Freescale Semiconductor Document Number: MMRF1320N Technical Data Rev. 0, 7/2015

RF Power LDMOS Transistors MMRF1320N High Ruggedness N--Channel Enhancement--Mode Lateral MOSFETs MMRF1320GN These high ruggedness devices are designed for use in high VSWR defense and commercial radio communications and HF, VHF and UHF radar applications. The unmatched input and output designs allow wide frequency 1.8–600 MHz, 150 W CW, 50 V range utilization, from 1.8 to 600 MHz. WIDEBAND RF POWER LDMOS TRANSISTORS Typical Performance: VDD =50Vdc

Frequency Pout Gps D (MHz) Signal Type (W) (dB) (%) 230 CW 150 26.3 72.0 TO--270WB--4 PLASTIC 230 Pulse 150 Peak 26.1 70.3 MMRF1320N (100 sec, 20% Duty Cycle)

Load Mismatch/Ruggedness

Frequency Pin Test (MHz) Signal Type VSWR (W) Voltage Result TO--270WBG--4 PLASTIC 230 Pulse > 65:1 0.62 Peak 50 No Device MMRF1320GN (100 sec, 20% at all (3 dB Degradation Duty Cycle) Phase Overdrive) Angles

Features  Wide operating frequency range Gate A 32Drain A  Extreme ruggedness  Unmatched input and output allowing wide frequency range utilization  Integrated stability enhancements Gate B 41Drain B  Low thermal resistance  Integrated ESD protection circuitry

(Top View) Note: Exposed backside of the package is the source terminal for the transistors. Figure 1. Pin Connections

 Freescale Semiconductor, Inc., 2015. All rights reserved. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 1 Table 1. Maximum Ratings Rating Symbol Value Unit

Drain--Source Voltage VDSS –0.5, +133 Vdc

Gate--Source Voltage VGS –6.0, +10 Vdc

Storage Temperature Range Tstg –65 to +150 C

Case Operating Temperature Range TC –40 to +150 C (1,2) Operating Junction Temperature Range TJ –40 to +225 C

Total Device Dissipation @ TC =25C PD 952 W Derate above 25C 4.76 W/C Table 2. Thermal Characteristics Characteristic Symbol Value (2,3) Unit

Thermal Resistance, Junction to Case RJC 0.21 C/W CW: Case Temperature 80C, 150 W CW, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz

Thermal Impedance, Junction to Case ZJC 0.04 C/W Pulse: Case Temperature 66C, 150 W Peak, 100 sec Pulse Width, 20% Duty Cycle, 50 Vdc, IDQ(A+B) = 100 mA, 230 MHz Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22--A114) 2, passes 2500 V Machine Model (per EIA/JESD22--A115) B, passes 250 V Charge Device Model (per JESD22--C101) IV, passes 1200 V Table 4. Moisture Sensitivity Level Test Methodology Rating Package Peak Temperature Unit Per JESD22--A113, IPC/JEDEC J--STD--020 3 260 C

Table 5. Electrical Characteristics (TA =25C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Off Characteristics (4)

Gate--Source Leakage Current IGSS — — 1 Adc (VGS =5Vdc,VDS =0Vdc)

Drain--Source Breakdown Voltage V(BR)DSS 133 139 — Vdc (VGS =0Vdc,ID =50mAdc)

Zero Gate Voltage Drain Leakage Current IDSS — — 5 Adc (VDS =50Vdc,VGS =0Vdc)

Zero Gate Voltage Drain Leakage Current IDSS — — 10 Adc (VDS = 100 Vdc, VGS =0Vdc) On Characteristics (4) Gate Threshold Voltage VGS(th) 1.8 2.4 2.8 Vdc (VDS =10Vdc,ID = 480 Adc)

Gate Quiescent Voltage VGS(Q) 2.3 2.8 3.3 Vdc (VDD =50Vdc,ID = 100 mAdc, Measured in Functional Test) (4) Drain--Source On--Voltage VDS(on) — 0.26 — Vdc (VGS =10Vdc,ID =1Adc) 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf/calculators. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf and search for AN1955. 4. Each side of device measured separately. (continued)

MMRF1320N MMRF1320GN RF Device Data 2 Freescale Semiconductor, Inc. Table 5. Electrical Characteristics (TA =25C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Dynamic Characteristics (1)

Reverse Transfer Capacitance Crss — 0.8 — pF (VDS =50Vdc 30 mV(rms)ac @ 1 MHz, VGS =0Vdc)

Output Capacitance Coss — 45.4 — pF (VDS =50Vdc 30 mV(rms)ac @ 1 MHz, VGS =0Vdc)

Input Capacitance Ciss — 96.7 — pF (VDS =50Vdc,VGS =0Vdc 30 mV(rms)ac @ 1 MHz) (2) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD =50Vdc,IDQ(A+B) = 100 mA, Pout = 150 W Peak (30 W Avg.), f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle

Power Gain Gps 25.0 26.1 27.5 dB

Drain Efficiency D 68.0 70.3 — % Input Return Loss IRL — –16 –9 dB

Load Mismatch/Ruggedness (In Freescale Test Fixture) 50 ohm system, IDQ(A+B) = 100 mA

Frequency Pin (MHz) Signal Type VSWR (W) Test Voltage, VDD Result 230 Pulse > 65:1 0.62 Peak 50 No Device Degradation (100 sec, 20% Duty Cycle) at all Phase Angles (3 dB Overdrive) Table 6. Ordering Information Device Tape and Reel Information Package MMRF1320NR1 TO--270WB--4 R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel MMRF1320GNR1 TO--270WBG--4 1. Each side of device measured separately. 2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing (GN) parts.

MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 3 TYPICAL CHARACTERISTICS

300 1.06 1.05 Ciss 300 mA VDD =50Vdc 100 1.04 IDQ(A+B) = 100 mA 1.03 C 800 mA oss 1.02 GS(Q) 1.01 10 1300 mA 1 0.99 0.98 1 Crss NORMALIZED V C, CAPACITANCE (pF) 0.97 0.96 Measured with 30 mV(rms)ac @ 1 MHz 0.95 VGS =0Vdc 0.1 0.94 02010 3040 50 -- 5 0--25 0 25 50 75 100

VDS, DRAIN--SOURCE VOLTAGE (VOLTS) TC, CASE TEMPERATURE (C) Note: Each side of device measured separately. IDQ (mA) Slope (mV/C) Figure 2. Capacitance versus Drain--Source Voltage 100 –2.466 300 –2.058 800 –2.015 1300 –1.877

Figure 3. Normalized VGS versus Quiescent Current and Case Temperature

108

VDD =50Vdc ID =3.36Amps 107

106 4.14 Amps

4.97 Amps MTTF (HOURS) 105

104 90 110 130 150 170 190 210 230 250

TJ, JUNCTION TEMPERATURE (C) Note: MTTF value represents the total cumulative operating time under indicated test conditions. MTTF calculator available at http://www.freescale.com/rf/calculators.

Figure 4. MTTF versus Junction Temperature -- CW

MMRF1320N MMRF1320GN RF Device Data 4 Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE

C3 C5

MMRF1320N C27 C29 B1 C7 Rev. 1 C21 C23 D57619 C1 C25 L1 COAX1 C12 L3 COAX3

C16 C9 C14 C10 C18 C20

C19 C11 C31 C15 C17 CUT OUT AREA COAX2 C13 L4 COAX4 L2 C26 C2

C22 B2 C8 C24 C28 C30 C4 C6

Figure 5. MMRF1320N Narrowband Test Circuit Component Layout — 230 MHz

MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 5 230 MHz NARROWBAND PRODUCTION TEST FIXTURE

Table 7. MMRF1320N Narrowband Test Circuit Component Designations and Values — 230 MHz Part Description Part Number Manufacturer B1, B2 Small Ferrite Beads, Surface Mount 2743019447 Fair-Rite C1, C2 22 F, 35 V Tantalum Capacitors T491X226K035AT Kemet C3, C4, C23, C24 0.1 F Chip Capacitors CDR33BX104AKWS AVX C5, C6 220 nF Chip Capacitors C1812C224K5RACTU Kemet C7, C8 2.2 F Chip Capacitors C1825C225J5RACTU Kemet C9 2.2 pF Chip Capacitor ATC100B2R2JT500XT ATC C10, C11 18 pF Chip Capacitors ATC100B180JT500XT ATC C12, C13 330 pF Chip Capacitors ATC100B331JT200XT ATC C14, C15 39 pF Chip Capacitors ATC100B390JT500XT ATC C16, C17 15 pF Chip Capacitors ATC100B150JT500XT ATC C18, C19 1000 pF Chip Capacitors ATC100B102JT50XT ATC C20 82 pF Chip Capacitor ATC100B820JT500XT ATC C21, C22 0.10 F Chip Capacitors C1812F104K1RACTU Kemet C25, C26 2.2 F Chip Capacitors 2225X7R225KT3AB ATC C27, C28, C29, C30 470 F, 63 V Electrolytic Capacitors MCGPR63V477M13X26-RH Multicomp C31 36 pF Chip Capacitor ATC100B360JT500XT ATC Coax1, 2, 3, 4 25  SemiRigid Coax, 2.4 Shield Length UT-141C-25 Micro-Coax L1, L2 3 Turns, 12 nH Inductors GA3094-ALC Coilcraft L3, L4 4 Turns, 17.5 nH Inductors GA3095-ALC Coilcraft

PCB Arlon AD255A, 0.030, r =2.55 D57619 MTL

MMRF1320N MMRF1320GN RF Device Data 6 Freescale Semiconductor, Inc. RF OUTPUT Z31 C31 Microstrip Microstrip Microstrip Microstrip Microstrip Z30      0.230 0.230 0.230 0.082 0.082 DD DD Description V V      COAX4 COAX3 + + C29 C30 + + C27 C28 Z28 Z29 C25 C26 C20 Microstrip Z26, Z27Z28, Z29 0.093 Z30 0.144 Z31* Line length include microstrip bends 0.262 0.102 Z24, Z25 1.090 C23 C24 Z26 Z27 C21 C22 C18 C19 Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip       Z24 Z25 C15 C17 0.068 0.746 0.393 0.150 0.150 0.289 C16 C14 Description L3 L4       Z16 Z17 Z18 Z19 Z21 Z20 DUT Microstrip Z12, Z13Z14, Z15 0.210 Z16, Z17 0.439 Z18, Z19 0.289 Z20, Z21 0.112 Z22, Z23 0.422 0.400 C12 C13 Z14 Z15 L1 L2 Z8 Z9 C7 C8 Z10 Z12 Z13 Z6 Z7 C5 C6 C11 C10 Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip       C9 C3 C4 Figure 6. MMRF1320N Narrowband Test Circuit Schematic — 230 MHz 0.120 0.120 0.120 0.058 0.058 0.082 Description       B1 B2 C1 C2 + + GG GG COAX1 V V COAX2 Microstrip Z2, Z3Z4, Z5Z6, Z7 0.690 Z8*, Z9* 0.134 Z10, Z11 0.395 0.125 0.450 0.366 Table 8. MMRF1320N Narrowband Test Circuit Microstrips — 230 MHz Z1 RF INPUT

MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 7 TYPICAL CHARACTERISTICS — 230 MHz

180 160 VDD = 50 Vdc, f = 230 MHz Pulse Width = 100 sec, 20% Duty Cycle 140 120

100 Pin =0.34W 80

60 Pin =0.17W 40 , OUTPUT POWER (WATTS) PEAK out

P 20 0 0 0.5 11.5 2 2.5 3 3.5

VGS, GATE--SOURCE VOLTAGE (VOLTS) Figure 7. Output Power versus Gate--Source Voltage at a Constant Input Power

54 31 90 VDD =50Vdc,IDQ(A+B) = 100 mA, f = 230 MHz 52 30 Pulse Width = 100 sec, 20% Duty Cycle 80 50 D 29 70 48 IDQ(A+B) = 900 mA 28 60 46 600 mA 44 27 300 mA 50 42 26 40 , POWER GAIN (dB)

900 mA DRAIN EFFICIENCY (%) 40 ps 100 mA G

25 600 mA 30 D,  , OUTPUT POWER (dBm) PEAK 38 300 mA out V =50Vdc,I = 100 mA, f = 230 MHz P 36 DD DQ(A+B) 24 Gps 20 Pulse Width = 100 sec, 20% Duty Cycle 100 mA 34 23 10 12 1416 18 20 22 24 26 28 30 32 10 100 300

Pin, INPUT POWER (dBm) Pout, OUTPUT POWER (WATTS) PEAK f P1dB P3dB Figure 9. Power Gain and Drain Efficiency (MHz) (W) (W) versus Output Power and Quiescent Current 230 159 182

Figure 8. Output Power versus Input Power

29 90 29 VDD =50Vdc,IDQ(A+B) = 100 mA, f = 230 MHz -- 4 0 _C IDQ(A+B) = 100 mA, f = 230 MHz 28 28 Pulse Width = 100 sec, 20% Duty Cycle 80 Pulse Width = 100 sec, 20% Duty Cycle 27 27 25_C 70 26 26 60 25 25 50 24 TC =--40_C 85_C 24 40 23 , POWER GAIN (dB) , POWER GAIN (dB) 50 V ps DRAIN EFFICIENCY (%) ps 22 G G 23 30 D, 45 V 25_C  21 Gps 40 V 22 20 20 85_C D VDD =30V 35 V 21 10 19 1 10100 300 0 50 100 150 200

Pout, OUTPUT POWER (WATTS) PEAK Pout, OUTPUT POWER (WATTS) PEAK Figure 10. Power Gain and Drain Efficiency Figure 11. Power Gain versus Output Power versus Output Power and Drain--Source Voltage

MMRF1320N MMRF1320GN RF Device Data 8 Freescale Semiconductor, Inc. 230 MHz NARROWBAND PRODUCTION TEST FIXTURE

f Zsource Zload MHz   230 6.2 + j17.7 12.1 + j12.5

Zsource = Test circuit impedance as measured from gate to gate, balanced configuration.

Zload = Test circuit impedance as measured from drain to drain, balanced configuration.

Input Device Output Matching + Under -- Matching Test Network 50  Network 50 

-- + Zsource Zload

Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz

MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 9 PACKAGE DIMENSIONS

MMRF1320N MMRF1320GN RF Device Data 10 Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 11 MMRF1320N MMRF1320GN RF Device Data 12 Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 13 MMRF1320N MMRF1320GN RF Device Data 14 Freescale Semiconductor, Inc. MMRF1320N MMRF1320GN RF Device Data Freescale Semiconductor, Inc. 15 PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process. Application Notes  AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins  EB212: Using Data Sheet Impedances for RF LDMOS Devices Software  Electromigration MTTF Calculator To Download Resources Specific to a Given Part Number: 1. Go to http://www.freescale.com/rf 2. Search by part number 3. Click part number link 4. Choose the desired resource from the drop down menu

REVISION HISTORY

The following table summarizes revisions to this document.

Revision Date Description

0 July 2015  Initial Release of Data Sheet

MMRF1320N MMRF1320GN RF Device Data 16 Freescale Semiconductor, Inc. How to Reach Us: Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright Home Page: licenses granted hereunder to design or fabricate any integrated circuits based on the freescale.com information in this document.

Web Support: Freescale reserves the right to make changes without further notice to any products freescale.com/support herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. E 2015 Freescale Semiconductor, Inc.

MMRF1320N MMRF1320GN RFDocument Device Number: Data MMRF1320N FreescaleRev. 0, 7/2015 Semiconductor, Inc. 17