Pursu- AND IS SUBJECT TO BEING © Keysight Technologies 2001 - 2017 ant to FAR 12.212 and 27.405-3 and CHANGED, WITHOUT NOTICE, IN No part of this manual may be repro- Department of Defense FAR Supple- FUTURE EDITIONS. FURTHER, TO THE duced in any form or by any means ment (“DFARS”) 227.7202, the U.S. MAXIMUM EXTENT PERMITTED BY (including electronic storage and government acquires commercial com- APPLICABLE LAW, KEYSIGHT DIS- retrieval or translation into a foreign puter software under the same terms CLAIMS ALL WARRANTIES, EITHER language) without prior agreement and by which the software is customarily EXPRESS OR IMPLIED, WITH REGARD written consent from Keysight Technol- provided to the public. Accordingly, TO THIS MANUAL AND ANY INFORMA- ogies as governed by United States and Keysight provides the Software to U.S. TION CONTAINED HEREIN, INCLUD- international copyright laws. government customers under its stan- ING BUT NOT LIMITED TO THE dard commercial license, which is IMPLIED WARRANTIES OF MER- Manual Part Number embodied in its End User License CHANTABILITY AND FITNESS FOR A 53147-90010 Agreement (EULA), a copy of which can PARTICULAR PURPOSE. KEYSIGHT be found at http://www.keysight.com/ SHALL NOT BE LIABLE FOR ERRORS Edition find/sweula. The license set forth in the OR FOR INCIDENTAL OR CONSE- Edition 3, November 1, 2017 EULA represents the exclusive authority QUENTIAL DAMAGES IN CONNECTION by which the U.S. -
SR1 — Dual-Domain Audio Analyzer
Audio Analyzer SR1 — Dual-domain audio analyzer SR1 Audio Analyzer Introducing SR1 Dual-Domain Audio Analyzer — high · Analog/digital domain measurements performance audio analysis at a very affordable price. SR1 is a stand-alone instrument that delivers cutting edge · −112 dB THD + N (at 1 kHz, 20 kHz BW) performance in a wide variety of audio measurements. With a versatile high-performance generator, an array of analyzers · 200 kHz frequency range that operate symmetrically in both the analog and digital domains, and digital audio carrier measurements at sampling · −118 dBu analyzer noise (20 kHz BW) rates up to 192 kHz, SR1 is the right choice for the most demanding analog and digital audio applications. · ±0.008 dB flatness (20 Hz to 20 kHz) User Interface · −140 dB input crosstalk SR1 uses an integrated computer running the Windows XP embedded operating system, so operation will be immediately · −125 dB output crosstalk familiar and intuitive. Depending on the application, SR1 can be operated with an external mouse and keyboard, or by using · <600 ps jitter (50 Hz to 100 kHz) the front-panel knob, keypad and touchpad. Seven on-screen tabbed pages are available for arranging · Dual-channel FFT measurements panels, graphs, and displays. Screen setups, data, and instrument configurations can be quickly saved and recalled to either the internal hard disk or to a flash drive connected to one of the two front-panel USB connectors. An optional 1024 × 768 XVGA monitor (opt. 02) provides better resolution and allows more information to be displayed. (U.S. list) · SR1 ... $12,400 While SR1’s configuration panels offer total flexibility in setting up every detail of the analyzer, at times it is useful to get a measurement going quickly, without worrying Stanford Research Systems phone: (408)744-9040 www.thinkSRS.com SR1 Audio Analyzer about infrequently used parameters. -
Keysight U1251B and U1252B Handheld Digital Multimeter
Keysight U1251B and U1252B Handheld Digital Multimeter User’s and Service Guide Notices U.S. Government Rights Warranty The Software is “commercial computer THE MATERIAL CONTAINED IN THIS Copyright Notice software,” as defined by Federal DOCUMENT IS PROVIDED “AS IS,” AND Acquisition Regulation (“FAR”) 2.101. IS SUBJECT TO BEING CHANGED, © Keysight Technologies 2009 – 2019 Pursuant to FAR 12.212 and 27.405-3 WITHOUT NOTICE, IN FUTURE No part of this manual may be and Department of Defense FAR EDITIONS. FURTHER, TO THE reproduced in any form or by any Supplement (“DFARS”) 227.7202, the MAXIMUM EXTENT PERMITTED BY means (including electronic storage U.S. government acquires commercial APPLICABLE LAW, KEYSIGHT and retrieval or translation into a computer software under the same DISCLAIMS ALL WARRANTIES, EITHER foreign language) without prior terms by which the software is EXPRESS OR IMPLIED, WITH REGARD agreement and written consent from customarily provided to the public. TO THIS MANUAL AND ANY Keysight Technologies as governed by Accordingly, Keysight provides the INFORMATION CONTAINED HEREIN, United States and international Software to U.S. government INCLUDING BUT NOT LIMITED TO THE copyright laws. customers under its standard IMPLIED WARRANTIES OF commercial license, which is embodied MERCHANTABILITY AND FITNESS FOR Manual Part Number in its End User License Agreement A PARTICULAR PURPOSE. KEYSIGHT U1251-90036 (EULA), a copy of which can be found at SHALL NOT BE LIABLE FOR ERRORS http://www.keysight.com/find/sweula. OR FOR INCIDENTAL OR Edition The license set forth in the EULA CONSEQUENTIAL DAMAGES IN Edition 24, July 26, 2019 represents the exclusive authority by CONNECTION WITH THE FURNISHING, which the U.S. -
Future of Vector Network Analysis Dylan Williams and Nate Orloff Integrated Circuits Drive Wireless Communications
Future of Vector Network Analysis Dylan Williams and Nate Orloff Integrated Circuits Drive Wireless Communications Application Frequency (GHz) 10 30 100 300 1000 100 10 Transit Frequency (GHz) Frequency Transit 1990 1995 2000 2005 2010 2015 2020 Year We Cannot Take the Integrated Circuit for Granted at mmWaves 2 Next 15 Years of Wireless Manufacturing by Country The United States still dominates mmWave manufacturing Enables $12.3T in Total Economic Growth (2020-2035) Communication Providers Want Speed of Fiber on Your Phone Millimeter-Waves are the Next Wireless Frontier Measurements and Calibrations Matter at mmWaves Before Calibration 64 QAM at 44 GHz After Calibration mmWave Measurement Challenge of our Era Not a Single RF Connector! On-Wafer IC and System-Level Test OTA System-Level Test Transistor models IC Test System-Level Test End-to-End Verification On-Wafer Connectorized Free-Space Goals for Vector Network Analysis in CTL Project Calibration Reference Planes On-Wafer and to OTA Test On-Wafer Measurements • Innovations in Calibration • Support Device Models to System-Level Test • State-Of-The-Art Instruments for US mmWave NR Manufacturers Vector Network Analysis • Platform for Traceable System-Level Tests Across CTL • Close the Connector-Less Gap mmWave Design Extremely Complex Accurate measurements are a must 80 80 GHz GHz 160 ~ GHz 240 GHz • Highly nonlinear operating states required for efficiency • Characterize, capture, control and reuse harmonics • Must maintain linearity On-Wafer Measurement the Only Way to Test ICs Yesterday -
P50xxa Streamline Series Vector Network Analyzer 2/4-Port up to 53 Ghz
P50xxA Streamline Series Vector Network Analyzer 2/4-port Up to 53 GHz. 2/4/6-port Up to 20 GHz Compact Form. Zero Compromise. P5000A/P5020A 9 kHz to 4.5 GHz P5001A/P5021A 9 kHz to 6.5 GHz P5002A/P5022A 9 kHz to 9 GHz P5003A/P5023A 9 kHz to 14 GHz P5004A/P5024A 9 kHz to 20 GHz P5005A/P5025A 100 kHz to 26.5 GHz P5006A/P5026A 100 kHz to 32 GHz P5007A/P5027A 100 kHz to 44 GHz P5008A/P5028A 100 kHz to 53 GHz Find us at www.keysight.com Page 1 Keysight P500xA and P502xA Streamline Series VNA The freedom of portable network analysis doesn’t have to mean a compromise in performance. The P50xxA Series brings high-end performance and flexibility to the portable Keysight Streamline Series. Gain confidence in your measurements with best-in-class performance offering fast, reliable, and repeatable results. Explore the complete characterization of your devices with a rich portfolio of software applications that transform the compact network analyzer into a complete RF measurement solution. The P50xxA Series, a member of Keysight’s Streamline Series offers the performance required for testing passive components, amplifiers, mixers or frequency converters. The vector network analyzer (VNA) provides best-in-class key specifications such as dynamic range, measurement speed, trace noise and temperature stability. Choose from 2- or 4-port models up to 53 GHz, or 2-, 4- or 6-port models up to 20 GHz. The VNA is packaged in a compact chassis and controlled by an external computer with powerful data processing capabilities and functionalities. -
53200A Series RF/Universal Frequency Counter/Timers
Keysight Technologies 53200A Series RF/Universal Frequency Counter/Timers Data Sheet Imagine Your Counter Doing More! Introduction Frequency counters are depended on in R&D and in manufacturing for the fastest, most accurate frequency and time interval measurements. The 53200 Series of RF and universal frequency counter/timers expands on this expectation to provide you with the most information, connectivity and new measurement capabilities, while building on the speed and accuracy you’ve depended on with Keysight Technologies, Inc. time and frequency measurement expertise. Three available models offer resolution capabilities up to 12 digits/sec frequency resolution on a one second gate. Single- shot time interval measurements can be resolved down to 20 psec. All models offer new built-in analysis and graphing capabilities to maximize the insight and information you receive. More bandwidth Measurement by model Measurements Model Standard Opt MW Inputs – 350 MHz baseband frequency 350 MHz Input (53210A: Ch 2, – 6 or 15 GHz optional microwave Channel(s) 53220A/30A: Ch 3) channels Frequency 53210A, ● ● More resolution & speed 53220A, – 12 digits/sec 53230A – 20 ps single-shot time resolution Frequency ratio 53210A, ● ● – Up to 75,000 and 90,000 53220A, readings/sec (frequency and 53230A time interval) Period 53210A, ● ● More insight 53220A, 53230A – Datalog trend plot Minimum/maximum/ 53210A, ● – Cumulative histogram peak-to-peak input 53220A, – Built-in math analysis and voltage 53230A statistics – 1M reading memory and RF signal strength