Inborn Errors of Amino Acid Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Inborn Errors of Amino Acid Metabolism Inborn errors of amino acid metabolism Editing file Color Index: Objectives: ● Important ● Dr’s notes Identify the amino acid degradation and synthesis of non-essential amino acids ● In females’ slides only ● In males’ slides only Recognize the metabolic defects in amino acid metabolism that lead to genetic diseases Take home message: Degradation of amino acids involves removal of α-amino group followed by degradation of leftover carbon skeleton by various ways to products that can either enter the biosynthetic athways or TCA Glucogenic amino acids whose catabolism yields pyruvate or one of the intermediates of TCA Ketogenic amino acids whose catabolism yields either acetoacetate or one of its precursor. The essential amino acids are provided in the diet and the non-essential amino acids are synthesized in the body Deficiency of the enzymes involved in amino acid metabolism leads to hereditary disorders like: phenylketonuria, alkaptonuria etc. 437 team: According to the type of mutation, the enzyme might be completely lost or just deficient. Inborn errors of amino acid metabolism If the enzyme was completely lost, no products will be produced at all, and the substrates will accumulate in huge amounts, 1. Accumulation of the substrate leading to a very severe Gene mutation Enzyme loss or deficiency disease. 2. Deficiency of the product If the enzyme was not Cofactors completely lost, some Enzyme + Substrate Product substrates will be converted to products and the disease will be less severe. Deficiency of the product is not always present, Excess Deficient because there might be another pathway that results in the same product. Diseases Maple syrup Phenylketonuria Albinism Homocystinuria Alkaptonuria (most common) urine disease 3 Females’ doctor notes: Phenylketonuria (PKU) Tyrosine is normally non-essential (body can make no need to take it from Enzyme Substrate Product diet) (deficient) (accumulated) (deficient) but in case of enzyme deficiency the body can’t produce it so it Phenylalanine Phenylalanine hydroxylase Tyrosine becomes essential ( hyperphenylalaninemia ) (supplements are needed) “it is conditional amino acid” Classical PKU Accumulated Enzymes required for Cofactors (BH4) synthesis Phenylalanine hydroxylase Deficient 4 The pathway of phenylalanine Dr’s notes : * Enzymes required for Cofactors (BH4) synthesis. Thus, in the absence of one of Atypical hyperphenylalaninemia these enzymes deficiency of BH4 Due to deficiency of dihydropteridine reductase, dihydrobiopterin synthetase, Carbinolamine dehydratase enzymes * 1 Conversion of Phe to Tyr requires 2 Even if phenylalanine tetrahydrobiopterin (BH4) hydroxylase level is normal 3 The enzyme will not function 4 Hence Phe is accumulated without BH4 Cofactors Enzyme + Substrate Product phenylalanine hydroxylase phenylalanine BH4 Tyrosine - accumulate Deficient 5 Characteristics of PKU ● Elevated phenylalanine in tissues, plasma, urine. ● Phe is degraded to: phenyllactate, phenylacetate, phenylpyruvate. ● Gives urine a mousy odor. In the absence of BH4 : ❷ ❸ No or less tyrosine/ also inhibited by excess Phe ❶ Phe will not be converted to Tyrosine. ● Melanin will become deficient because Tyrosine is required for synthesis of melanin. ● Deficiency of tyrosinase will lead to albinism. Tyrosine ➔ DOPA ➔ DOPAquinone ➔ ● Causes light skin and photosensitivity in PKU patients. LeucoDOPAchrome➔ DOPAchrome ➔➔ Melanin Tyrosine will not be converted to Catecholamines. No or less melanin Light ❷ Tryptophan will not be converted to Serotonin. skin in PKU patients ★ ❸ Catecholamines & serotonin are neurotransmitters. Amino Acids & Tetrahydrobiopterin 6 Extra info : 1. Seizure: Uncontrolled electrical activity in the brain, which may produce a physical convulsion, minor physical signs, thought disturbances, or a Characteristics of PKU combination of symptoms. 2. Microcephaly: a medical condition in which the brain doesn’t develop properly resulting in a smaller than normal head. CNS symptoms Hypopigmentation Urine “Melanin is not synthesized” Females’ doctor notes: 3. We measure it after birth ● Mental retardation after 24-48 hours NOT ● Fair hair ● Failure to walk or talk musty (mousy) odor. Immediately ● Seizures 1 ● Light skin colour because the mother clears increased blood phenylalanine in 2 ● Blue eyes ● Microcephaly her affected fetus through etc. the placenta. 437 team: If the treatment is Diagnosis Treatment started before 7 days of birth, they might have a near normal life Prenatal detecting gene mutation in fetus. “before birth” Lifelong phenylalanine restricted diet The problem is that phenylalanine is very abundant in most food, so it is 3 difficult to control. Neonatal measuring levels of blood Phenylalanine. “In infants” Tyrosine supplementation 7 Maple Syrup Urine Disease Females’ doctor notes: Maple syrup odor of urine How to differentiate between the classic type and deficiency of Thiamine-responsive form? The enzyme decarboxylates These amino acids branched chain α-ketoacid leucine, isoleucine and valine accumulate in blood You give the patient thiamine dehydrogenase supplement and see if it works. Treatment: Limited intake of leucine, isoleucine and valine “to prevent toxic effects.” Symptoms 1 Mental retardation 2 Metabolic acidosis 3 Physical disability ..etc Types Intermediated and Thiamine-responsive Classic type intermittent forms form ● Most common ● Higher enzyme activity ● high doses of thiamine increases ●Little or no activity of the enzyme ● Symptoms are milder the enzyme activity 8 Maple Syrup Urine Disease Degradation of branched-chain amino acids: valine, isoleucine and leucine. Deficiency of branched chain a-keto acid dehydrogenase leads to MSUD. α- ketoglutarate is the universal acceptor of amino group 437 team: In our body we have certain branched chain amino acids. The α- keto acids are acted on by their α- keto acid These amino acids are leucine, isoleucine and valine. dehydrogenases. The first step in their degradation is deamination If The α- keto acid dehydrogenase is deficient, it will lead to “Removal of an amino group and introduce a ketone group at accumulation of the amino acids and their α- keto acid, Leucine and their keto acids the alpha carbon”. leading to maple syrup urine disease (MSUD). By the end of this step, each amino acid is converted to its [α- keto acid]. 9 Extra info : Albinism 1. DihydrOxyPhenylAlanine: is present in nervous tissue as a precursor of dopamine, used in the treatment of Parkinson's disease. Albinism Tyrosine Melanin ● A disease of tyrosine ● Involved in melanin production ● A pigment of : metabolism hair, skin and eyes. ➔ Due to tyrosinase deficiency ★ Melanin is absent in albino patients: Hair Skin ● Appear white ● Appear white Eyes Photophobia ● Appear white or Prone to skin cancer. red ● Vision defects 10 Homocystinuria Females’ doctor notes: 1. Increased amounts of Defects in homocysteine metabolism homocysteine causes oxidative Causes stress which lead to these diseases ● Deficiency of cystathionine β-synthase (converts homocysteine to cystathionine) 2. When vit B6 and B12 and folate are low homocystine is Clinical High plasma and urine levels of homocysteine and methionine increased “the exact relation isn’t known” presentations Low plasma and urine levels of cysteine Risk factor for Atherosclerosis and heart diseases 1 ● Skeletal abnormalities, ● Osteoporosis Symptomes ● Mental retardation ● Displacement of eye lens 2 ● Oral administration of vitamins B6,B12 and folate (folic acid) Treatment ➔ Vitamin B6 is a cofactor of cystathionine β-synthase ● Methionine-restricted diet Hyperhomocysteinemia ● Is associated with: Neural tube defect Vascular diseases 1 2 3 Heart diseases (spina bifida) (Atherosclerosis) 11 Homocystinuria 12 Important to know The pathway of this disease is Alkaptonuria the one in the middle where tyrosine is converted to p-hydroxyphenylpyruvate. Definition Cause Fate of tyrosine Tyrosine is mentioned in 3 diseases: Rare disease of tyrosine degradation ● homogentisic acid oxidase 1- Alkaptonuria 2- PKU deficiency 3- Albinism Catechol Melanin amine P-hydroxy phenylpyruvatec Homogentisic acid is accumulated Homogentisic in tissue and cartilage acid Homogentisic acid oxidase TCA Fumarate cycle 13 Characteristics of Alkaptonuria Black Homogentisic Arthritis pigmentation aciduria Elevated homogentisic acid Of cartilage and tissues. in urine which is oxidized to dark pigment Later; 40 years and beyond over time Diagnosis Treatment ● Restricted intake of tyrosine and phenylalanine reduces homogentisic acid and dark pigmentation Usually asymptomatic until adulthood ● Treat symptoms of arthritis beyond on 14 Summary Huge thanks to TEAM 437! Disease Enzyme Substrate Product Symptoms Treatment (deficient) (Accumulated) (Deficient) Classical Phenylalanine Phenylalanine Tyrosine CNS symptoms Life long phenylalanine restricted diet and phenylketonuria hydroxylase Melanin tyrosine supplementation Catecholamines Mousy(musty) odor of urine Hypopigmentation Atypical 1. Dihydropteridine Phenylalanine BH4 leading to Same as the Same as the classical PKU nonfunctional phenylketonuria reductase phenylalanine classical PKU hydroxylase. 2. Dihydrobiopterin synthetase Which will lead to tyrosine,catecholamine ,serotonin,melanin 3. Carbinolamine deficiency. dehydratase Maple syrup Branched chain 1. Leucine Mental retardation,physical Limited intake of disability,metabolic leucine,isoleucine,valine urine disease α-ketoacid 2. Isoleucine acidosis,maple syrup odor dehydrogenase 3. valine of urine. And their
Recommended publications
  • Natural Skin‑Whitening Compounds for the Treatment of Melanogenesis (Review)
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 20: 173-185, 2020 Natural skin‑whitening compounds for the treatment of melanogenesis (Review) WENHUI QIAN1,2, WENYA LIU1, DONG ZHU2, YANLI CAO1, ANFU TANG1, GUANGMING GONG1 and HUA SU1 1Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine; 2School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China Received June 14, 2019; Accepted March 17, 2020 DOI: 10.3892/etm.2020.8687 Abstract. Melanogenesis is the process for the production of skin-whitening agents, boosted by markets in Asian countries, melanin, which is the primary cause of human skin pigmenta- especially those in China, India and Japan, is increasing tion. Skin-whitening agents are commercially available for annually (1). Skin color is influenced by a number of intrinsic those who wish to have a lighter skin complexions. To date, factors, including skin types and genetic background, and although numerous natural compounds have been proposed extrinsic factors, including the degree of sunlight exposure to alleviate hyperpigmentation, insufficient attention has and environmental pollution (2-4). Skin color is determined by been focused on potential natural skin-whitening agents and the quantity of melanosomes and their extent of dispersion in their mechanism of action from the perspective of compound the skin (5). Under physiological conditions, pigmentation can classification. In the present article, the synthetic process of protect the skin against harmful UV injury. However, exces- melanogenesis and associated core signaling pathways are sive generation of melanin can result in extensive aesthetic summarized. An overview of the list of natural skin-lightening problems, including melasma, pigmentation of ephelides and agents, along with their compound classifications, is also post‑inflammatory hyperpigmentation (1,6).
    [Show full text]
  • Cloning, Biochemical Characterization and Inhibition of Alanine Racemase from Streptococcus Iniae
    bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cloning, Biochemical Characterization and Inhibition of Alanine racemase from Streptococcus iniae Murtala Muhammad, Yangyang Li, Siyu Gong, Yanmin Shi, Jiansong Ju, Baohua Zhao*, Dong Liu* College of Life Science, Hebei Normal University, Shijiazhuang 050024, China; *Correspondence: Baohua Zhao and Dong Liu; E-mail: [email protected], [email protected]; College of Life Science, Hebei Normal University, Shijiazhuang 050024, China. Running Title: Inhibitors of alanine racemase Summary statement: Antimicrobial target 1 bioRxiv preprint doi: https://doi.org/10.1101/611251; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Streptococcus iniae is a pathogenic and zoonotic bacteria that impacted high mortality to many fish species, as well as capable of causing serious disease to humans. Alanine racemase (Alr, EC 5.1.1.1) is a pyridoxal-5′-phosphate (PLP)-containing homodimeric enzyme that catalyzes the racemization of L-alanine and D-alanine. In this study, we purified alanine racemase from the pathogenic strain of S. iniae, determined its biochemical characteristics and inhibitors. The alr gene has an open reading frame (ORF) of 1107 bp, encoding a protein of 369 amino acids, which has a molecular mass of 40 kDa. The optimal enzyme activity occurred at 35°C and a pH of 9.5.
    [Show full text]
  • Incidence of Inborn Errors of Metabolism by Expanded Newborn
    Original Article Journal of Inborn Errors of Metabolism & Screening 2016, Volume 4: 1–8 Incidence of Inborn Errors of Metabolism ª The Author(s) 2016 DOI: 10.1177/2326409816669027 by Expanded Newborn Screening iem.sagepub.com in a Mexican Hospital Consuelo Cantu´-Reyna, MD1,2, Luis Manuel Zepeda, MD1,2, Rene´ Montemayor, MD3, Santiago Benavides, MD3, Hector´ Javier Gonza´lez, MD3, Mercedes Va´zquez-Cantu´,BS1,4, and Hector´ Cruz-Camino, BS1,5 Abstract Newborn screening for the detection of inborn errors of metabolism (IEM), endocrinopathies, hemoglobinopathies, and other disorders is a public health initiative aimed at identifying specific diseases in a timely manner. Mexico initiated newborn screening in 1973, but the national incidence of this group of diseases is unknown or uncertain due to the lack of large sample sizes of expanded newborn screening (ENS) programs and lack of related publications. The incidence of a specific group of IEM, endocrinopathies, hemoglobinopathies, and other disorders in newborns was obtained from a Mexican hospital. These newborns were part of a comprehensive ENS program at Ginequito (a private hospital in Mexico), from January 2012 to August 2014. The retrospective study included the examination of 10 000 newborns’ results obtained from the ENS program (comprising the possible detection of more than 50 screened disorders). The findings were the following: 34 newborns were confirmed with an IEM, endocrinopathies, hemoglobinopathies, or other disorders and 68 were identified as carriers. Consequently, the estimated global incidence for those disorders was 3.4 in 1000 newborns; and the carrier prevalence was 6.8 in 1000. Moreover, a 0.04% false-positive rate was unveiled as soon as diagnostic testing revealed negative results.
    [Show full text]
  • EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies
    Focusing on Personalised Medicine EXTENDED CARRIER SCREENING Peace of Mind for Planned Pregnancies Extended carrier screening is an important tool for prospective parents to help them determine their risk of having a child affected with a heritable disease. In many cases, parents aren’t aware they are carriers and have no family history due to the rarity of some diseases in the general population. What is covered by the screening? Genomics For Life offers a comprehensive Extended Carrier Screening test, providing prospective parents with the information they require when planning their pregnancy. Extended Carrier Screening has been shown to detect carriers who would not have been considered candidates for traditional risk- based screening. With a simple mouth swab collection, we are able to test for over 419 genes associated with inherited diseases, including Fragile X Syndrome, Cystic Fibrosis and Spinal Muscular Atrophy. The assay has been developed in conjunction with clinical molecular geneticists, and includes genes listed in the NIH Genetic Test Registry. For a list of genes and disorders covered, please see the reverse of this brochure. If your gene of interest is not covered on our Extended Carrier Screening panel, please contact our friendly team to assist you in finding a gene test panel that suits your needs. Why have Extended Carrier Screening? Extended Carrier Screening prior to pregnancy enables couples to learn about their reproductive risk and consider a complete range of reproductive options, including whether or not to become pregnant, whether to use advanced reproductive technologies, such as preimplantation genetic diagnosis, or to use donor gametes.
    [Show full text]
  • Rational Design of Resveratrol O-Methyltransferase for the Production of Pinostilbene
    International Journal of Molecular Sciences Article Rational Design of Resveratrol O-methyltransferase for the Production of Pinostilbene Daniela P. Herrera 1 , Andrea M. Chánique 1,2 , Ascensión Martínez-Márquez 3, Roque Bru-Martínez 3 , Robert Kourist 2 , Loreto P. Parra 4,* and Andreas Schüller 4,5,* 1 Department of Chemical and Bioprocesses Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile; [email protected] (D.P.H.); [email protected] (A.M.C.) 2 Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria; [email protected] 3 Department of Agrochemistry and Biochemistry, Faculty of Science and Multidisciplinary Institute for Environmental Studies “Ramon Margalef”, University of Alicante, 03690 Alicante, Spain; [email protected] (A.M.-M.); [email protected] (R.B.-M.) 4 Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile 5 Department of Molecular Genetics and Microbiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins 340, Santiago 8320000, Chile * Correspondence: [email protected] (L.P.P.); [email protected] (A.S.) Abstract: Pinostilbene is a monomethyl ether analog of the well-known nutraceutical resveratrol. Both compounds have health-promoting properties, but the latter undergoes rapid metabolization and has low bioavailability. O-methylation improves the stability and bioavailability of resveratrol. In plants, these reactions are performed by O-methyltransferases (OMTs). Few efficient OMTs that Citation: Herrera, D.P.; Chánique, monomethylate resveratrol to yield pinostilbene have been described so far.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Inherited Metabolic Disease
    Inherited metabolic disease Dr Neil W Hopper SRH Areas for discussion • Introduction to IEMs • Presentation • Initial treatment and investigation of IEMs • Hypoglycaemia • Hyperammonaemia • Other presentations • Management of intercurrent illness • Chronic management Inherited Metabolic Diseases • Result from a block to an essential pathway in the body's metabolism. • Huge number of conditions • All rare – very rare (except for one – 1:500) • Presentation can be non-specific so index of suspicion important • Mostly AR inheritance – ask about consanguinity Incidence (W. Midlands) • Amino acid disorders (excluding phenylketonuria) — 18.7 per 100,000 • Phenylketonuria — 8.1 per 100,000 • Organic acidemias — 12.6 per 100,000 • Urea cycle diseases — 4.5 per 100,000 • Glycogen storage diseases — 6.8 per 100,000 • Lysosomal storage diseases — 19.3 per 100,000 • Peroxisomal disorders — 7.4 per 100,000 • Mitochondrial diseases — 20.3 per 100,000 Pathophysiological classification • Disorders that result in toxic accumulation – Disorders of protein metabolism (eg, amino acidopathies, organic acidopathies, urea cycle defects) – Disorders of carbohydrate intolerance – Lysosomal storage disorders • Disorders of energy production, utilization – Fatty acid oxidation defects – Disorders of carbohydrate utilization, production (ie, glycogen storage disorders, disorders of gluconeogenesis and glycogenolysis) – Mitochondrial disorders – Peroxisomal disorders IMD presentations • ? IMD presentations • Screening – MCAD, PKU • Progressive unexplained neonatal
    [Show full text]
  • Dermatologic Manifestations of Hermansky-Pudlak Syndrome in Patients with and Without a 16–Base Pair Duplication in the HPS1 Gene
    STUDY Dermatologic Manifestations of Hermansky-Pudlak Syndrome in Patients With and Without a 16–Base Pair Duplication in the HPS1 Gene Jorge Toro, MD; Maria Turner, MD; William A. Gahl, MD, PhD Background: Hermansky-Pudlak syndrome (HPS) con- without the duplication were non–Puerto Rican except sists of oculocutaneous albinism, a platelet storage pool de- 4 from central Puerto Rico. ficiency, and lysosomal accumulation of ceroid lipofuscin. Patients with HPS from northwest Puerto Rico are homozy- Results: Both patients homozygous for the 16-bp du- gous for a 16–base pair (bp) duplication in exon 15 of HPS1, plication and patients without the duplication dis- a gene on chromosome 10q23 known to cause the disorder. played skin color ranging from white to light brown. Pa- tients with the duplication, as well as those lacking the Objective: To determine the dermatologic findings of duplication, had hair color ranging from white to brown patients with HPS. and eye color ranging from blue to brown. New findings in both groups of patients with HPS were melanocytic Design: Survey of inpatients with HPS by physical ex- nevi with dysplastic features, acanthosis nigricans–like amination. lesions in the axilla and neck, and trichomegaly. Eighty percent of patients with the duplication exhibited fea- Setting: National Institutes of Health Clinical Center, tures of solar damage, including multiple freckles, stel- Bethesda, Md (a tertiary referral hospital). late lentigines, actinic keratoses, and, occasionally, basal cell or squamous cell carcinomas. Only 8% of patients Patients: Sixty-five patients aged 3 to 54 years were di- lacking the 16-bp duplication displayed these findings.
    [Show full text]
  • Amino Acid Disorders 105
    AMINO ACID DISORDERS 105 Massaro, A. S. (1995). Trypanosomiasis. In Guide to Clinical tions in biological fluids relatively easy. These Neurology (J. P. Mohrand and J. C. Gautier, Eds.), pp. 663– analyzers separate amino acids either by ion-ex- 667. Churchill Livingstone, New York. Nussenzweig, V., Sonntag, R., Biancalana, A., et al. (1953). Ac¸a˜o change chromatography or by high-pressure liquid de corantes tri-fenil-metaˆnicos sobre o Trypanosoma cruzi in chromatography. The results are plotted as a graph vitro: Emprego da violeta de genciana na profilaxia da (Fig. 1). The concentration of each amino acid can transmissa˜o da mole´stia de chagas por transfusa˜o de sangue. then be calculated from the size of the corresponding O Hospital (Rio de Janeiro) 44, 731–744. peak on the graph. Pagano, M. A., Segura, M. J., DiLorenzo, G. A., et al. (1999). Cerebral tumor-like American trypanosomiasis in Most amino acid disorders can be diagnosed by acquired immunodeficiency syndrome. Ann. Neurol. 45, measuring the concentrations of amino acids in 403–406. blood plasma; however, some disorders of amino Rassi, A., Trancesi, J., and Tranchesi, B. (1982). Doenc¸ade acid transport are more easily recognized through the Chagas. In Doenc¸as Infecciosas e Parasita´rias (R. Veroesi, Ed.), analysis of urine amino acids. Therefore, screening 7th ed., pp. 674–712. Guanabara Koogan, Sa˜o Paulo, Brazil. Spina-Franc¸a, A., and Mattosinho-Franc¸a, L. C. (1988). for amino acid disorders is best done using both South American trypanosomiasis (Chagas’ disease). In blood and urine specimens. Occasionally, analysis of Handbook of Clinical Neurology (P.
    [Show full text]
  • Aberrant Colourations in Wild Snakes: Case Study in Neotropical Taxa and a Review of Terminology
    SALAMANDRA 57(1): 124–138 Claudio Borteiro et al. SALAMANDRA 15 February 2021 ISSN 0036–3375 German Journal of Herpetology Aberrant colourations in wild snakes: case study in Neotropical taxa and a review of terminology Claudio Borteiro1, Arthur Diesel Abegg2,3, Fabrício Hirouki Oda4, Darío Cardozo5, Francisco Kolenc1, Ignacio Etchandy6, Irasema Bisaiz6, Carlos Prigioni1 & Diego Baldo5 1) Sección Herpetología, Museo Nacional de Historia Natural, Miguelete 1825, Montevideo 11800, Uruguay 2) Instituto Butantan, Laboratório Especial de Coleções Zoológicas, Avenida Vital Brasil, 1500, Butantã, CEP 05503-900 São Paulo, SP, Brazil 3) Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Programa de Pós-Graduação em Zoologia, Travessa 14, Rua do Matão, 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 4) Universidade Regional do Cariri, Departamento de Química Biológica, Programa de Pós-graduação em Bioprospecção Molecular, Rua Coronel Antônio Luiz 1161, Pimenta, Crato, Ceará 63105-000, CE, Brazil 5) Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Felix de Azara 1552, CP 3300, Posadas, Misiones, Argentina 6) Alternatus Uruguay, Ruta 37, km 1.4, Piriápolis, Uruguay Corresponding author: Claudio Borteiro, e-mail: [email protected] Manuscript received: 2 April 2020 Accepted: 18 August 2020 by Arne Schulze Abstract. The criteria used by previous authors to define colour aberrancies of snakes, particularly albinism, are varied and terms have widely been used ambiguously. The aim of this work was to review genetically based aberrant colour morphs of wild Neotropical snakes and associated terminology. We compiled a total of 115 cases of conspicuous defective expressions of pigmentations in snakes, including melanin (black/brown colour), xanthins (yellow), and erythrins (red), which in- volved 47 species of Aniliidae, Boidae, Colubridae, Elapidae, Leptotyphlopidae, Typhlopidae, and Viperidae.
    [Show full text]
  • Involvements of Hyperhomocysteinemia in Neurological Disorders
    H OH metabolites OH Review Involvements of Hyperhomocysteinemia in Neurological Disorders Marika Cordaro 1,† , Rosalba Siracusa 2,† , Roberta Fusco 2 , Salvatore Cuzzocrea 2,3,* , Rosanna Di Paola 2,* and Daniela Impellizzeri 2 1 Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; [email protected] 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; [email protected] (R.S.); [email protected] (R.F.); [email protected] (D.I.) 3 Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA * Correspondence: [email protected] (S.C.); [email protected] (R.D.P.); Tel.: +39-090-6765208 (S.C. & R.D.P.) † The authors equally contributed to the review. Abstract: Homocysteine (HCY), a physiological amino acid formed when proteins break down, leads to a pathological condition called hyperhomocysteinemia (HHCY), when it is over a definite limit. It is well known that an increase in HCY levels in blood, can contribute to arterial damage and several cardiovascular disease, but the knowledge about the relationship between HCY and brain disorders is very poor. Recent studies demonstrated that an alteration in HCY metabolism or a deficiency in folate or vitamin B12 can cause altered methylation and/or redox potentials, that leads to a modification on calcium influx in cells, or into an accumulation in amyloid and/or tau protein involving a cascade of events that culminate in apoptosis, and, in the worst conditions, neuronal death. The present review will thus summarize how much is known about the possible role of HHCY in neurodegenerative disease.
    [Show full text]
  • WO 2013/064736 Al 10 May 2013 (10.05.2013) P O P CT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/064736 Al 10 May 2013 (10.05.2013) P O P CT (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 9/10 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/FI2012/05 1048 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 3 1 October 2012 (3 1.10.2012) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 201 16074 1 November 201 1 (01. 11.201 1) FI GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: VALIO LTD [FI/FI]; Meijeritie 6, FI-00370 TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, Helsinki (FI). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventors: RAJAKARI, Kirsi; c/o Valio Ltd, Meijeritie 6, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, FI-00370 Helsinki (FI).
    [Show full text]