Bromus Tectorum L.) Infested Rangeland

Total Page:16

File Type:pdf, Size:1020Kb

Bromus Tectorum L.) Infested Rangeland Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2013 Integrated Management of Downy Brome (Bromus Tectorum L.) Infested Rangeland Heather Elwood Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Plant Sciences Commons Recommended Citation Elwood, Heather, "Integrated Management of Downy Brome (Bromus Tectorum L.) Infested Rangeland" (2013). All Graduate Theses and Dissertations. 2019. https://digitalcommons.usu.edu/etd/2019 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INTEGRATED MANAGEMENT OF DOWNY BROME (BROMUS TECTORUM L.) INFESTED RANGELANDS by Heather Elwood A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Plant Science (Weed Science) Approved: _________________________ ________________________ Corey V. Ransom Christopher A. Call Major Professor Committee Member _________________________ ________________________ Thomas A. Monaco Ralph E. Whitesides Committee Member Committee Member _________________________ Mark R. McLellan Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2013 ii Copyright © Heather Elwood 2013 All Rights Reserved iii ABSTRACT Integrated Management of Downy Brome (Bromus tectorum L.) Infested Rangelands by Heather Elwood, Master of Science Utah State University, 2013 Major Professor: Dr. Corey V. Ransom Department: Plants, Soils, and Climate Downy brome infested rangelands are a concern in the western United States, negatively affecting wildlife habitat, fire regimes, biodiversity, livestock grazing, and recreation. Field and greenhouse studies were conducted to identify and evaluate chemical and mechanical methods of downy brome management. The field study, at Dinosaur National Monument, evaluated the effect of seed production prevention measures alone (glyphosate at 193 g ai ha-1, clipping, an untreated control) and in combination with fall preemergence herbicide treatments. At each site within the Monument, the Josie Morris Ranch and Echo Park, plots were arranged in a completely randomized design at each location. Seed production prevention was the whole-plot with fall herbicide treatments as the subplots with four replicates. Treatments in the fall included: an untreated control, imazapic at 70, 105, 140, 175, and 210 g ai ha-1, sulfosulfuron at 70 g ai ha-1, and rimsulfuron at 53 g ai ha-1. Data collection from 2010 to 2012 included canopy cover evaluations, biomass harvest, and density measurements. Plants were also harvested at immaturity and maturity in 2010 to determine the effect of iv whole plot treatments on the number of seeds produced and their viability. All treatments reduced downy brome cover 1 year after treatment (YAT) at both sites. However, 2YAT only effects from the premergence herbicide treatments remained significant in reducing downy brome cover at the Josie Morris Ranch. The greenhouse study evaluated the effect of two rates each of aminopyralid (123 g ae ha-1 and 245 g ae ha-1) and aminocyclopyrachlor (140 g ai ha-1 and 280 g ai ha-1) in comparison to imazapic (105 g ai ha-1 and 210 g ai ha-1) and an untreated control on the germination, emergence, and growth of four invasive grasses. Trials were conducted in petri dishes and in pots of field soil. Herbicides were applied preemergence. Germination or emergence counts were conducted over 14 (petri dishes) or 28 (soil grown) days. Plants were harvested, root and shoot length were measured, and biomass was weighed. All rates of aminopyralid and aminocyclopyrachlor had at least as great an effect on reducing germination, emergence, and overall growth of the seedlings as did imazapic. (94 pages) v PUBLIC ABSTRACT Integrated Management of Downy Brome (Bromus tectorum L.) Infested Rangelands by Heather Elwood, Master of Science Utah State University, 2013 Major Professor: Dr. Corey V. Ransom Department: Plants, Soils, and Climate Invasive weed species are a threat to the health and functionality of many rangeland systems. Downy brome (Bromus tectorum) is an invasive annual grass that affects the productivity of rangelands by decreasing the grazing capacity for livestock as well as altering the wildfire cycle and competing against more desirable vegetation for limited resources. In 2006, an Invasive Plant Management Plan and Environmental Assessment was approved for Dinosaur National Monument, calling for prioritization of invasive species management on high value wildlife habitat, vector areas, and for species with a high ecological impact. The Cub Creek Watershed was identified as a priority for immediate attention due to its high historical, recreational, and environmental significance. This research was another phase of an integrated effort to manage vegetation in the Cub Creek Watershed and surrounding rangelands. Field work at two locations within Dinosaur National Monument was coupled with greenhouse experiments to evaluate chemical and mechanical methods of downy brome seed reduction and control, and to evaluate the response of four weedy grasses to herbicides used in broadleaf weed management practices. vi ACKNOWLEDGMENTS I would like to thank Dr. Corey Ransom for his guidance and support in this project and his confidence in my abilities. I appreciate and recognize the contributions of Dr. Ralph Whitesides, Dr. Christopher Call, and Dr. Tom Monaco for their expertise, insight, and willingness to serve on my committee. Thanks to Tamara Naumann for her enthusiasm and vision for invasive species management and research at Dinosaur National Monument. Countless hours of data collection and analysis would not have been possible without Bill Mace, Clarke Alder, Kyle Roerig, Stephanie Christensen, Kim Edvarchuk, and Katie Stoker for whose help I am extremely grateful. I also thank my family for their love and support and for putting up with my tales of weed science adventures. Heather Elwood vii CONTENTS Page ABSTRACT ....................................................................................................................... iii PUBLIC ABSTRACT .........................................................................................................v ACKNOWLEDGMENTS ................................................................................................. vi LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ........................................................................................................... xi CHAPTER 1 LITERATURE REVIEW ............................................................................1 History..............................................................................................1 Distribution and Habitat ...................................................................2 Morphology......................................................................................2 Biology .............................................................................................4 Ecology ............................................................................................6 Control/Management Practices ........................................................7 Research Objectives .......................................................................11 Literature Cited ..............................................................................12 2 MANAGEMENT OF DOWNY BROME IN DINOSAUR NATIONAL MONUMENT ............................................................................................18 Abstract ..........................................................................................18 Introduction ....................................................................................19 Materials and Methods ...................................................................24 Results ............................................................................................29 Discussion ......................................................................................35 Management Implications ..............................................................40 Literature Cited ..............................................................................41 3 RESPONSE OF FOUR WEEDY GRASSES TO PREEMERGENCE APPLICATIONS OF THREE HERBICIDES...........................................63 Abstract ..........................................................................................63 Introduction ....................................................................................64 viii Materials and Methods ...................................................................66 Results ............................................................................................69 Discussion ......................................................................................71 Management Implications ..............................................................73 Literature Cited ..............................................................................74 4 SUMMARY AND CONCLUSIONS ........................................................79 Literature cited .............................................................................82
Recommended publications
  • Invasive Weeds of the Appalachian Region
    $10 $10 PB1785 PB1785 Invasive Weeds Invasive Weeds of the of the Appalachian Appalachian Region Region i TABLE OF CONTENTS Acknowledgments……………………………………...i How to use this guide…………………………………ii IPM decision aid………………………………………..1 Invasive weeds Grasses …………………………………………..5 Broadleaves…………………………………….18 Vines………………………………………………35 Shrubs/trees……………………………………48 Parasitic plants………………………………..70 Herbicide chart………………………………………….72 Bibliography……………………………………………..73 Index………………………………………………………..76 AUTHORS Rebecca M. Koepke-Hill, Extension Assistant, The University of Tennessee Gregory R. Armel, Assistant Professor, Extension Specialist for Invasive Weeds, The University of Tennessee Robert J. Richardson, Assistant Professor and Extension Weed Specialist, North Caro- lina State University G. Neil Rhodes, Jr., Professor and Extension Weed Specialist, The University of Ten- nessee ACKNOWLEDGEMENTS The authors would like to thank all the individuals and organizations who have contributed their time, advice, financial support, and photos to the crea- tion of this guide. We would like to specifically thank the USDA, CSREES, and The Southern Region IPM Center for their extensive support of this pro- ject. COVER PHOTO CREDITS ii 1. Wavyleaf basketgrass - Geoffery Mason 2. Bamboo - Shawn Askew 3. Giant hogweed - Antonio DiTommaso 4. Japanese barberry - Leslie Merhoff 5. Mimosa - Becky Koepke-Hill 6. Periwinkle - Dan Tenaglia 7. Porcelainberry - Randy Prostak 8. Cogongrass - James Miller 9. Kudzu - Shawn Askew Photo credit note: Numbers in parenthesis following photo captions refer to the num- bered photographer list on the back cover. HOW TO USE THIS GUIDE Tabs: Blank tabs can be found at the top of each page. These can be custom- ized with pen or marker to best suit your method of organization. Examples: Infestation present On bordering land No concern Uncontrolled Treatment initiated Controlled Large infestation Medium infestation Small infestation Control Methods: Each mechanical control method is represented by an icon.
    [Show full text]
  • Some Observations on Salsola L. (Chenopodiaceae) in Australia R.J
    © 2010 Board of the Botanic Gardens & State Herbarium, Government of South Australia J. Adelaide Bot. Gard. 24 (2010) 75–79 © 2010 Department of Environment and Natural Resources, Government of South Australia NOTE Some observations on Salsola L. (Chenopodiaceae) in Australia R.J. Chinnock State Herbarium of South Australia, P.O. Box 2732, Kent Town, South Australia 5071 E-mail: [email protected] Abstract In recent years there has been much confusion as to the correct name application for the Australian species of Salsola L. Prior to the late 1990’s S. kali L. was universally applied throughout Australia but Rilke (1999) adopted the name S. tragus L. and more recently some authors have taken up the name S. australis R.Br. Molecular studies by Hrusa & Gaskin (2008), Borger et al. (2008) and Ayers et.al. (2008) confirm that Salsola australis is distinct from both S. tragus and S. kali so this name has been adopted for the forthcoming 5th edition of the Flora of South Australia. Observation of Salsola populations in Western Australia and South Australia suggest that Salsola australis is a complex of at least six forms which require an Australian-wide molecular/ systematic study to determine their status. Keywords: Chenopodiaceae, Salsola, S. australis, S. austroafricanus, S. tragus, S. kali, molecular studies, observations of populations in Western Australia and South Australia Introduction haplotypes mostly exclusive to the tetraploid S. tragus When preparing the genera of Chenopodiaceae for and the diploid Salsola ‘type B’. Salsola ‘type C’ was the fifth edition of the Flora of South Australia (in prep.) determined to be a fertile allohexaploid resulting from a problem arose over the application of the species name hybridisation between S.
    [Show full text]
  • Oregon City Nuisance Plant List
    Nuisance Plant List City of Oregon City 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Acer platanoides Norway Maple Acroptilon repens Russian knapweed Aegopodium podagraria and variegated varieties Goutweed Agropyron repens Quack grass Ailanthus altissima Tree-of-heaven Alliaria officinalis Garlic Mustard Alopecuris pratensis Meadow foxtail Anthoxanthum odoratum Sweet vernalgrass Arctium minus Common burdock Arrhenatherum elatius Tall oatgrass Bambusa sp. Bamboo Betula pendula lacinata Cutleaf birch Brachypodium sylvaticum False brome Bromus diandrus Ripgut Bromus hordeaceus Soft brome Bromus inermis Smooth brome-grasses Bromus japonicus Japanese brome-grass Bromus sterilis Poverty grass Bromus tectorum Cheatgrass Buddleia davidii (except cultivars and varieties) Butterfly bush Callitriche stagnalis Pond water starwort Cardaria draba Hoary cress Carduus acanthoides Plumeless thistle Carduus nutans Musk thistle Carduus pycnocephalus Italian thistle Carduus tenufolius Slender flowered thistle Centaurea biebersteinii Spotted knapweed Centaurea diffusa Diffuse knapweed Centaurea jacea Brown knapweed Centaurea pratensis Meadow knapweed Chelidonium majou Lesser Celandine Chicorum intybus Chicory Chondrilla juncea Rush skeletonweed Cirsium arvense Canada Thistle Cirsium vulgare Common Thistle Clematis ligusticifolia Western Clematis Clematis vitalba Traveler’s Joy Conium maculatum Poison-hemlock Convolvulus arvensis Field Morning-glory 1 Nuisance Plant List
    [Show full text]
  • Biological Control
    Salsola tragus Biological Control: Hasan et al . (2001) report that, "The rust fungus Uromyces salsolae Reichardt (Isolate MW338; IMI No. 372660) was found on S. tragus in western Turkey. The attacked plants were covered with a powdery brown mass of unicellular, globular to oval-shaped urediniospores produced in round to elongated sori on the leaves and stems, and showed much reduced growth. Later in the season, the plants produced unicellular, thick-walled, dark teliospores borne in round to elongated telia. Similarly, the S. tragus plants from the USA, when inoculated in the greenhouse with a water suspension of the urediniospores of U. salsolae , developed brown uredinia and then telia as the disease advanced. The rust has been reported on several species of Salsola in the former-USSR, Israel, Iran, Romania, Australia, France, Pakistan, and Portugal (CAB International Report, unpublished). IMI records also show that the rust has been recorded on other genera of Chenopodiaceae from former USSR, Cyprus, and Romania. During our host specicity studies, the strain of U. salsolae collected by S. Hasan in Turkey was restricted to S. tragus and did not infect any of the other 16 plant species or varieties belonging to six different families that were tested. The fungus severely infected S. tragus plants not only from the USA but also those from Montpellier (France) and Turkey, showing that the rust may not be restricted only to certain biotypes of the weed. The rust fungus, which is highly damaging and effective in killing or severely reducing the growth of the weed under greenhouse conditions, has recently been imported into the USA for further host specificity testing under quarantine conditions.
    [Show full text]
  • Phylogenetic Analyses Reveal the Shady History of C4 Grasses Erika J
    Phylogenetic analyses reveal the shady history of C4 grasses Erika J. Edwardsa,1 and Stephen A. Smithb aDepartment of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912; and bNational Evolutionary Synthesis Center, Durham, NC 27705 Edited by Michael J. Donoghue, Yale University, New Haven, CT, and approved December 31, 2009 (received for review August 24, 2009) Grasslands cover more than 20% of the Earth's terrestrial surface, has provided a strong selection pressure for C4 evolution in and their rise to dominance is one of the most dramatic events of eudicots (4). Grasses have long been viewed as an interesting biome evolution in Earth history. Grasses possess two main photo- exception to this pattern (9). Significant positive correlations synthetic pathways: the C3 pathway that is typical of most plants between C4 grass abundance and growing season temperature and a specialized C4 pathway that minimizes photorespiration and have been documented at both continental and regional scales thus increases photosynthetic performance in high-temperature (10–13); C4 grasses dominate tropical grasslands and savannas and/or low-CO2 environments. C4 grasses dominate tropical and but are virtually absent from cool-temperate grasslands and subtropical grasslands and savannas, and C3 grasses dominate the steppes. Furthermore, both experimental measurements of world's cooler temperate grassland regions. This striking pattern photosynthetic light use efficiency (termed “quantum yield”), has been attributed to C4 physiology, with the implication that the and predictions of leaf models of C3 and C4 photosynthesis evolution of the pathway enabled C4 grasses to persist in warmer provide strong evidence that C4 grasses outperform C3 grasses at climates than their C3 relatives.
    [Show full text]
  • 1 Supplementary Information for Invasive Grasses Increase
    Supplementary Information For Invasive grasses increase fire occurrence and frequency across U.S. ecoregions Emily J. Fusco1*, John T. Finn2, Jennifer K. Balch3,4, R. Chelsea Nagy3, Bethany A. Bradley1,2 Affiliations: 1 Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts- Amherst, Amherst, Massachusetts, 01003, USA 2 Department of Environmental Conservation, University of Massachusetts- Amherst, Amherst, Massachusetts, 01003, USA 3 Earth Lab, University of Colorado- Boulder, Boulder, Colorado, 80309, USA 4 Department of Geography, University of Colorado-Boulder, Boulder, Colorado, 80309, USA Correspondence to: [email protected] This PDF file includes: Figure S1 Tables S1 to S4 SI References 1 www.pnas.org/cgi/doi/10.1073/pnas.1908253116 Supplemental Table S1: A list of 176 non-native invasive grass and other graminoid species as listed by the Invasive Plant Atlas of the United States (1). For each species, we conducted a Web of Science (WOS) search and recorded whether there was literature suggesting the species altered fire regimes (Yes/No). For each fire promoting species in WOS, we supplemented our determination of whether that species was a fire promoter using the Fire Effects Information System (FEIS; 2). For each species designated as a fire promoter, we searched for available spatial data, and kept only species that were both fire-promoting with spatial data for our analysis. Final species used are highlighted in yellow. WOS FEIS Fire Data Keep for Scientific Name Common Name(s) Search Database Promoter Available Analysis Achnatherum punagrass No - No - No brachychaetum Godr. Barkworth Aegilops cylindrica Host jointed goatgrass No - No - No Aegilops ovate goatgrass No - No - No geniculata Roth Aegilops triuncialis L.
    [Show full text]
  • State Noxious-Weed Seed Requirements Recognized in the Administration of the Federal Seed Act
    State Noxious-Weed Seed Requirements Recognized in the Administration of the Livestock, Poultry, and Seed Program Seed Regulatory Federal Seed Act and Testing Division TABLE OF CONTENTS CHANGES FOR 2017 ........................ II MISSOURI ........................................... 44 INTRODUCTION ................................. III MONTANA .......................................... 46 FSA REGULATIONS §201.16(B) NEBRASKA ......................................... 48 NOXIOUS-WEED SEEDS NEVADA .............................................. 50 UNDER THE FSA ............................... IV NEW HAMPSHIRE ............................. 52 ALABAMA ............................................ 1 NEW JERSEY ..................................... 53 ALASKA ............................................... 3 NEW MEXICO ..................................... 55 ARIZONA ............................................. 4 NEW YORK ......................................... 56 ARKANSAS ......................................... 6 NORTH CAROLINA ............................ 57 CALIFORNIA ....................................... 8 NORTH DAKOTA ............................... 59 COLORADO ........................................ 10 OHIO .................................................... 60 CONNECTICUT .................................. 12 OKLAHOMA ........................................ 62 DELAWARE ........................................ 13 OREGON............................................. 64 DISTRICT OF COLUMBIA ................. 15 PENNSYLVANIA................................
    [Show full text]
  • Tragus Berteronianus Schultes (Poaceae), a Newly Naturalized Grass in Taiwan
    Taiwan J For Sci 31(4): 331-5, 2016 331 Research note Tragus berteronianus Schultes (Poaceae), a Newly Naturalized Grass in Taiwan Ming-Jer Jung,1,3) Chien-Hsun Cheng2) 【Summary】 The newly naturalized genus, Tragus Haller (Poaceae), and its species newly recorded in the flora of Taiwan, T. berteronianus Schultes, which is broadly distributed in Africa, the Americas, and Eurasia, are described and illustrated herein. This grass species was stably found in a coastal region of the Penghu Archipelago, and its habitat and diagnosable characters are also described herein. Key words: Tragus, new record. Jung MJ, Cheng CH. 2016. Tragus berteronianus Schultes (Poaceae), a newly naturalized grass in Taiwan. Taiwan J For Sci 31(4):331-5. 1) Independent researcher, 3rd Fl., No. 27, Lane 13, Jinghua St., Wenshan District, Taipei 11683, Taiwan. 自由研究者,11683台北市文山區景華街13巷27號3樓。 2) No. 1, Zhonghe Village, Cimei Township, Penghu County, 88341, Taiwan. 88341澎湖縣七美鄉中和 村4鄰1號。 3) Corresponding author, e-mail:[email protected] 通訊作者。 Received January 2016, Accepted April 2016. 2016年1月送審 2016年4月通過。 332 Jung and Cheng─Tragus in Taiwan 研究簡報 蝨子草(Tragus berteronianus Schultes, Poaceae), 台灣新歸化禾草 鍾明哲1,3) 鄭謙遜2) 摘要 本文描述台灣禾本科新歸化屬:鋒芒草屬(Tragus Haller)及本屬中廣布於美洲、非洲與歐亞大 陸,及其新紀錄於澎湖群島海濱的禾草:蝨子草(T. berteronianus Schultes),並描述其生育地與鑑定特 徵。 關鍵詞:鋒芒草屬、新紀錄。 鍾明哲,鄭謙遜。2016。蝨子草(Tragus berteronianus Schultes, Poaceae),台灣新歸化禾草。台灣林業 科學31(4):331-5。 The Poaceae is one of the main contribu- .........................................................鋒芒草屬 tors to the flora of Taiwan, and more than 80 Annual or perennial herb. Leaf ligule a alien species have been newly recorded and row of hairs. Panicle constricted, linear and naturalized in Taiwan (Hsu 2000, Boufford et cylindrical in outline, spikelike; branches al.
    [Show full text]
  • And Mission Blue Butterfly Populations Found at Milagra Ridge and the Mission Blue Butterfly Population at Marin Headlands Are Managed by the GGNRA
    San Bruno Elfin Butterfly (Callophrys mossii bayensis) and Mission Blue Butterfly (Icaricia icarioides missionensis) 5-Year Review: Summary and Evaluation Photo by Patrick Kobernus: Adult male mission blue butterfly. Sacramento Fish and Wildlife Field Office U.S. Fish and Wildlife Service Sacramento, California February 2010 5-YEAR REVIEW San Bruno Elfin Butterfly (Callophrys mossii bayensis) and Mission blue butterfly (Icaricia icarioides missionensis) I. GENERAL INFORMATION Purpose of 5-Year Reviews: The U.S. Fish and Wildlife Service (Service) is required by section 4(c)(2) of the Endangered Species Act (Act) to conduct a status review of each listed species at least once every 5 years. The purpose of a 5-year review is to evaluate whether or not the species’ status has changed since it was listed (or since the most recent 5-year review). Based on the 5-year review, we recommend whether the species should be removed from the list of endangered and threatened species, be changed in status from endangered to threatened, or be changed in status from threatened to endangered. Our original listing of a species as endangered or threatened is based on the existence of threats attributable to one or more of the five threat factors described in section 4(a)(1) of the Act, and we must consider these same five factors in any subsequent consideration of reclassification or delisting of a species. In the 5-year review, we consider the best available scientific and commercial data on the species, and focus on new information available since the species was listed or last reviewed.
    [Show full text]
  • Taxonomic Revision of Blumeria Based on Multi-Gene DNA Sequences, Host Preferences and Morphology
    Mycoscience: Advance Publication doi: 10.47371/mycosci.2020.12.003 Full Paper (Received July 3, 2020; Accepted December 9, 2020) J-STAGE Advance Published Date: March 13, 2021 Full paper Taxonomic revision of Blumeria based on multi-gene DNA sequences, host preferences and morphology Miao Liua,d,*, Uwe Braunb,d, Susumu Takamatsuc, Sarah Hambletona, Parivash Shoukouhia, Kassandra R. Bissona, Keith Hubbarda a Biodiversity and Bioresources, Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada. b Martin Luther University, Institute of Biology, Department of Geobotany, Herbarium, Halle (Saale) 06099, Germany. c Faculty of Bioresources, Mie University, Tsu 514-8507, Japan. d First two authors should be considered as havingPublication equal contribution. *Corresponding author email: [email protected] Text: 61 pages; tables: 1; figures: 9 Supplemental materials: 4 Supplementary Figures, 1 Supplementary Appendix text Advance - 1 - Mycoscience: Advance Publication ABSTRACT A taxonomic revision of the hitherto monotypic genus Blumeria was conducted incorporating multi-gene sequence analyses, host preference data and morphological criteria. The sequenced loci included rDNA ITS, partial chitin synthase gene (CHS1), as well as fragments of two unnamed orthologous genes (Bgt-1929, Bgt-4572). The combined evidence led to a reassessment and a new neotypification of B. graminis s. str. (emend.), and the description of seven additional species, viz. B. americana sp. nov. (mainly on hosts of the Triticeae), B. avenae sp. nov. (on Avena spp.), B. bromi-cathartici sp. nov. (on Bromus catharticus), B. bulbigera comb. nov. (on Bromus spp.), B. dactylidis sp. nov. (on Dactylis glomerata as the main host, but also on various other hosts), B.
    [Show full text]
  • First Record of Eriochloa Villosa (Thunb.) Kunth in Austria and Notes on Its Distribution and Agricultural Impact in Central Europe
    BioInvasions Records (2020) Volume 9, Issue 1: 8–16 CORRECTED PROOF Research Article First record of Eriochloa villosa (Thunb.) Kunth in Austria and notes on its distribution and agricultural impact in Central Europe Swen Follak1,*, Michael Schwarz2 and Franz Essl3 1Institute for Sustainable Plant Production, Austrian Agency for Health and Food Safety, Vienna, Austria 2Data, Statistics and Risk Assessment, Austrian Agency for Health and Food Safety, Vienna, Austria 3Division of Conservation Biology, Vegetation and Landscape Ecology, University of Vienna, Vienna, Austria Author e-mails: [email protected] (SF), [email protected] (MS), [email protected] (FE) *Corresponding author Citation: Follak S, Schwarz M, Essl F (2020) First record of Eriochloa villosa Abstract (Thunb.) Kunth in Austria and notes on its distribution and agricultural impact in Eriochloa villosa is native to temperate Eastern Asia and is an emerging weed in Central Europe. BioInvasions Records 9(1): Central Europe. Its current distribution in Central Europe was analyzed using 8–16, https://doi.org/10.3391/bir.2020.9.1.02 distribution data from the literature and data collected during field trips. In 2019, E. Received: 6 September 2019 villosa was recorded for the first time in Austria. It was found in a crop field in Accepted: 28 November 2019 Unterretzbach in Lower Austria (Eastern Austria). So far, the abundance of E. villosa in the weed communities in Austria and the neighboring Czech Republic is low and Published: 21 February 2020 thus, its present agricultural impact can be considered limited. However, in Romania Handling editor: Quentin Groom and Hungary, the number of records of E.
    [Show full text]
  • Klamath Network Invasive Species Early Detection: 2015 Annual Report
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Klamath Network Invasive Species Early Detection: 2015 Annual Report Natural Resource Report NPS/KLMN/NRR—2016/1215 ON THE COVER Scotch broom (Cytisus scoparius) growing in ponderosa pine woodland in the Klamath Region. Photograph by: Dennis Odion (Klamath Network) Klamath Network Invasive Species Early Detection: 2015 Annual Report Natural Resource Report NPS/KLMN/NRR—2016/1215 Sean B. Smith, Alice Chung-MacCoubrey, and Ian Whited Klamath Inventory and Monitoring Network 1250 Siskiyou Blvd. Ashland, OR 97520 May 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]