Synthesis, Characterization and Biological Activities of Isocoumarins, Triazoles, Thiadiazoles and Indolinones

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis, Characterization and Biological Activities of Isocoumarins, Triazoles, Thiadiazoles and Indolinones SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITIES OF ISOCOUMARINS, TRIAZOLES, THIADIAZOLES AND INDOLINONES A DISSERTATION SUBMITTED TO THE QUAID-I-AZAM UNIVERSITY ISLAMABAD IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY BY GHULAM QADEER Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan. 2008 SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITIES OF ISOCOUMARINS, TRIAZOLES, THIADIAZOLES AND INDOLINONES BY GHULAM QADEER Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan. 2008 Allah will exalt those who believe among you, and those who have knowledge to high ranks. Saying of Holy Prophet Hazrat Muhammad “Do you know who is the most beneficent? Allah is the most beneficent, than of the children of the man; I am the most beneficent and after me the most beneficent among them is the man who acquires knowledge and spreads it, he will come on the day of resurrection as a chief by himself”. My parents ACKNOWLEDGEMENT First of All I bow my head before “Almighty Allah” Who bestowed me the opportunity and potential to make material contribution to the already existing ocean of knowledge and all respects are for the Holy Prophet, Hazrat Muhammad who enabled us to recognize our Creator. It is a matter of great pleasure to express my obligations and sincere thanks to my teacher and research supervisor Prof. Dr. Nasim Hasan Rama, Department of Chemistry, Q. A. U. Islamabad, for his constant encouragement, keen interest and thought provoking guidance through out my research work. I am thankful to Prof. Dr S. Sakhawat shah, Chairman, Department of Chemistry, for providing necessary research facilities. Thanks to all the teachers of organic section for being a source of inspiration and enlightenment for me during my course work and stay in the department. I obliged to express my heartfelt thanks to Prof. Dr. Erik De Clercq, (Belgium) Dr. Lieve Naesens, (Belgium), Prof. Dr. Bob Hill (Scotland), Dr. Dra. Maria Luisa Garduño, (New Maxico), Dr. Wai Yeung-Wong (Hong Kong), Dr. Ales Ruzicka, (Czec republic) Dr. Yong Hong Li, (China) Dr. Fan Zhijin, (China), Dr. Sauli Vuoti, (Finland) Dr. M. Azad Malik, (U.K) James Rafetry (U.K) and Dr. Abdul Malik, H. E. J. Research institute, University of Karachi, Pakistan for their co-operation and generous help especially in the form of spectroscopic analysis, X-ray crystallography and bioassay. I ought to submit my thanks to my dear friends, who remember me in their prayers and hearts. I wish to acknowledge the support, co-operation and encouragement provided by Syed Jabbar Hussain Shah, Mazhar Ali Kalyar, Shahid Ashraf, Javeed Akhter (U.K), I do remember the company of my research fellows Dr. Muhammad Zareef, M. Arfan, Tasfeen Akhter, K. Ansar Yasin and Muhammad Sher. My acknowledgement remains incomplete if I don’t mention the help, encouragement and companionship of my lab fellows, Gul S. Khan, Naveed Umer, Taj-ud-din, Ahsan Farid, Obaid-ur-Rehman Abid, Tariq Mehmood Baber, Muhammad Hanif, Furrukh Iftikhar Ali, Muhammad Shahzad & Hakim Luqman. I am also heartily thankful to all the members of non-teaching staff of the department especially M. Sharif Chohan, Shamas Pervaiz Qureshi, Ali Zaman, Shamas Tabrez Qureshi, Muhammad Ilyas, M. Rashid, Muhammad Raza and Jumma Khan, for their help during the entire period of research work. My sincere thanks are due to my wife. Without her encouragement and excessive generosity I would not been able to complete the task. Lastly my special thanks are due to my parents, brothers, sisters and all of other relatives. It is due to their prayers that I have been successful in my educational career. May Almighty Allah shower his choicest blessings and prosperity on all those who assisted me in any way during completion of my thesis Thank you all, (GHULAM QADEER) CERTIFICATE This is to certify that this thesis submitted by Mr. GHULAM QADEER is accepted in its present form by the Department of Chemistry, Quaid-i-Azam University, Islamabad as satisfying the requirements for the Degree of Doctor of Philosophy in Organic Chemistry. SUPERVISOR --------------------------- (Prof. Dr. Nasim Hasan Rama) Departmet of Chemistry, Quaid-i-Azam University, Islamabad CHAIRMAN --------------------------------- (Prof. Dr. S. Sakhawat shah) Department of Chemistry, Quaid-i-Azam University, Islamabad Date: ABSTRACT The work presented in this thesis consists of the synthesis, characterization, and biological screening of heterocyclic compounds. For convenience, the work has been divided into two parts, part one is related to the compounds containing oxygen atom in the heterocyclic ring whereas part two refers to the compounds containing nitrogen and/ or sulphur atoms in the heterocyclic ring. Part one of this thesis is related to the synthesis, characterization and biological activity of some heterocyclic compounds containing oxygen in the ring. These compounds include some naturally and unnaturally occurring substituted isocoumarins and 3,4-dihydroisocoumarins. The synthesis of naturally occurring isocoumarin Thunberginol B is reported, in which 3,5-dimethoxyhomophthalic acid is a key intermediate for the synthesis of Thunberginol B. It was synthesized efficiently in five steps from 3,5-dimethoxybenzaldehyde via a series of reactions including synthesis of 3,5-dimethoxycinnamic acid, 3-(3′,5′- dimethoxyphenyl)propionic acid, cyclization of 3-(3′,5′-dimethoxyphenyl)propionic acid to 5,7-dimethoxy-1-indanone and oxidative decomposition of methyl 2- hydroxy-2-(5,7-dimethyoxy-1-oxo-1H-inden-2(3H)-ylidene)acetate to 3,5- dimethoxyhomophthalic acid. 3,4-Dimethoxybenzoylchloride was prepared from 3,4-dimethoxybenzoic acid on reaction with thionyl chloride which on condensation with 3,5-dimethoxyhomophthalic acid afforded 3-(3',4'- dimethoxyphenyl)-6,8-dimethoxyisocoumarin. Complete demethylation of 3-(3',4'- dimethoxyphenyl)-6,8-dimethoxyisocoumarin with hydrobromic acid in acetic acid gave 3-(3',4'-dihydroxyphenyl)-6,8-dihydroxyisocoumarin (Thunberginol B). In addition to above, some unnaturally occurring halogenated isocoumarins and their 3,4-dihydrodrivatives were also synthesized. The difluorophenyl- and dichlorophenylisocoumarins by condensation of homophthalic acid with an appropriate acid chloride. Alkaline hydrolysis of the isocoumarins yielded corresponding keto-acids, which on reduction give the corresponding racemic hydroxy-acids. 3,4-Dihydroisocoumarins were obtained from these racemic hydroxy-acids by cyclodehydration using acetic anhydride. All the synthesised compounds were identified using their IR, 1H NMR and mass spectral data. In many cases 13C NMR and elemental analysis data were employed to support the characterization. In each case, a plasible mass fragmentation pattern is suggested. The synthesized compounds were screened for their antifungal, antibacterial, herbicidal, insecticidal, fungicidal, anti- metastatic, brine shrimp lethality, antioxidant, anti -inflammatory, antiviral, anti- HIV, anti-HBV and anticancer activities and in some cases, very fascinating results were obtained which were then published in different international journals. These synthetic schemes have tremendous potential for further synthesis of novel biological active compounds. Part two of the thesis describes the synthesis and biological screening of some, hitherto unreported, isatin derivatives (Indolinones), 1,4-disubstituted thiosemicarbazides and their related 2,5-disubstituted-1,3,4-thiadiazoles and 4,5- disubstituted-3H-1,2,4-triazole-3-thiones. Indolinones were formed by the direct condensation of hydrazides with halogenated isatins. Triazoles were formed by intramolecular dehydrative cyclization of thiosemicarbazides in basic media while thiadiazoles were formed in acidic media, which is an intermediate during the synthesis of various heterocyclic compounds. Thiosemicarbazides were formed by aldol type condensation reaction of acid hydrazides and isothiocyanates. Isothiocyanates were formed by the reaction of anilines with carbon disulphide in ammonium hydroxide solution to yield ammonium dithiocarbamate, an intermediate which on oxidation with lead nitrate yield isothiocyanate. Acid hydrazides were formed by the reaction of esters of carboxylic acid with hydrazine hydrate and esters were formed by refluxing carboxylic acid in methanol in catalytic amount of carboxylic acids. As a result of these synthetic schemes, thirty new indolinones, ten disubstituted-1,3,4-thiadiazoles and twenty disubstituted 1,2,4-triazole-3-thiones were synthesized. The characterization of these synthesized compounds was carried out by IR, 1H NMR, 13C NMR, elemental analysis, Mass spectral data and XRD analysis. The synthesized compounds were screened for their antifungal, antibacterial, herbicidal, insecticidal, fungicidal, plant growth regulatory activity and antiviral activities. CONTENTS Acknowledgement I Abstract III Part one CHAPTER 1 INTRODUCTION 1.1 Nomenclature and structural types 1 1.2 Physical properties 5 1.3 Biological activities 5 1.4 Behavior towards human beings 12 1.5 Biosynthesis 14 1.6 Synthesis of isocoumarins and 3,4-dihydro- 18 isocoumarins 1.6.1 Synthesis involving metals 19 1.6.2 Oxidation of Indenes, Indanones and Indones 24 1.6.3 Oxidation of isochromans 26 1.6.4 Aldol type condensation between homophthalic 27 acids, esters or anhydrides and carbonyl compounds 1.6.5 Synthesis of isocoumarins via iodocyclization 32 1.6.6 Synthesis of isocoumarin by the use of new 33 technology 1.7 Interconverision
Recommended publications
  • Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies
    Molecules 2010, 15, 7985-8005; doi:10.3390/molecules15117985 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Monocyclic Phenolic Acids; Hydroxy- and Polyhydroxybenzoic Acids: Occurrence and Recent Bioactivity Studies Shahriar Khadem * and Robin J. Marles Natural Health Products Directorate, Health Products and Food Branch, Health Canada, 2936 Baseline Road, Ottawa, Ontario K1A 0K9, Canada * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-613-954-7526; Fax: +1-613-954-1617. Received: 19 October 2010; in revised form: 3 November 2010 / Accepted: 4 November 2010 / Published: 8 November 2010 Abstract: Among the wide diversity of naturally occurring phenolic acids, at least 30 hydroxy- and polyhydroxybenzoic acids have been reported in the last 10 years to have biological activities. The chemical structures, natural occurrence throughout the plant, algal, bacterial, fungal and animal kingdoms, and recently described bioactivities of these phenolic and polyphenolic acids are reviewed to illustrate their wide distribution, biological and ecological importance, and potential as new leads for the development of pharmaceutical and agricultural products to improve human health and nutrition. Keywords: polyphenols; phenolic acids; hydroxybenzoic acids; natural occurrence; bioactivities 1. Introduction Phenolic compounds exist in most plant tissues as secondary metabolites, i.e. they are not essential for growth, development or reproduction but may play roles as antioxidants and in interactions between the plant and its biological environment. Phenolics are also important components of the human diet due to their potential antioxidant activity [1], their capacity to diminish oxidative stress- induced tissue damage resulted from chronic diseases [2], and their potentially important properties such as anticancer activities [3-5].
    [Show full text]
  • Ep 1384475 A1
    Europäisches Patentamt *EP001384475A1* (19) European Patent Office Office européen des brevets (11) EP 1 384 475 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 31/352, C07D 311/76, 28.01.2004 Bulletin 2004/05 A61P 1/16, A23L 1/30, A23K 1/16 (21) Application number: 02713236.4 (86) International application number: (22) Date of filing: 28.03.2002 PCT/JP2002/003098 (87) International publication number: WO 2002/080904 (17.10.2002 Gazette 2002/42) (84) Designated Contracting States: • KAYAHASHI, Shun, AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Tsukuba Research Laboratories MC NL PT SE TR Tsukuba-shi, Ibaraki 305-0841 (JP) Designated Extension States: • HASHIZUME, Erika, AL LT LV MK RO SI Tsukuba Research Laboratories Tsukuba-shi, Ibaraki 305-0841 (JP) (30) Priority: 05.04.2001 JP 2001106600 • NAKAGIRI, Ryusuke, Tsukuba Research Laboratories (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Tsukuba-shi, Ibaraki 305-0841 (JP) Chiyoda-ku, Tokyo 100-8185 (JP) (74) Representative: Casalonga, Axel et al (72) Inventors: BUREAU D.A. CASALONGA - JOSSE • SAKAI, Yasushi, Paul-Heyse-Strasse 33 Foods & Liquors Research Laborat. 80336 München (DE) Inashiki-gun, Ibaraki 300-0398 (JP) (54) LIVER FUNCION PROTECTING OR AMELIORATING AGENT (57) A liver function protecting or improving agent which comprises a compound represented by the formula (I) {in the formula (I), R1,R2,R3,R4,R5,R6,R7,R8and R9 may be the same or different, and represent hydrogen, halogen, hydroxy, alkoxy or alkyl; and RA represents the formula (II) EP 1 384 475 A1 Printed by Jouve, 75001 PARIS (FR) (Cont.
    [Show full text]
  • Effect of Salicylic Acid Application on Biochemical Changes in Ginger (Zingiber Officinale Roscoe)
    Journal of Medicinal Plants Research Vol. 6(5), pp. 790-795, 9 February, 2012 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR11.1459 ISSN 1996-0875 ©2012 Academic Journals Full Length Research Paper Effect of salicylic acid application on biochemical changes in ginger (Zingiber officinale Roscoe) Ali Ghasemzadeh1* and Hawa Z. E. Jaafar2 1Department of Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran. 2Department of Crop Science, Faculty of Agriculture, University Putra Malaysia, 43400 University Putra Malaysia (UPM) Serdang, Selangor, Malaysia. Accepted 18 November, 2011 Salicylic acid (SA) belonging to plant phenolics group is found in some plant species and is capable of enhancing plant growth and yield. Effects of SA application (10−3 and 10−5 M) on synthesis of total soluble carbohydrate (TSC), total flavonoids (TF) and total phenolics (TP) were studied out in two ginger varieties (Halia Bentong and Halia Bara) under greenhouse conditions. In treated plants as the level of SA increased (from 10−5M to 10−3M) the production of TF increased while synthesis of TP decreased. SA induced production of TSC content in both varieties. Halia Bara exhibited a higher content of TSC (7.98 mg/g dry weight) compared to Halia Bentong (7.59 mg/g dry weight) when sprayed with low concentration (10−5M) of SA. The result of high performance liquid chromatography (HPLC) analysis showed that concentration of the some majority flavonoids (quercetin, catechin and kaempferol) decreased significantly in plants when treated with different concentration of SA. Accordingly, high concentrations of these flavonoids were found in control plants.
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of 17Β-Hydroxysteroid Dehydrogenases
    International Journal of Molecular Sciences Article Interference of Paraben Compounds with Estrogen Metabolism by Inhibition of 17β-Hydroxysteroid Dehydrogenases Roger T. Engeli 1, Simona R. Rohrer 1, Anna Vuorinen 1, Sonja Herdlinger 2, Teresa Kaserer 2, Susanne Leugger 1, Daniela Schuster 2,* and Alex Odermatt 1,* ID 1 Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; [email protected] (R.T.E.); [email protected] (S.R.R.); [email protected] (A.V.); [email protected] (S.L.) 2 Computer-Aided Molecular Design Group, Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria; [email protected] (S.H.); [email protected] (T.K.) * Correspondence: [email protected] (D.S.); [email protected] (A.O.); Tel.: +43-512-507-58253 (D.S.); +41-61-207-1530 (A.O.) Received: 20 July 2017; Accepted: 14 September 2017; Published: 19 September 2017 Abstract: Parabens are effective preservatives widely used in cosmetic products and processed food, with high human exposure. Recent evidence suggests that parabens exert estrogenic effects. This work investigated the potential interference of parabens with the estrogen-activating enzyme 17β-hydroxysteroid dehydrogenase (17β-HSD) 1 and the estrogen-inactivating 17β-HSD2. A ligand-based 17β-HSD2 pharmacophore model was applied to screen a cosmetic chemicals database, followed by in vitro testing of selected paraben compounds for inhibition of 17β-HSD1 and 17β-HSD2 activities. All tested parabens and paraben-like compounds, except their common metabolite p-hydroxybenzoic acid, inhibited 17β-HSD2.
    [Show full text]
  • Xanthones. Part I V.* a New Synthesis of Hydroxyxanthones and Hydrozybenzophenones
    3982 Grover, Shah, agad Shah : Xanthones. Part I V.* A New Synthesis of Hydroxyxanthones and Hydrozybenzophenones. By P. I<. GROVER,G. D. SHAH,and R. C. SHAH. [Reprint Order No. 6470.1 Hydroxy-santhones and -benzophenones are conveniently obtained from hydroxybenzoic acids and phenols in presence of zinc chloride and phosphorus oxychloride. DISTILLATIONof a mixture of a phenol, a phenolic acid, and acetic anhydride is the earliest and simplest method for the synthesis of hydroxyxanthones (Michael, Amer. Chsm. J., 1883, 5, 81; Kostanecki and his co-workers, Ber., 1891, 24, 1896, 3981, etc.; Lund, Robertson, and Whalley, J., 1953, 2438), but yields are often poor, experimental conditions are rather drastic, and there is a possibility of decarboxylation, autocondensation, and other side reactions (Lespegnol, Bertrand, and Dupas, BUZZ. SOC.chim. France, 1939, 6, 1925; Lund et aZ., Zoc. cit.). There are numerous other routes, but none is of general application and some require uncommon starting materials or involve a number of steps. In continuation of the work on naturally occurring xanthones (J. Indian Chem. SOC., 1953,30,457,463; J. Sci. Id.Res., India, 1954,13, B, 175; 1955,14, B, 153) the known methods for the synthesis of 1 : 3 : 7 : 8-tetrahydroxyxanthone or its tetramethyl ether * Part 111, J. Sci. Ind. Res., India, 1954, 13, B, 175. [ 19551 Xanthones. Part IV. 3953 were found unsuitable. Condensation under mild conditions of a phenolcarboxylic acid with a reactive phenol in presence of condensing agents such as anhydrous aluminium chloride, phosphorus oxychloride, phosphoric oxide, or sulphuric acid was not promising ; but a mixture of phosphorus oxychloride and fused zinc chloride, which had previously been found effective for the preparation of 2 : 4dihydroxybenzophenone (Shah and Mehta, J.
    [Show full text]
  • Identification of the 100 Richest Dietary Sources of Polyphenols: an Application of the Phenol-Explorer Database
    European Journal of Clinical Nutrition (2010) 64, S112–S120 & 2010 Macmillan Publishers Limited All rights reserved 0954-3007/10 www.nature.com/ejcn ORIGINAL ARTICLE Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database JPe´rez-Jime´nez1,2, V Neveu1,2,FVos1,2 and A Scalbert1,2 1Clermont Universite´, Universite´ d’Auvergne, Unite´ de Nutrition Humaine, Saint-Genes-Champanelle, France and 2INRA, UMR 1019, UNH, CRNH Auvergne, Saint-Genes-Champanelle, France Background/Objectives: The diversity of the chemical structures of dietary polyphenols makes it difficult to estimate their total content in foods, and also to understand the role of polyphenols in health and the prevention of diseases. Global redox colorimetric assays have commonly been used to estimate the total polyphenol content in foods. However, these assays lack specificity. Contents of individual polyphenols have been determined by chromatography. These data, scattered in several hundred publications, have been compiled in the Phenol-Explorer database. The aim of this paper is to identify the 100 richest dietary sources of polyphenols using this database. Subjects/Methods: Advanced queries in the Phenol-Explorer database (www.phenol-explorer.eu) allowed retrieval of information on the content of 502 polyphenol glycosides, esters and aglycones in 452 foods. Total polyphenol content was calculated as the sum of the contents of all individual polyphenols. These content values were compared with the content of antioxidants estimated using the Folin assay method in the same foods. These values were also extracted from the same database. Amounts per serving were calculated using common serving sizes.
    [Show full text]
  • The Biosynthesis of Ochratoxin a and Other Structurally Related Polyketides by Aspergillus Ochraceus
    The biosynthesis of ochratoxin A and other structurally related polyketides by Aspergillus ochraceus. A thesis submitted in fulfilment of the requirements for the degree of Ph.D. of the University of London. by Jonathan Peter Harris 1996 Department of Biochemistry Imperial College of Science, Technology and Medicine London, SW7 2AY Abstract. This study has revealed new information on the pathway and the dynamics of the biosynthesis of the important mycotoxin ochratoxin A by a particular isolate of Aspergillus ochraceus in the context of the production of other structurally related polyketides including ochratoxins B, a, and 13, mellein, diaporthin and orthosporin. Orthosporin and diaporthin had never been previously found as A. ochraceus metabolites and the metabolic oiigin of diaporthin was found to be from both acetate and methionine. New physico-chemical data were obtained for diaporthin, ochratoxins a and 13, 0-methyl, methylochratoxins A and a, 0-methylochratoxin A and mellein. [ 14C] Labelled primary metabolite precursors and the methylation inhibitor ethionine were used in feeding studies to shaken liquid cultures of A. ochraceus to reveal a distinct early phase of ochratoxin A biosynthesis principally involving acetate. Further isotopic labelling experiments using [ 14C] mellein, [1O- 14C] ochratoxins a and 13 and [1O-14C, phenylalanyl-3H] ochratoxins A and B, all prepared biosynthetically, showed that i) ochratoxin 13 was incorporated into both ochratoxins A and B, ii) ochratoxin a was incorporated only into ochratoxin A, iii) mellein may not be an advanced intermediate in either ochratoxins A or B biosynthesis (which questions the accuracy of proposed biosynthetic schemes) and iv) there was detectable inter-conversion between ochratoxins A and B, albeit non-specifically and at a low rate.
    [Show full text]
  • Frankland, and of Kolbe, 1849-1850. the Former Claimed To
    1170 EMIL FISCHER. Frankland, and of Kolbe, 1849-1850. The former claimed to have isolated the radicals-methyl, ethyl, etc.-by the action of zinc upon the corresponding iodides, while Kolbe obtained the same radicals by the hydrolysis of the sodium salts of acetic, propionic and such acids. In vain did Gerhard and Laurent insist that the molecular formulas of all these so-called free radicals must be doubled, in accordance with Avogadro’s hypothesis. The existence of free radicals was generally accepted as late as 1865, fifty years after Gay Lussac’s introduction of this idea into chemistry. Even Kekul6 for a time considered Frankland’s “methyl” as distinct from ethane. But in 1864 Schorlemmer showed by experimental evidence that Frankland’s and Kolbe’s methyl and ethyl were nothing else than ethane and butane. From that time on, the question relative to the existence of free radicals was never seriously raised until the discovery of triphenylmethyl. How parallel these two periods in the history of chemistry are! Now, as then, a methyl was prepared by the abstraction of halogen from the corresponding alkyl-halide. Now, as then, it was found that the molec- ular weight of the product must be doubled. But now, unlike as in the period of fifty years ago, it was possible to show, by physical and chemicaI evidence, that the product which results from the coupling of the radicals is at best unstable. It was possible to show that it does not retain its individuality, but tends to break down again and is in equilibrium with the truly free radicals.
    [Show full text]
  • Fungal Endophytes As Efficient Sources of Plant-Derived Bioactive
    microorganisms Review Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges Archana Singh 1,2, Dheeraj K. Singh 3,* , Ravindra N. Kharwar 2,* , James F. White 4,* and Surendra K. Gond 1,* 1 Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India; [email protected] 2 Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India 3 Department of Botany, Harish Chandra Post Graduate College, Varanasi 221001, India 4 Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA * Correspondence: [email protected] (D.K.S.); [email protected] (R.N.K.); [email protected] (J.F.W.); [email protected] (S.K.G.) Abstract: Fungal endophytes are well-established sources of biologically active natural compounds with many producing pharmacologically valuable specific plant-derived products. This review details typical plant-derived medicinal compounds of several classes, including alkaloids, coumarins, flavonoids, glycosides, lignans, phenylpropanoids, quinones, saponins, terpenoids, and xanthones that are produced by endophytic fungi. This review covers the studies carried out since the first report of taxol biosynthesis by endophytic Taxomyces andreanae in 1993 up to mid-2020. The article also highlights the prospects of endophyte-dependent biosynthesis of such plant-derived pharma- cologically active compounds and the bottlenecks in the commercialization of this novel approach Citation: Singh, A.; Singh, D.K.; Kharwar, R.N.; White, J.F.; Gond, S.K. in the area of drug discovery. After recent updates in the field of ‘omics’ and ‘one strain many Fungal Endophytes as Efficient compounds’ (OSMAC) approach, fungal endophytes have emerged as strong unconventional source Sources of Plant-Derived Bioactive of such prized products.
    [Show full text]
  • Cosmetic Composition Containing Polyorganosiloxane-Containing Epsilon-Polylysine Polymer, and Polyhydric Alcohol, and Production Thereof
    Europäisches Patentamt *EP001604647A1* (19) European Patent Office Office européen des brevets (11) EP 1 604 647 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: A61K 7/48, A61K 7/06, 14.12.2005 Bulletin 2005/50 A61K 7/02, C08G 81/00, C08G 77/452, C08G 77/455, (21) Application number: 05010234.2 C08L 83/10 (22) Date of filing: 11.05.2005 (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • Kawasaki, Yuji HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR Ibi-gun Gifu 501-0521 (JP) Designated Extension States: • Hori, Michimasa AL BA HR LV MK YU Gifu-shi Gifu 500-8286 (JP) • Yamamoto, Yuichi (30) Priority: 12.05.2004 JP 2004141778 5-1 Goikaigan Ichiharashi Chiba 290-8551 (JP) • Hiraki, Jun (71) Applicants: Tokyo 104-8555 (JP) • Ichimaru Pharcos Co., Ltd. Motosu-shi, Gifu 501-0475 (JP) (74) Representative: HOFFMANN EITLE • Chisso Corporation Patent- und Rechtsanwälte Osaka-shi, Osaka-fu 530-0005 (JP) Arabellastrasse 4 81925 München (DE) (54) Cosmetic composition containing polyorganosiloxane-containing epsilon-polylysine polymer, and polyhydric alcohol, and production thereof (57) It has been desired to develop a highly preserv- by reducing the amount of antibacterial preservative ative and antibacterial cosmetic composition that can agent to be used. easily be applied to both emulsion and non-emulsion There is provided a cosmetic composition compris- type cosmetics. It has also been desired to develop a ing one or a combination of two or more of polyorganosi- method of improving a preservative and/or antibacterial loxane-containing epsilon-polylysine compounds ob- effect(s) of a cosmetic composition comprising polyor- tained by reacting epsilon-polylysine with polyorganosi- ganosiloxane-containing epsilon-polylysine and there- loxane or a physiologically acceptable salt thereof, and polyhydric alcohol.
    [Show full text]
  • Vasorelaxant Effects of Methanolic Extract and Principal Constituents of Sweet Hydrangea Leaf on Isolated Rat Aorta
    Journal of the Academic Society for Quality of Life (JAS4QoL) 2018 Vol. 4(1) 2:1-6 Vasorelaxant Effects of Methanolic Extract and Principal Constituents of Sweet Hydrangea Leaf on Isolated Rat Aorta Souichi NAKASHIMA, Seikou NAKAMURA, Takuya IWAMOTO, Yui MASUKAWA, Yuika EMI, Ayako OHTA, Nami NOMURA, Hisashi MATSUDA* Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8 !", #apan. &itation: NAKASHIMA, S.; NAKAMURA, S.; IWAMOTO, T.; MASUKAWA, Y.; EMI, Y.; OHTA, A.; NOMURA, N.; MATSUDA, H. (asorelaxant Effects o, Methanolic *)tract an- Princi$al &onstituents o, ./eet Hy-rangea Leaf on Isolate- Rat Aorta JAS4QoL 2018, 4(1) 2'!-6% 5nline' h6$'77as48ol.org/9$:"08 ;art! 3eceive- Date' "0!870=7"> Acce$te- Date' "0!870=7"6 Pu?lishe-' "0!870 70! 2018 International Conference and Cruise • @e "0!8 2nternational &onference on Aality o, 1i,e /ill ?e a 5-night Genting Dream Cruise leaving Sunday, Sept. 2nd, 2018 ,rom .ingapore, visiting Malaysia, &am?o-ia, 1aem &habang in @ailand, and returning to Singapore on !riday, Sept. 6th, 2018% • Be are no/ calling ,or $apers% Procee-ings as /ell as $hotos and other information ,rom $ast con- ,erences can be found at h6$'77as48ol.org/ic8ol/"0!87 By special arrangement with the cruise operators, Conference attendees will receive a one-time special discount. Full details to be as4qol.org icqol !"#$ accomodations . % 4uthor for correspon-ence (matsu-aDmb%kyoto-$hu%ac%E$F #asorelaxant %ffects of Methanolic %xtract and (rincipal Constituents of S)eet Hydrangea Leaf on Isolated Rat Aorta Souichi NAKASHIMA, Seikou NAKAMURA, Takuya IWAMOTO, Yui MA- SUKAWA, Yuika EMI, Ayako OHTA, Nami NOMURA, and Hisashi MATSUDA* Kyoto Pharmaceutical University; Misasagi, Yamashina-ku, Kyoto 607–8 !", #apan.
    [Show full text]