A Radical Approach to Real Analysis Second Edition
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
La Controverse De 1874 Entre Camille Jordan Et Leopold Kronecker
La controverse de 1874 entre Camille Jordan et Leopold Kronecker. * Frédéric Brechenmacher ( ). Résumé. Une vive querelle oppose en 1874 Camille Jordan et Leopold Kronecker sur l’organisation de la théorie des formes bilinéaires, considérée comme permettant un traitement « général » et « homogène » de nombreuses questions développées dans des cadres théoriques variés au XIXe siècle et dont le problème principal est reconnu comme susceptible d’être résolu par deux théorèmes énoncés indépendamment par Jordan et Weierstrass. Cette controverse, suscitée par la rencontre de deux théorèmes que nous considèrerions aujourd’hui équivalents, nous permettra de questionner l’identité algébrique de pratiques polynomiales de manipulations de « formes » mises en œuvre sur une période antérieure aux approches structurelles de l’algèbre linéaire qui donneront à ces pratiques l’identité de méthodes de caractérisation des classes de similitudes de matrices. Nous montrerons que les pratiques de réductions canoniques et de calculs d’invariants opposées par Jordan et Kronecker manifestent des identités multiples indissociables d’un contexte social daté et qui dévoilent des savoirs tacites, des modes de pensées locaux mais aussi, au travers de regards portés sur une histoire à long terme impliquant des travaux d’auteurs comme Lagrange, Laplace, Cauchy ou Hermite, deux philosophies internes sur la signification de la généralité indissociables d’idéaux disciplinaires opposant algèbre et arithmétique. En questionnant les identités culturelles de telles pratiques cet article vise à enrichir l’histoire de l’algèbre linéaire, souvent abordée dans le cadre de problématiques liées à l’émergence de structures et par l’intermédiaire de l’histoire d’une théorie, d’une notion ou d’un mode de raisonnement. -
Abel's Identity, 131 Abel's Test, 131–132 Abel's Theorem, 463–464 Absolute Convergence, 113–114 Implication of Condi
INDEX Abel’s identity, 131 Bolzano-Weierstrass theorem, 66–68 Abel’s test, 131–132 for sequences, 99–100 Abel’s theorem, 463–464 boundary points, 50–52 absolute convergence, 113–114 bounded functions, 142 implication of conditional bounded sets, 42–43 convergence, 114 absolute value, 7 Cantor function, 229–230 reverse triangle inequality, 9 Cantor set, 80–81, 133–134, 383 triangle inequality, 9 Casorati-Weierstrass theorem, 498–499 algebraic properties of Rk, 11–13 Cauchy completeness, 106–107 algebraic properties of continuity, 184 Cauchy condensation test, 117–119 algebraic properties of limits, 91–92 Cauchy integral theorem algebraic properties of series, 110–111 triangle lemma, see triangle lemma algebraic properties of the derivative, Cauchy principal value, 365–366 244 Cauchy sequences, 104–105 alternating series, 115 convergence of, 105–106 alternating series test, 115–116 Cauchy’s inequalities, 437 analytic functions, 481–482 Cauchy’s integral formula, 428–433 complex analytic functions, 483 converse of, 436–437 counterexamples, 482–483 extension to higher derivatives, 437 identity principle, 486 for simple closed contours, 432–433 zeros of, see zeros of complex analytic on circles, 429–430 functions on open connected sets, 430–432 antiderivatives, 361 on star-shaped sets, 429 for f :[a, b] Rp, 370 → Cauchy’s integral theorem, 420–422 of complex functions, 408 consequence, see deformation of on star-shaped sets, 411–413 contours path-independence, 408–409, 415 Cauchy-Riemann equations Archimedean property, 5–6 motivation, 297–300 -
Kummer, Regular Primes, and Fermat's Last Theorem
e H a r v a e Harvard College r d C o l l e Mathematics Review g e M a t h e m Vol. 2, No. 2 Fall 2008 a t i c s In this issue: R e v i ALLAN M. FELDMAN and ROBERTO SERRANO e w , Arrow’s Impossibility eorem: Two Simple Single-Profile Versions V o l . 2 YUFEI ZHAO , N Young Tableaux and the Representations of the o . Symmetric Group 2 KEITH CONRAD e Congruent Number Problem A Student Publication of Harvard College Website. Further information about The HCMR can be Sponsorship. Sponsoring The HCMR supports the un- found online at the journal’s website, dergraduate mathematics community and provides valuable high-level education to undergraduates in the field. Sponsors http://www.thehcmr.org/ (1) will be listed in the print edition of The HCMR and on a spe- cial page on the The HCMR’s website, (1). Sponsorship is available at the following levels: Instructions for Authors. All submissions should in- clude the name(s) of the author(s), institutional affiliations (if Sponsor $0 - $99 any), and both postal and e-mail addresses at which the cor- Fellow $100 - $249 responding author may be reached. General questions should Friend $250 - $499 be addressed to Editors-In-Chief Zachary Abel and Ernest E. Contributor $500 - $1,999 Fontes at [email protected]. Donor $2,000 - $4,999 Patron $5,000 - $9,999 Articles. The Harvard College Mathematics Review invites Benefactor $10,000 + the submission of quality expository articles from undergrad- uate students. -
Methodology and Metaphysics in the Development of Dedekind's Theory
Methodology and metaphysics in the development of Dedekind’s theory of ideals Jeremy Avigad 1 Introduction Philosophical concerns rarely force their way into the average mathematician’s workday. But, in extreme circumstances, fundamental questions can arise as to the legitimacy of a certain manner of proceeding, say, as to whether a particular object should be granted ontological status, or whether a certain conclusion is epistemologically warranted. There are then two distinct views as to the role that philosophy should play in such a situation. On the first view, the mathematician is called upon to turn to the counsel of philosophers, in much the same way as a nation considering an action of dubious international legality is called upon to turn to the United Nations for guidance. After due consideration of appropriate regulations and guidelines (and, possibly, debate between representatives of different philosophical fac- tions), the philosophers render a decision, by which the dutiful mathematician abides. Quine was famously critical of such dreams of a ‘first philosophy.’ At the oppos- ite extreme, our hypothetical mathematician answers only to the subject’s internal concerns, blithely or brashly indifferent to philosophical approval. What is at stake to our mathematician friend is whether the questionable practice provides a proper mathematical solution to the problem at hand, or an appropriate mathematical understanding; or, in pragmatic terms, whether it will make it past a journal referee. In short, mathematics is as mathematics does, and the philosopher’s task is simply to make sense of the subject as it evolves and certify practices that are already in place. -
Cauchy's Cours D'analyse
SOURCES AND STUDIES IN THE HISTORY OF MATHEMATICS AND PHYSICAL SCIENCES Robert E. Bradley • C. Edward Sandifer Cauchy’s Cours d’analyse An Annotated Translation Cauchy’s Cours d’analyse An Annotated Translation For other titles published in this series, go to http://www.springer.com/series/4142 Sources and Studies in the History of Mathematics and Physical Sciences Editorial Board L. Berggren J.Z. Buchwald J. Lutzen¨ Robert E. Bradley, C. Edward Sandifer Cauchy’s Cours d’analyse An Annotated Translation 123 Robert E. Bradley C. Edward Sandifer Department of Mathematics and Department of Mathematics Computer Science Western Connecticut State University Adelphi University Danbury, CT 06810 Garden City USA NY 11530 [email protected] USA [email protected] Series Editor: J.Z. Buchwald Division of the Humanities and Social Sciences California Institute of Technology Pasadena, CA 91125 USA [email protected] ISBN 978-1-4419-0548-2 e-ISBN 978-1-4419-0549-9 DOI 10.1007/978-1-4419-0549-9 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009932254 Mathematics Subject Classification (2000): 01A55, 01A75, 00B50, 26-03, 30-03 c Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. -
SFS / M.Sc. (Mathematics with Computer Science)
Mathematics Syllabi for Entrance Examination M.Sc. (Mathematics)/ M.Sc. (Mathematics) SFS / M.Sc. (Mathematics with Computer Science) Algebra.(5 Marks) Symmetric, Skew symmetric, Hermitian and skew Hermitian matrices. Elementary Operations on matrices. Rank of a matrices. Inverse of a matrix. Linear dependence and independence of rows and columns of matrices. Row rank and column rank of a matrix. Eigenvalues, eigenvectors and the characteristic equation of a matrix. Minimal polynomial of a matrix. Cayley Hamilton theorem and its use in finding the inverse of a matrix. Applications of matrices to a system of linear (both homogeneous and non–homogeneous) equations. Theoremson consistency of a system of linear equations. Unitary and Orthogonal Matrices, Bilinear and Quadratic forms. Relations between the roots and coefficients of general polynomial equation in one variable. Solutions of polynomial equations having conditions on roots. Common roots and multiple roots. Transformation of equations. Nature of the roots of an equation Descarte’s rule of signs. Solutions of cubic equations (Cardon’s method). Biquadratic equations and theirsolutions. Calculus.(5 Marks) Definition of the limit of a function. Basic properties of limits, Continuous functions and classification of discontinuities. Differentiability. Successive differentiation. Leibnitz theorem. Maclaurin and Taylor series expansions. Asymptotes in Cartesian coordinates, intersection of curve and its asymptotes, asymptotes in polar coordinates. Curvature, radius of curvature for Cartesian curves, parametric curves, polar curves. Newton’s method. Radius of curvature for pedal curves. Tangential polar equations. Centre of curvature. Circle of curvature. Chord of curvature, evolutes. Tests for concavity and convexity. Points of inflexion. Multiplepoints. Cusps, nodes & conjugate points. Type of cusps. -
1 Notes for Expansions/Series and Differential Equations in the Last
Notes for Expansions/Series and Differential Equations In the last discussion, we considered perturbation methods for constructing solutions/roots of algebraic equations. Three types of problems were illustrated starting from the simplest: regular (straightforward) expansions, non-uniform expansions requiring modification to the process through inner and outer expansions, and singular perturbations. Before proceeding further, we first more clearly define the various types of expansions of functions of variables. 1. Convergent and Divergent Expansions/Series Consider a series, which is the sum of the terms of a sequence of numbers. Given a sequence {a1,a2,a3,a4,a5,....,an..} , the nth partial sum Sn is the sum of the first n terms of the sequence, that is, n Sn = ak . (1) k =1 A series is convergent if the sequence of its partial sums {S1,S2,S3,....,Sn..} converges. In a more formal language, a series converges if there exists a limit such that for any arbitrarily small positive number ε>0, there is a large integer N such that for all n ≥ N , ^ Sn − ≤ ε . (2) A sequence that is not convergent is said to be divergent. Examples of convergent and divergent series: • The reciprocals of powers of 2 produce a convergent series: 1 1 1 1 1 1 + + + + + + ......... = 2 . (3) 1 2 4 8 16 32 • The reciprocals of positive integers produce a divergent series: 1 1 1 1 1 1 + + + + + + ......... (4) 1 2 3 4 5 6 • Alternating the signs of the reciprocals of positive integers produces a convergent series: 1 1 1 1 1 1 − + − + − + ......... = ln 2 . -
The History of the Formulation of Ideal Theory
The History of the Formulation of Ideal Theory Reeve Garrett November 28, 2017 1 Using complex numbers to solve Diophantine equations From the time of Diophantus (3rd century AD) to the present, the topic of Diophantine equations (that is, polynomial equations in 2 or more variables in which only integer solutions are sought after and studied) has been considered enormously important to the progress of mathematics. In fact, in the year 1900, David Hilbert designated the construction of an algorithm to determine the existence of integer solutions to a general Diophantine equation as one of his \Millenium Problems"; in 1970, the combined work (spanning 21 years) of Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson showed that no such algorithm exists. One such equation that proved to be of interest to mathematicians for centuries was the \Bachet equa- tion": x2 +k = y3, named after the 17th century mathematician who studied it. The general solution (for all values of k) eluded mathematicians until 1968, when Alan Baker presented the framework for constructing a general solution. However, before this full solution, Euler made some headway with some specific examples in the 18th century, specifically by the utilization of complex numbers. Example 1.1 Consider the equation x2 + 2 = y3. (5; 3) and (−5; 3) are easy to find solutions, but it's 2 not obviousp whetherp or not there are others or whatp they might be. Euler realized by factoring x + 2 as (x + 2i)(x − 2i) and then using the facts that Z[ 2i] is a UFD andp the factorsp given are relatively prime that the solutions above are the only solutions,p namelyp because (x + 2i)(x − 2i) being a cube forces each of these factors to be a cube (i.e. -
Real Analysis Honors Exam 1 Do the Best That You Can to Respond to The
Real Analysis Honors Exam 1 Do the best that you can to respond to the following problems. It is not required that you respond to every problem, and, in fact, it is much better to provide complete and clearly explained responses to a subset of the given problems than to provide hurried and incomplete responses to all of them. When a complete response is not possible you are encouraged to clearly explain the partial progress that you can achieve. x2 y2 z2 4 1. Prove that the ellipsoid a2 + b2 + c2 = 1 has volume 3 πabc. You may assume that this formula is correct for the spherical case where a = b = c. 2. Newton's Method: Suppose that f : R ! R is continuously differen- tiable. Newton's method is an iterative algorithm designed to approx- imate the zeros of f. Start with a first guess x0, then for each integer n > 0 find the equation of the tangent line to the graph of f at the point (xn−1; f(xn−1))), and solve for the x intercept of that line which is named xn. Show that the sequence (xn) is guaranteed to converge under the following conditions: (a) f has a zero in the interval (a; b). (b) f is twice continuous differentiable with f 0(x) > 0 and f 00(x) > 0 on (a; b). 2 3. A function f : R ! R is Gateux differentiable at x0 if the limit f(x + hv) − f(x ) lim 0 0 ; h!0 h exists for all v 2 R2, i.e. -
Bibliography
Bibliography 1. E. Artin, The Gamma Function, Holt, Rinehart and Winston, New York, 1964 (translated by M. Butler from the German original, Einfubrung in Die Theorie Der Gamma Function, B. G. Teubner, 1931) 2. F. Bowman, Introduction to Elliptic Functions with Applications, Dover, New York, 1961 3. N. Bourbaki, Function D'une Variable Reel/e (Theorie Elementaire), Hermann, Editeur Des Sciences et Des Arts, Paris, 1949 4. T. J. I. Bromwich, Infinite Series (Second Edition Revised), Macmillan & Co. Limited, London, 1942 5. Burrill and Knudsen, Real Variables, Holt, Rinehart and Winston, New York, 1969 6. G. Chrystal, Textbook of Algebra, Vol. II, Dover Edition 7. Courant and John, Introduction to Calculus and Analysis, Interscience Divi sion, John Wiley and Sons, New York, 1965 8. Phillip Franklin, Treatise on Advanced Calculus, John Wiley and Sons, New York, 1940 9. Avmer Friedman, Advanced Calculus, Holt, Rinehart and Winston, New York, 1971 10. Watson Fulks, Advanced Calculus (Third Edition), John Wiley and Sons, New York, 1978 11. Eimar Hille, Analysis, Vol. I, Blaisdell Publishing Co., 1964 Ila. E. W. Hobson, The Theory of Functions of a Real Variable, Vol. II, Dover Edition, New York, 1957 12. Konrad Knopf, Theory and Application of Infinite Series, Blackie and Sons, London, 1951 13. Konrad Knopf, Infinite Sequences and Series, Dover Edition, 1956 14. D. Mitronovic, Analytic Inequalities, Springer-Verlag, New York 15. Poly and Azego, Aufgabe Der Analysis (2 vols.) Dover 16. John Olmsted, Advanced Calculus, Appleton, Century, Crofts, New York, 1956 16a. James Pierpont, Theory of Functions of Real Variables, Vol. II, Ginn and Company, Boston, New York, Chicago, London, 1912 17. -
L-Functions and Non-Abelian Class Field Theory, from Artin to Langlands
L-functions and non-abelian class field theory, from Artin to Langlands James W. Cogdell∗ Introduction Emil Artin spent the first 15 years of his career in Hamburg. Andr´eWeil charac- terized this period of Artin's career as a \love affair with the zeta function" [77]. Claude Chevalley, in his obituary of Artin [14], pointed out that Artin's use of zeta functions was to discover exact algebraic facts as opposed to estimates or approxi- mate evaluations. In particular, it seems clear to me that during this period Artin was quite interested in using the Artin L-functions as a tool for finding a non- abelian class field theory, expressed as the desire to extend results from relative abelian extensions to general extensions of number fields. Artin introduced his L-functions attached to characters of the Galois group in 1923 in hopes of developing a non-abelian class field theory. Instead, through them he was led to formulate and prove the Artin Reciprocity Law - the crowning achievement of abelian class field theory. But Artin never lost interest in pursuing a non-abelian class field theory. At the Princeton University Bicentennial Conference on the Problems of Mathematics held in 1946 \Artin stated that `My own belief is that we know it already, though no one will believe me { that whatever can be said about non-Abelian class field theory follows from what we know now, since it depends on the behavior of the broad field over the intermediate fields { and there are sufficiently many Abelian cases.' The critical thing is learning how to pass from a prime in an intermediate field to a prime in a large field. -
Dedekind's 1871 Version of the Theory of Ideals∗
Dedekind's 1871 version of the theory of ideals¤ Translated by Jeremy Avigad March 19, 2004 Translator's introduction By the middle of the nineteenth century, it had become clear to mathe- maticians that the study of ¯nite ¯eld extensions of the rational numbers is indispensable to number theory, even if one's ultimate goal is to understand properties of diophantine expressions and equations in the ordinary integers. It can happen, however, that the \integers" in such extensions fail to satisfy unique factorization, a property that is central to reasoning about the or- dinary integers. In 1844, Ernst Kummer observed that unique factorization fails for the cyclotomic integers with exponent 23, i.e. the ring Z[³] of inte- gers of the ¯eld Q(³), where ³ is a primitive twenty-third root of unity. In 1847, he published his theory of \ideal divisors" for cyclotomic integers with prime exponent. This was to remedy the situation by introducing, for each such ring of integers, an enlarged domain of divisors, and showing that each integer factors uniquely as a product of these. He did not actually construct these integers, but, rather, showed how one could characterize their behav- ior qua divisibility in terms of ordinary operations on the associated ring of integers. Richard Dedekind and Leopold Kronecker later took up the task of ex- tending the theory to the integers in arbitrary ¯nite extensions of the ratio- nals. Despite their common influences and goals, however, the theories they ¤Work on this translation has been supported by a New Directions fellowship from the Andrew W.