SAFETY DATA SHEET Flammable Liquefied Gas Mixture: Ethane / Heptane / Hexane / Isobutane / Isopentane / Methane / N-Butane / N-Pentane / Octane / Propane Section 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Review of Market for Octane Enhancers
May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 May 2000 • NREL/SR-580-28193 Review of Market for Octane Enhancers Final Report J.E. Sinor Consultants, Inc. Niwot, Colorado NREL Technical Monitor: K. Ibsen Prepared under Subcontract No. TXE-0-29113-01 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.doe.gov/bridge Available for a processing fee to U.S. -
Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
APPENDIX M SUMMARY of MAJOR TYPES of Carfg2 REFINERY
APPENDIX M SUMMARY OF MAJOR TYPES OF CaRFG2 REFINERY MODIFICATIONS Appendix M: Summan/ of Major Types of CaRFG2 Refinery Modifications: Alkylation Units A process unit that combines small-molecule hydrocarbon gases produced in the FCCU with a branched chain hydrocarbon called isobutane, producing a material called alkylate, which is blended into gasoline to raise the octane rating. Alkylate is a high octane, low vapor pressure gasoline blending component that essentially contains no olefins, aromatics, or sulfur. This plant improves the ultimate gasoline-making ability of the FCC plant. Therefore, many California refineries built new or modified existing units to increase alkylate production to blend and to produce greater amounts of CaRFG2. Alkylate is produced by combining C3, C4, and C5 components with isobutane (nC4). The process of alkylation is the reverse of cracking. Olefins (such as butenes and propenes) and isobutane are used as feedstocks and combined to produce alkylate. This process enables refiners to utilize lighter components that otherwise could not be blended into gasoline due to their high vapor pressures. Feed to alkylation unit can include pentanes from light cracked gasoline treaters, isobutanes from butane isomerization unit, and C3/C4 streams from delayed coking units. Isomerization Units - C4/C5/C6 A refinery that has an alkylation plant is not likely to have exactly enough is-butane to match the proplylene and butylene (olefin) feeds. The refiner usually has two choices - buy iso-butane or make it in a butane isomerization (Bl) plant. Isomerization is the rearrangement of straight chain hydrocarbon molecules to form branched chain products or to convert normal paraffins to their isomer. -
Methane Hydrocarbon Compounds During Wintertime in Beijing
Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-783, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 16 December 2016 c Author(s) 2016. CC-BY 3.0 License. The levels, variation characteristics and sources of atmospheric non- methane hydrocarbon compounds during wintertime in Beijing, China Chengtang Liu1,3, Yujing Mu1,2 *, Junfeng Liu1,3, Chenglong Zhang1,3, Yuanyuan Zhang1,3, Pengfei 5 Liu1,3, Hongxing Zhang1,4 1Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China 2Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China 3University of Chinese Academy of Sciences, Beijing 100085, China 10 4Beijing Urban Ecosystem Research Station, Beijing, 100085, China Correspondence to: Yujing Mu ([email protected]) Abstract. Atmospheric non-methane hydrocarbon compounds (NMHCs) were measured at a sampling site in Beijing city from 15 December 2015 to 14 January 2016 to recognize their pollution levels, variation characteristics and sources. Fifty- 15 three NMHCs were quantified and the proportions of alkanes, alkenes, acetylene and aromatics to the total NMHCs were 49.8% ~ 55.8%, 21.5% ~ 24.7%, 13.5% ~ 15.9% and 9.3% ~ 10.7%, respectively. The variation trends of the NMHCs concentrations were basically identical and exhibited remarkable fluctuation, which were mainly ascribed to the variation of meteorological conditions, especially wind speed. The diurnal variations of NMHCs in clear days exhibited two peaks during the morning and evening rush hours, whereas the rush hours’ peaks diminished or even disappeared in the haze days, 20 implying that the relative contribution of the vehicular emission to atmospheric NMHCs depended on the pollution status. -
Chemical Kinetic Research on HCCI & Diesel Fuels
Lawrence Livermore National Laboratory Chemical Kinetic Research on HCCI & Diesel Fuels William J. Pitz (PI), Charles K. Westbrook, Marco Mehl, M. Lee Davisson Lawrence Livermore National Laboratory May 12, 2009 Project ID # ace_13_pitz DOE National Laboratory Advanced Combustion Engine R&D Merit Review and Peer Evaluation Washington, DC This presentation does not contain any proprietary or confidential information This work performed under the auspices of the U.S. Department of Energy by LLNL-PRES-411416 Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Overview Timeline Barriers • Ongoing project with yearly • Increases in engine efficiency and direction from DOE decreases in engine emissions are being inhibited by an inadequate ability to simulate in-cylinder combustion and emission formation processes • Chemical kinetic models are critical for Budget improved engine modeling and ultimately for engine design • Funding received in FY08 and expected in FY09: Partners • 800K (DOE) • Interactions/ collaborations: DOE Working Group, National Labs, many universities, FACE Working group. Lawrence Livermore National Laboratory 2 LLNL-PRES-411416LLNL-PRES- 411416 2009 DOE Merit Review Relevance to DOE objectives Support DOE objectives of petroleum-fuel displacement by • Improving engine models so that further improvements in engine efficiency can be made • Developing models for alternative fuels (biodiesel, ethanol, other biofuels, oil-sand derived fuels, Fischer-Tropsch derived fuels) so that they can be better used -
Determination of Parent and Alkylated Polycyclic Aromatic Hydrocarbons (Pahs) in Biota and Sediment
ICES TECHNIQUES IN MARINE ENVIRONMENTAL SCIENCES NO. 45 NOVEMBER 2009 Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment L. WEBSTER • J. TRONCZYNSKI P. KORYTAR • K. BOOIJ • R. LAW International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44 – 46 DK‐1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Our cover photo was taken by N. Penny Holliday aboard the RRS “Discovery” in rough seas in the Rockall Trough. Recommended format for purposes of citation: Webster, L., Tronczynski, J., Korytar, P., Booij, K., and Law, R. 2010. Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment. ICES Techniques in Marine Environmental Sciences. No. 45. 26 pp. Series Editor: Paul D. Keizer For permission to reproduce material from this publication, please apply directly to the General Secretary. Correspondence concerning the details of any method or procedure should be directed to the author(s). This series presents detailed descriptions of methods and procedures relating to chemical and biological measurements in the marine environment. Most techniques described have been selected for documentation based on performance in ICES or other intercalibration or intercomparison exercises: they have been carefully evaluated and shown to yield good results when correctly applied. They have also been subject to review by relevant ICES working groups, but this is not to be construed as constituting official recommendation by the Council. ISBN 978-87-7482-074-1 978-87-7482-297-4 https://doi.org/10.17895/ices.pub.5070 ISSN 0903 – 2606 2707-6997 © 2010 International Council for the Exploration of the Sea ICES Techniques in Marine Environmental Sciences No. -
Isopentane Ipt
ISOPENTANE IPT CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: -70°F C.C. 7.1 Grades of Purity: Research: 99.99%; pure: Common Synonyms Watery liquid Colorless Gasoline-like odor (approx.) 99.4%; technical: 97% 2-Methylbutane 4.2 Flammable Limits in Air: 1.4%-8.3% 7.2 Storage Temperature: Ambient Floats on water. Flammable, irritating vapor is produced. Boiling point 4.3 Fire Extinguishing Agents: Dry 7.3 Inert Atmosphere: No requirement chemical, foam, or carbon dioxide is 82°F. 7.4 Venting: Open (flame arrester) or pressure- 4.4 Fire Extinguishing Agents Not to Be vacuum Evacuate. Used: Water may be ineffective 7.5 IMO Pollution Category: C Keep people away. 4.5 Special Hazards of Combustion Wear goggles and self-contained breathing apparatus. Products: Not pertinent 7.6 Ship Type: 3 Shut off ignition sources and call fire department. 4.6 Behavior in Fire: Highly volatile liquid. 7.7 Barge Hull Type: Currently not available Avoid contact with liquid and vapor. Vapors may explode when mixed with air. Stay upwind and use water spray to ``knock down'' vapor. Notify local health and pollution control agencies. 4.7 Auto Ignition Temperature: 800°F 8. HAZARD CLASSIFICATIONS 4.8 Electrical Hazards: Not pertinent 8.1 49 CFR Category: Flammable liquid FLAMMABLE. Fire 4.9 Burning Rate: 7.4 mm/min. 8.2 49 CFR Class: 3 Flashback along vapor trail may occur. 4.10 Adiabatic Flame Temperature: Currently 8.3 49 CFR Package Group: I Vapor may explode if ignited in an enclosed area. -
Molecular Dynamics Simulation Studies of Physico of Liquid
MD Simulation of Liquid Pentane Isomers Bull. Korean Chem. Soc. 1999, Vol. 20, No. 8 897 Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers Seng Kue Lee and Song Hi Lee* Department of Chemistry, Kyungsung University, Pusan 608-736, Korea Received January 15, 1999 We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic prop erties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liq uid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increas es. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases. -
TCEQ Interoffice Memorandum
TCEQ Interoffice Memorandum To: Tony Walker Director, TCEQ Region 4, Dallas/Fort Worth Alyssa Taylor Special Assistant to the Regional Director, TCEQ Region 4, Dallas/Fort Worth From: Shannon Ethridge, M.S., D.A.B.T. Toxicology Division, Office of the Executive Director Date: Draft, 2014 Subject: Toxicological Evaluation of Results from an Ambient Air Sample for Volatile Organic Compounds Collected Downwind of the EagleRidge Energy, LLC - Woodland Estates West Unit (Latitude 32.595248, Longitude -97.160361) in Mansfield, Tarrant County, Texas Sample Collected on November 26, 2013, Request Number 1312003 (Lab Sample 1312003-001) Key Points • Reported concentrations of target volatile organic compounds (VOCs) were either not detected or were detected below levels of short-term health and/or welfare concern. Background On November 26, 2013, a Texas Commission on Environmental Quality (TCEQ) Region 4 air investigator collected a 30-minute canister sample (Lab Sample 1312003-001) downwind of the EagleRidge Energy, LLC - Woodland Estates West Unit (Latitude 32.595248, Longitude -97.160361) in Mansfield, Tarrant County, Texas. The sample was collected in response to a citizen complaint of a sore throat. The investigator did not experience an odor or health effects while sampling. Meteorological conditions measured at the site or nearest stationary ambient air monitoring site indicated that the ambient temperature was 44.3°F with a relative humidity of 63.6%, and winds were from the north (360°) at 7.5 to 9.5 miles per hour. The sampling site was less than 100 feet from the nearest possible emission source (tanks). The nearest location where the public could have access was approximately 301 to 500 feet from the possible emission source. -
Supporting Information of Polycyclic Aromatic Hydrocarbons (Pahs) In
Supporting Information of Polycyclic aromatic hydrocarbons (PAHs) in aerosols over the central Himalayas along two south-north transects Peng Fei Chen1,5, Chao Liu Li1, Shi Chang Kang2,3*, Maheswar Rupakheti4, Arnico K Panday6, Fang Ping Yan2,5, Quan Lian Li2, Qiang Gong Zhang1,3, Jun Ming Guo1,5, Dipesh Rupakheti1,5, Wei Luo7 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 2State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 730000, China 3Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China; 4Institute for Advanced Sustainability Studies, Potsdam 14467, Germany 5University of Chinese Academy of Sciences, Beijing 100039, China 6International Centre for Integrated Mountain Development, Kathmandu, Nepal 7State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Correspondence to: S. Kang ([email protected]) Text SI-1 Sample extraction and analysis Text SI-2 Quality control Table SI-1 Percentage contribution (%) of each species to total PAHs in the atmosphere over the Himalayas. Text SI-1 Sample extraction and analysis A quarter of each filter was cut into pieces, placed into a glass tube, and immersed in 20 mL of dichloromethane (DCM) and n-hexane (1:1). The extraction was performed by sonication twice for 30 min at 27 °C. Every single sample was spiked with deuterated PAHs (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12) as recovery surrogates. -
Oxidation of Ethane to Ethylene and Acetic Acid by Movnbo Catalysts Martial Roussel, Michel Bouchard, Elisabeth Bordes-Richard, Khalid Karim, Saleh Al-Sayari
Oxidation of ethane to ethylene and acetic acid by MoVNbO catalysts Martial Roussel, Michel Bouchard, Elisabeth Bordes-Richard, Khalid Karim, Saleh Al-Sayari To cite this version: Martial Roussel, Michel Bouchard, Elisabeth Bordes-Richard, Khalid Karim, Saleh Al-Sayari. Oxida- tion of ethane to ethylene and acetic acid by MoVNbO catalysts. Catalysis Today, Elsevier, 2005, 99, pp.77-87. 10.1016/j.cattod.2004.09.026. hal-00103604 HAL Id: hal-00103604 https://hal.archives-ouvertes.fr/hal-00103604 Submitted on 4 Oct 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Oxidation of ethane to ethylene and acetic acid by MoVNbO catalysts M. Roussel 1, M. Bouchard 1, E. Bordes-Richard 1*, K. Karim 2, S. Al-Sayari 2 1: Laboratoire de Catalyse de Lille, UMR CNRS 8010, USTL-ENSCL, 59655 Villeneuve d'Ascq Cedex, France 2: SABIC R&T, P.O. Box 42503, Riyadh, Saoudi Arabia ABSTRACT The influence of niobium on the physicochemical properties of the Mo-V-O system and on its catalytic properties in the oxidation of ethane to ethylene and acetic acid is examined. Solids based on MoV 0.4 Ox and MoV 0.4 Nb 0.12 Oy composition and calcined at 350 or 400°C were studied by X-ray diffraction, and by laser Raman and X-ray photoelectron spectroscopies. -
Chapter 2: Alkanes Alkanes from Carbon and Hydrogen
Chapter 2: Alkanes Alkanes from Carbon and Hydrogen •Alkanes are carbon compounds that contain only single bonds. •The simplest alkanes are hydrocarbons – compounds that contain only carbon and hydrogen. •Hydrocarbons are used mainly as fuels, solvents and lubricants: H H H H H H H H H H H H C H C C H C C C C H H C C C C C H H H C C H H H H H H CH2 H CH3 H H H H CH3 # of carbons boiling point range Use 1-4 <20 °C fuel (gasses such as methane, propane, butane) 5-6 30-60 solvents (petroleum ether) 6-7 60-90 solvents (ligroin) 6-12 85-200 fuel (gasoline) 12-15 200-300 fuel (kerosene) 15-18 300-400 fuel (heating oil) 16-24 >400 lubricating oil, asphalt Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H C H eth- -ane ethane 2 6 H3C CH3 C3H8 prop- -ane propane C4H10 but- -ane butane C5H12 pent- -ane pentane C6H14 hex- -ane hexane C7H16 hept- -ane heptane C8H18 oct- -ane octane C9H20 non- -ane nonane C10H22 dec- -ane decane Hydrocarbons Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C H prop- -ane propane 3 8 H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane butane? H3C C CH3 or CH3 HydHrydorcocaarrbobnos ns Formula Prefix Suffix Name Structure H CH4 meth- -ane methane H C H H H H C2H6 eth- -ane ethane H C C H H H H C3H8 prop- -ane propane H3C C CH3 or H H H C H 4 10 but- -ane butane H3C C C CH3 or H H H C H 4 10 but- -ane iso-butane H3C C CH3 or CH3 HydHrydoroccarbrobnsons Formula Prefix Suffix Name Structure H H