The History of the Formulation of Ideal Theory

Total Page:16

File Type:pdf, Size:1020Kb

The History of the Formulation of Ideal Theory The History of the Formulation of Ideal Theory Reeve Garrett November 28, 2017 1 Using complex numbers to solve Diophantine equations From the time of Diophantus (3rd century AD) to the present, the topic of Diophantine equations (that is, polynomial equations in 2 or more variables in which only integer solutions are sought after and studied) has been considered enormously important to the progress of mathematics. In fact, in the year 1900, David Hilbert designated the construction of an algorithm to determine the existence of integer solutions to a general Diophantine equation as one of his \Millenium Problems"; in 1970, the combined work (spanning 21 years) of Martin Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson showed that no such algorithm exists. One such equation that proved to be of interest to mathematicians for centuries was the \Bachet equa- tion": x2 +k = y3, named after the 17th century mathematician who studied it. The general solution (for all values of k) eluded mathematicians until 1968, when Alan Baker presented the framework for constructing a general solution. However, before this full solution, Euler made some headway with some specific examples in the 18th century, specifically by the utilization of complex numbers. Example 1.1 Consider the equation x2 + 2 = y3. (5; 3) and (−5; 3) are easy to find solutions, but it's 2 not obviousp whetherp or not there are others or whatp they might be. Euler realized by factoring x + 2 as (x + 2i)(x − 2i) and then using the facts that Z[ 2i] is a UFD andp the factorsp given are relatively prime that the solutions above are the only solutions,p namelyp because (x + 2i)(x − 2i) being a cube forces each of these factors to be a cube (i.e. (x + 2i) = (a + b 2i)3 for some integers a and b), from which we deduce our solutions to x2 + 2 = y3 by equating coefficients. Moreover, we see from the resulting system of equations that (5; 3) and (−5; 3) are the ONLY solutions. With this insight, Euler then realized that the proof for Fermat's Last Theorem would necessarily require similar methods. For example, as he realized in the year 1753 with x3 + y3 = z3, by considering the equation in Z[ζ3] (where ζ3 is a primitive cube root of 1), which is a UFD, one obtains a contradiction by assuming the solvability of the equation. Indeed, if there were a triple (x; y; z) satisfying this equation (z > 0), then 3 3 3 2 3 x + y = z would force (x + y)(x + ζ3y)(x + ζ3 y) = z , meaning each of the 3 factors on the left hand side 2 would have to be cubes of numbers that look like a + bζ3 + cζ3 . Then, using these, we could find a triple (a; b; c) (where 0 < c < z) solving the equation. Iterating, we get an infinite decreasing sequence of positive integers z > c > ··· , which is absurd. Fermat gave a valid proof that his last theorem holds for n = 4. It is also apparent that if n = pm where p is an odd prime, then xn + yn = zn would hold if and only if (xm)p + (ym)p = (zm)p. Therefore, it would suffice to prove Fermat's Last Theorem for odd primes p. Therefore, we restrict to this setting, if p p p 2 p−1 p we write x + y = z as (x + y)(x + yζp)(x + yζp ) ··· (x + yζp ) = z , assuming Z[ζp] is a UFD, we'd get a contradiction in the same was as p = 3, thus proving Fermat's Last Theorem. This is the purported proof that Lam´epresented in 1847 which was disproved by Ernst Kummer, who showed that Z[ζ23] is NOT a UFD. In fact, Z[ζp] is NEVER a UFD if p ≥ 23. 2 3 22 Recall that the norm of an element f(ζ23) 2 Z[ζ23] is the product N(f(ζ23)) = f(ζ23)f(ζ23)f(ζ23) ··· f(ζ23 ), which is an ordinary integer. With the help of Jacobi in this work, he found that the norm of any element 2 2 f(ζ23) 2 Z[ζ23] is an integer of the form (x + 23y )=4, and this means that no such f(ζ23) can have norm 47 because 4·47 = 188 can't be written in the form x2 +23y2 where x and y are integers. This led him to realize 21 21 that in Z[ζ23], since N(1 − ζ23 + ζ23 ) = 47 · 139, 1 − ζ23 + ζ23 is irreducible (if you could factor it, something 1 would have norm 47) and not prime (it divides 47 · 139 but can't divide 47 or 39 because it doesn't divide 22 139 21 their norms, 47 and 47 ). Thus, we've written 47 · 39 = N(1 − ζ23 + ζ23 ) as a product of 22 irreducible 23−n −n 10 13 8 15 7 16 2 elements. Also, notice that since ζ23 = ζ23 , we have that N(ζ23 + ζ23 + ζ23 + ζ23 + ζ23 + ζ23 ) = 47 10 13 8 15 4 19 2 is a product of 11 irreducible elements, each squared, and N(ζ23 + ζ23 + ζ23 + ζ23 + ζ23 + ζ23 = 139 is a product of 11 irreducible elements, each squared. Therefore, by taking half the factors from each, we can write ±47 · 139 as a product of 22 irreducible factors in a DIFFERENT way than we did before. At the time, Kummer had been studying higher reciprocity laws and was seeing the connection between these and the study of cyclotomic field extensions. One might ask what reciprocity laws have to do with cyclotomic extensions. Before we give a sense of Kummer's work on that question, it's important to con- sider the context: namely the findings and methods of Gauss when working with quadratic forms. In his revolutionary number theory text Disquisitiones Arithmeticae (published in 1798, when he was only 21 years old; the book was revolutionary in its rigor and in how it set the foundations for number theory to come), Gauss proved the law of quadratic reciprocity and various results about binary quadratic forms (that is, polynomials of the form f(x; y) = ax2 + bxy + cy2 2 Z[x; y]) by introducing the Gaussian integers Z[i], and he prophetically proclaimed that ordinary arithmetic with natural numbers cannot be used to establish a general theory for higher reciprocity laws and that \such a theory demands that the domain of higher arithmetic be endlessly enlarged." Now, let's return to Kummer. Recall that the Legendre symbol for two distinct odd primes p and q p is denoted by q and is 1 if p is a square modulo q and −1 if not. The law of quadratic reciprocity states that 8 q p < if p ≡ 1 or q ≡ 1 mod 4 = p q q :− p otherwise or equivalently p q = (−1)(p−1)(q−1)=4: q p ∼ p Let q ≡ 1 mod 4. In general, Gal( (ζq)= ) = q−1 and (ζq) contains ( q). Have σp denote the p Q Q Z Q Q σp( q) p q p p p−1 (p−1)=2 Frobenius map a 7! a . q = ( q) ≡ q mod p, so this is 1 if and only if p = 1 by Euler's a (p−1)=2 criterion, which states p ≡ a mod p for any prime p and any natural number a coprime to p. p The case q ≡ 3 mod 4 is solved similarly by considering Q( −q) instead, which gets us (−1)(p−1)=2 instead. With ideas like this in mind, and with the formulation of his \ideal numbers," Kummer was able to extend this kind of reasoning to higher reciprocity laws (i.e. determining when p ≡ an mod q for some integer a). 2 Kummer's Ideal Numbers in the Cyclotomic Integers Case 21 Let's return to the case of Z[ζ23] and f(ζ23) = 1−ζ23 +ζ23 . What I didn't mention is that we CAN'T find any prime factors for 47 within Z[ζ23]! Indeed, if some g(ζ23) were a prime factor of 47, its norm would have to 22 divide N(47) = 47 AND g(ζ23) would have to divide 47·139 = N(f(ζ23)), which would mean g(ζ23) divides one of the 22 factors of N(f(ζ23)), say h(ζ23) since it's prime, which would then mean N(g(ζ23))jN(h(ζ23)), forcing N(g(ζ23)) = 47; which is impossible! Kummer then thought: what if we introduced \ideal prime numbers" outside the given number system Z[ζ23] that could result in unique factorization into products of primes? To see how this works, let's continue with this example. Ideally, since N(f) = 47 · 139, we would want to decompose f into a product of a prime with norm 47 and a prime with norm 139. In taking these norms, we would want no duplication and all factors in this norm to be prime, which would mean we'd decompose 47 as a product of 22 distinct ideal primes (our ideal prime and its \conjugates," one for each multiplicand in N(f)), only one of which also divides f. N(f(ζ23)) Let P be the hypothetical prime divisor that divides both 47 and f(ζ23).Then, let Ψf (ζ23) := , i.e. f(ζ23) the product of the other multiplicands of N(f) besides f itself. Necessarily, Ψf is not divisible by P , but it 2 is divisible by all other \ideal prime factors" of 47. This means that fΨf is divisible by 47 if and only if f is divisible by P .
Recommended publications
  • La Controverse De 1874 Entre Camille Jordan Et Leopold Kronecker
    La controverse de 1874 entre Camille Jordan et Leopold Kronecker. * Frédéric Brechenmacher ( ). Résumé. Une vive querelle oppose en 1874 Camille Jordan et Leopold Kronecker sur l’organisation de la théorie des formes bilinéaires, considérée comme permettant un traitement « général » et « homogène » de nombreuses questions développées dans des cadres théoriques variés au XIXe siècle et dont le problème principal est reconnu comme susceptible d’être résolu par deux théorèmes énoncés indépendamment par Jordan et Weierstrass. Cette controverse, suscitée par la rencontre de deux théorèmes que nous considèrerions aujourd’hui équivalents, nous permettra de questionner l’identité algébrique de pratiques polynomiales de manipulations de « formes » mises en œuvre sur une période antérieure aux approches structurelles de l’algèbre linéaire qui donneront à ces pratiques l’identité de méthodes de caractérisation des classes de similitudes de matrices. Nous montrerons que les pratiques de réductions canoniques et de calculs d’invariants opposées par Jordan et Kronecker manifestent des identités multiples indissociables d’un contexte social daté et qui dévoilent des savoirs tacites, des modes de pensées locaux mais aussi, au travers de regards portés sur une histoire à long terme impliquant des travaux d’auteurs comme Lagrange, Laplace, Cauchy ou Hermite, deux philosophies internes sur la signification de la généralité indissociables d’idéaux disciplinaires opposant algèbre et arithmétique. En questionnant les identités culturelles de telles pratiques cet article vise à enrichir l’histoire de l’algèbre linéaire, souvent abordée dans le cadre de problématiques liées à l’émergence de structures et par l’intermédiaire de l’histoire d’une théorie, d’une notion ou d’un mode de raisonnement.
    [Show full text]
  • Kummer, Regular Primes, and Fermat's Last Theorem
    e H a r v a e Harvard College r d C o l l e Mathematics Review g e M a t h e m Vol. 2, No. 2 Fall 2008 a t i c s In this issue: R e v i ALLAN M. FELDMAN and ROBERTO SERRANO e w , Arrow’s Impossibility eorem: Two Simple Single-Profile Versions V o l . 2 YUFEI ZHAO , N Young Tableaux and the Representations of the o . Symmetric Group 2 KEITH CONRAD e Congruent Number Problem A Student Publication of Harvard College Website. Further information about The HCMR can be Sponsorship. Sponsoring The HCMR supports the un- found online at the journal’s website, dergraduate mathematics community and provides valuable high-level education to undergraduates in the field. Sponsors http://www.thehcmr.org/ (1) will be listed in the print edition of The HCMR and on a spe- cial page on the The HCMR’s website, (1). Sponsorship is available at the following levels: Instructions for Authors. All submissions should in- clude the name(s) of the author(s), institutional affiliations (if Sponsor $0 - $99 any), and both postal and e-mail addresses at which the cor- Fellow $100 - $249 responding author may be reached. General questions should Friend $250 - $499 be addressed to Editors-In-Chief Zachary Abel and Ernest E. Contributor $500 - $1,999 Fontes at [email protected]. Donor $2,000 - $4,999 Patron $5,000 - $9,999 Articles. The Harvard College Mathematics Review invites Benefactor $10,000 + the submission of quality expository articles from undergrad- uate students.
    [Show full text]
  • Methodology and Metaphysics in the Development of Dedekind's Theory
    Methodology and metaphysics in the development of Dedekind’s theory of ideals Jeremy Avigad 1 Introduction Philosophical concerns rarely force their way into the average mathematician’s workday. But, in extreme circumstances, fundamental questions can arise as to the legitimacy of a certain manner of proceeding, say, as to whether a particular object should be granted ontological status, or whether a certain conclusion is epistemologically warranted. There are then two distinct views as to the role that philosophy should play in such a situation. On the first view, the mathematician is called upon to turn to the counsel of philosophers, in much the same way as a nation considering an action of dubious international legality is called upon to turn to the United Nations for guidance. After due consideration of appropriate regulations and guidelines (and, possibly, debate between representatives of different philosophical fac- tions), the philosophers render a decision, by which the dutiful mathematician abides. Quine was famously critical of such dreams of a ‘first philosophy.’ At the oppos- ite extreme, our hypothetical mathematician answers only to the subject’s internal concerns, blithely or brashly indifferent to philosophical approval. What is at stake to our mathematician friend is whether the questionable practice provides a proper mathematical solution to the problem at hand, or an appropriate mathematical understanding; or, in pragmatic terms, whether it will make it past a journal referee. In short, mathematics is as mathematics does, and the philosopher’s task is simply to make sense of the subject as it evolves and certify practices that are already in place.
    [Show full text]
  • Commutative Ideal Theory Without Finiteness Conditions: Completely Irreducible Ideals
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 358, Number 7, Pages 3113–3131 S 0002-9947(06)03815-3 Article electronically published on March 1, 2006 COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS: COMPLETELY IRREDUCIBLE IDEALS LASZLO FUCHS, WILLIAM HEINZER, AND BRUCE OLBERDING Abstract. An ideal of a ring is completely irreducible if it is not the intersec- tion of any set of proper overideals. We investigate the structure of completely irrreducible ideals in a commutative ring without finiteness conditions. It is known that every ideal of a ring is an intersection of completely irreducible ideals. We characterize in several ways those ideals that admit a representation as an irredundant intersection of completely irreducible ideals, and we study the question of uniqueness of such representations. We characterize those com- mutative rings in which every ideal is an irredundant intersection of completely irreducible ideals. Introduction Let R denote throughout a commutative ring with 1. An ideal of R is called irreducible if it is not the intersection of two proper overideals; it is called completely irreducible if it is not the intersection of any set of proper overideals. Our goal in this paper is to examine the structure of completely irreducible ideals of a commutative ring on which there are imposed no finiteness conditions. Other recent papers that address the structure and ideal theory of rings without finiteness conditions include [3], [4], [8], [10], [14], [15], [16], [19], [25], [26]. AproperidealA of R is completely irreducible if and only if there is an element x ∈ R such that A is maximal with respect to not containing x.
    [Show full text]
  • L-Functions and Non-Abelian Class Field Theory, from Artin to Langlands
    L-functions and non-abelian class field theory, from Artin to Langlands James W. Cogdell∗ Introduction Emil Artin spent the first 15 years of his career in Hamburg. Andr´eWeil charac- terized this period of Artin's career as a \love affair with the zeta function" [77]. Claude Chevalley, in his obituary of Artin [14], pointed out that Artin's use of zeta functions was to discover exact algebraic facts as opposed to estimates or approxi- mate evaluations. In particular, it seems clear to me that during this period Artin was quite interested in using the Artin L-functions as a tool for finding a non- abelian class field theory, expressed as the desire to extend results from relative abelian extensions to general extensions of number fields. Artin introduced his L-functions attached to characters of the Galois group in 1923 in hopes of developing a non-abelian class field theory. Instead, through them he was led to formulate and prove the Artin Reciprocity Law - the crowning achievement of abelian class field theory. But Artin never lost interest in pursuing a non-abelian class field theory. At the Princeton University Bicentennial Conference on the Problems of Mathematics held in 1946 \Artin stated that `My own belief is that we know it already, though no one will believe me { that whatever can be said about non-Abelian class field theory follows from what we know now, since it depends on the behavior of the broad field over the intermediate fields { and there are sufficiently many Abelian cases.' The critical thing is learning how to pass from a prime in an intermediate field to a prime in a large field.
    [Show full text]
  • Algebraic Geometry Over Groups I: Algebraic Sets and Ideal Theory
    Algebraic geometry over groups I: Algebraic sets and ideal theory Gilbert Baumslag Alexei Myasnikov Vladimir Remeslennikov Abstract The object of this paper, which is the ¯rst in a series of three, is to lay the foundations of the theory of ideals and algebraic sets over groups. TABLE OF CONTENTS 1. INTRODUCTION 1.1 Some general comments 1.2 The category of G-groups 1.3 Notions from commutative algebra 1.4 Separation and discrimination 1.5 Ideals 1.6 The a±ne geometry of G-groups 1.7 Ideals of algebraic sets 1.8 The Zariski topology of equationally Noetherian groups 1.9 Decomposition theorems 1.10 The Nullstellensatz 1.11 Connections with representation theory 1.12 Related work 2. NOTIONS FROM COMMUTATIVE ALGEBRA 2.1 Domains 2.2 Equationally Noetherian groups 2.3 Separation and discrimination 2.4 Universal groups 1 3. AFFINE ALGEBRAIC SETS 3.1 Elementary properties of algebraic sets and the Zariski topology 3.2 Ideals of algebraic sets 3.3 Morphisms of algebraic sets 3.4 Coordinate groups 3.5 Equivalence of the categories of a±ne algebraic sets and coordinate groups 3.6 The Zariski topology of equationally Noetherian groups 4. IDEALS 4.1 Maximal ideals 4.2 Radicals 4.3 Irreducible and prime ideals 4.4 Decomposition theorems for ideals 5. COORDINATE GROUPS 5.1 Abstract characterization of coordinate groups 5.2 Coordinate groups of irreducible algebraic sets 5.3 Decomposition theorems for coordinate groups 6. THE NULLSTELLENSATZ 7. BIBLIOGRAPHY 2 1 Introduction 1.1 Some general comments The beginning of classical algebraic geometry is concerned with the geometry of curves and their higher dimensional analogues.
    [Show full text]
  • Ideals and Class Groups of Number Fields
    Ideals and class groups of number fields A thesis submitted To Kent State University in partial Fulfillment of the requirements for the Degree of Master of Science by Minjiao Yang August, 2018 ○C Copyright All rights reserved Except for previously published materials Thesis written by Minjiao Yang B.S., Kent State University, 2015 M.S., Kent State University, 2018 Approved by Gang Yu , Advisor Andrew Tonge , Chair, Department of Mathematics Science James L. Blank , Dean, College of Arts and Science TABLE OF CONTENTS…………………………………………………………...….…...iii ACKNOWLEDGEMENTS…………………………………………………………....…...iv CHAPTER I. Introduction…………………………………………………………………......1 II. Algebraic Numbers and Integers……………………………………………......3 III. Rings of Integers…………………………………………………………….......9 Some basic properties…………………………………………………………...9 Factorization of algebraic integers and the unit group………………….……....13 Quadratic integers……………………………………………………………….17 IV. Ideals……..………………………………………………………………….......21 A review of ideals of commutative……………………………………………...21 Ideal theory of integer ring 풪푘…………………………………………………..22 V. Ideal class group and class number………………………………………….......28 Finiteness of 퐶푙푘………………………………………………………………....29 The Minkowski bound…………………………………………………………...32 Further remarks…………………………………………………………………..34 BIBLIOGRAPHY…………………………………………………………….………….......36 iii ACKNOWLEDGEMENTS I want to thank my advisor Dr. Gang Yu who has been very supportive, patient and encouraging throughout this tremendous and enchanting experience. Also, I want to thank my thesis committee members Dr. Ulrike Vorhauer and Dr. Stephen Gagola who help me correct mistakes I made in my thesis and provided many helpful advices. iv Chapter 1. Introduction Algebraic number theory is a branch of number theory which leads the way in the world of mathematics. It uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Concepts and results in algebraic number theory are very important in learning mathematics.
    [Show full text]
  • Open Problems in Commutative Ring Theory
    Open problems in commutative ring theory Paul-Jean Cahen , Marco Fontana y, Sophie Frisch zand Sarah Glaz x December 23, 2013 Abstract This article consists of a collection of open problems in commuta- tive algebra. The collection covers a wide range of topics from both Noetherian and non-Noetherian ring theory and exhibits a variety of re- search approaches, including the use of homological algebra, ring theoretic methods, and star and semistar operation techniques. The problems were contributed by the authors and editors of this volume, as well as other researchers in the area. Keywords: Prüfer ring, homological dimensions, integral closure, group ring, grade, complete ring, McCoy ring, Straight domain, di- vided domain, integer valued polynomials, factorial, density, matrix ring, overring, absorbing ideal, Kronecker function ring, stable ring, divisorial domain, Mori domain, finite character, PvMD, semistar operation, star operation, Jaffard domain, locally tame domain, fac- torization, spectrum of a ring, integral closure of an ideal, Rees al- gebra, Rees valuation. Mthematics Subject Classification (2010): 13-02; 13A05; 13A15; 13A18; 13B22; 13C15; 13D05; 13D99; 13E05; 13F05; 13F20; 13F30; 13G05 1 Introduction This article consists of a collection of open problems in commutative algebra. The collection covers a wide range of topics from both Noetherian and non- Noetherian ring theory and exhibits a variety of research approaches, including Paul-Jean Cahen (Corresponding author), 12 Traverse du Lavoir de Grand-Mère, 13100 Aix en Provence, France. e-mail: [email protected] yMarco Fontana, Dipartimento di Matematica e Fisica, Università degli Studi Roma Tre, Largo San Leonardo Murialdo 1, 00146 Roma, Italy. e-mail: [email protected] zSophie Frisch, Mathematics Department, Graz University of Technology, Steyrergasse 30, 8010 Graz, Austria.
    [Show full text]
  • Dedekind's 1871 Version of the Theory of Ideals∗
    Dedekind's 1871 version of the theory of ideals¤ Translated by Jeremy Avigad March 19, 2004 Translator's introduction By the middle of the nineteenth century, it had become clear to mathe- maticians that the study of ¯nite ¯eld extensions of the rational numbers is indispensable to number theory, even if one's ultimate goal is to understand properties of diophantine expressions and equations in the ordinary integers. It can happen, however, that the \integers" in such extensions fail to satisfy unique factorization, a property that is central to reasoning about the or- dinary integers. In 1844, Ernst Kummer observed that unique factorization fails for the cyclotomic integers with exponent 23, i.e. the ring Z[³] of inte- gers of the ¯eld Q(³), where ³ is a primitive twenty-third root of unity. In 1847, he published his theory of \ideal divisors" for cyclotomic integers with prime exponent. This was to remedy the situation by introducing, for each such ring of integers, an enlarged domain of divisors, and showing that each integer factors uniquely as a product of these. He did not actually construct these integers, but, rather, showed how one could characterize their behav- ior qua divisibility in terms of ordinary operations on the associated ring of integers. Richard Dedekind and Leopold Kronecker later took up the task of ex- tending the theory to the integers in arbitrary ¯nite extensions of the ratio- nals. Despite their common influences and goals, however, the theories they ¤Work on this translation has been supported by a New Directions fellowship from the Andrew W.
    [Show full text]
  • Sir Andrew Wiles Awarded Abel Prize
    Sir Andrew J. Wiles Awarded Abel Prize Elaine Kehoe with The Norwegian Academy of Science and Letters official Press Release ©Abelprisen/DNVA/Calle Huth. Courtesy of the Abel Prize Photo Archive. ©Alain Goriely, University of Oxford. Courtesy the Abel Prize Photo Archive. Sir Andrew Wiles received the 2016 Abel Prize at the Oslo award ceremony on May 24. The Norwegian Academy of Science and Letters has carries a cash award of 6,000,000 Norwegian krone (ap- awarded the 2016 Abel Prize to Sir Andrew J. Wiles of the proximately US$700,000). University of Oxford “for his stunning proof of Fermat’s Citation Last Theorem by way of the modularity conjecture for Number theory, an old and beautiful branch of mathemat- semistable elliptic curves, opening a new era in number ics, is concerned with the study of arithmetic properties of theory.” The Abel Prize is awarded by the Norwegian Acad- the integers. In its modern form the subject is fundamen- tally connected to complex analysis, algebraic geometry, emy of Science and Letters. It recognizes contributions of and representation theory. Number theoretic results play extraordinary depth and influence to the mathematical an important role in our everyday lives through encryption sciences and has been awarded annually since 2003. It algorithms for communications, financial transactions, For permission to reprint this article, please contact: and digital security. [email protected]. Fermat’s Last Theorem, first formulated by Pierre de DOI: http://dx.doi.org/10.1090/noti1386 Fermat in the seventeenth century, is the assertion that 608 NOTICES OF THE AMS VOLUME 63, NUMBER 6 the equation xn+yn=zn has no solutions in positive integers tophe Breuil, Brian Conrad, Fred Diamond, and Richard for n>2.
    [Show full text]
  • A History of Stickelberger's Theorem
    A History of Stickelberger’s Theorem A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for graduation with research distinction in Mathematics in the undergraduate colleges of The Ohio State University by Robert Denomme The Ohio State University June 8, 2009 Project Advisor: Professor Warren Sinnott, Department of Mathematics 1 Contents Introduction 2 Acknowledgements 4 1. Gauss’s Cyclotomy and Quadratic Reciprocity 4 1.1. Solution of the General Equation 4 1.2. Proof of Quadratic Reciprocity 8 2. Jacobi’s Congruence and Cubic Reciprocity 11 2.1. Jacobi Sums 11 2.2. Proof of Cubic Reciprocity 16 3. Kummer’s Unique Factorization and Eisenstein Reciprocity 19 3.1. Ideal Numbers 19 3.2. Proof of Eisenstein Reciprocity 24 4. Stickelberger’s Theorem on Ideal Class Annihilators 28 4.1. Stickelberger’s Theorem 28 5. Iwasawa’s Theory and The Brumer-Stark Conjecture 39 5.1. The Stickelberger Ideal 39 5.2. Catalan’s Conjecture 40 5.3. Brumer-Stark Conjecture 41 6. Conclusions 42 References 42 2 Introduction The late Professor Arnold Ross was well known for his challenge to young students, “Think deeply of simple things.” This attitude applies to no story better than the one on which we are about to embark. This is the century long story of the generalizations of a single idea which first occurred to the 19 year old prodigy, Gauss, and which he was able to write down in no less than 4 pages. The questions that the young genius raised by offering the idea in those 4 pages, however, would torment the greatest minds in all the of the 19th century.
    [Show full text]
  • New Constructive Methods in Classical Ideal Theory
    JOURNALOF ALGEBRA 100, 138-178 (1986) New Constructive Methods in Classical Ideal Theory H. MICHAEL MILLER FB Mathematik & Informatik, FernUniversitiit, D 5800 Hagen I, Federal Republic of Germany AND FERDINANDOMORA Istituto di Matematica, Universitri di Genova, Genova, Italy Communicated by D. A. Buchsbaum Received August 10, 1983 The recent development of Computer Algebra allows us to take up problems of classical Ideal Theory, for which constructive solutions by nearly unfeasible algorithms exist like the problem of deciding whether a polynomial belongs to a given ideal (G. Hermann, Math. Ann. 95 (1926) 736-788). Even Macaulay’s methods by using H-bases are not satisfactory, at least when considering modules. The concept of Grobner bases, introduced in Computer Algebra by Buchberger, allows us to find feasible algorithms for many problems of classical Ideal Theory by transforming them into some low dimensional systems of linear equations. Our aim is to demonstrate the effectivity of this new concept. Considering only polynomial rings P := k[X,,..., X.1, k a field, we generalize in Part I the notion of Grijbner bases to modules, present some equivalent properties characterizing these bases and show their good computational qualities. In Part II we construct starting with Grobner bases of ideals explicit free solutions, where all the bases of submodules under consideration are also Grobner bases, and present a reduction strategy for obtaining shorter resolutions, where all the bases have also favourable properties (T-bases). Part III deals with applications. We propose a method for constructing minimal resolutions starting with the resolutions of Part II and present a con- venient way for computing the Hilbert function.
    [Show full text]