Choosing a Data Model and Query Language for Provenance The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Holland, David A., Uri Braun, Diana Maclean, Kiran-Kumar Muniswamy-Reddy, and Margo I. Seltzer. 2008. Choosing a data model and query language for provenance. In Provenance and Annotation of Data and Processes: Proceedings of the 2nd International Provenance and Annotation Workshop (IPAW '08), June 17-18, 2008, Salt Lake City, UT, ed. Juliana Freire, David Koop, and Luc Moreau. Berlin: Springer. Special Issue. Lecture Notes in Computer Science 5272. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:8747959 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Choosing a Data Model and Query Language for Provenance David A. Holland, Uri Braun, Diana Maclean, Kiran-Kumar Muniswamy-Reddy, Margo I. Seltzer Harvard University, Cambridge, Massachusetts
[email protected] Abstract. The ancestry relationships found in provenance form a di- rected graph. Many provenance queries require traversal of this graph. The data and query models for provenance should directly and naturally address this graph-centric nature of provenance. To that end, we set out the requirements for a provenance data and query model and discuss why the common solutions (relational, XML, RDF) fall short. A semistruc- tured data model is more suited for handling provenance.