Relational Database Fundamentals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Not ACID, Not BASE, but SALT a Transaction Processing Perspective on Blockchains
Not ACID, not BASE, but SALT A Transaction Processing Perspective on Blockchains Stefan Tai, Jacob Eberhardt and Markus Klems Information Systems Engineering, Technische Universitat¨ Berlin fst, je, [email protected] Keywords: SALT, blockchain, decentralized, ACID, BASE, transaction processing Abstract: Traditional ACID transactions, typically supported by relational database management systems, emphasize database consistency. BASE provides a model that trades some consistency for availability, and is typically favored by cloud systems and NoSQL data stores. With the increasing popularity of blockchain technology, another alternative to both ACID and BASE is introduced: SALT. In this keynote paper, we present SALT as a model to explain blockchains and their use in application architecture. We take both, a transaction and a transaction processing systems perspective on the SALT model. From a transactions perspective, SALT is about Sequential, Agreed-on, Ledgered, and Tamper-resistant transaction processing. From a systems perspec- tive, SALT is about decentralized transaction processing systems being Symmetric, Admin-free, Ledgered and Time-consensual. We discuss the importance of these dual perspectives, both, when comparing SALT with ACID and BASE, and when engineering blockchain-based applications. We expect the next-generation of decentralized transactional applications to leverage combinations of all three transaction models. 1 INTRODUCTION against. Using the admittedly contrived acronym of SALT, we characterize blockchain-based transactions There is a common belief that blockchains have the – from a transactions perspective – as Sequential, potential to fundamentally disrupt entire industries. Agreed, Ledgered, and Tamper-resistant, and – from Whether we are talking about financial services, the a systems perspective – as Symmetric, Admin-free, sharing economy, the Internet of Things, or future en- Ledgered, and Time-consensual. -
Database Systems Administrator FLSA: Exempt
CLOVIS UNIFIED SCHOOL DISTRICT POSITION DESCRIPTION Position: Database Systems Administrator FLSA: Exempt Department/Site: Technology Services Salary Grade: 127 Reports to/Evaluated by: Chief Technology Officer Salary Schedule: Classified Management SUMMARY Gathers requirements and provisions servers to meet the district’s need for database storage. Installs and configures SQL Server according to the specifications of outside software vendors and/or the development group. Designs and executes a security scheme to assure safety of confidential data. Implements and manages a backup and disaster recovery plan. Monitors the health and performance of database servers and database applications. Troubleshoots database application performance issues. Automates monitoring and maintenance tasks. Maintains service pack deployment and upgrades servers in consultation with the developer group and outside vendors. Deploys and schedules SQL Server Agent tasks. Implements and manages replication topologies. Designs and deploys datamarts under the supervision of the developer group. Deploys and manages cubes for SSAS implementations. DISTINGUISHING CAREER FEATURES The Database Systems Administrator is a senior level analyst position requiring specialized education and training in the field of study typically resulting in a degree. Advancement to this position would require competency in the design and administration of relational databases designated for business, enterprise, and student information. Advancement from this position is limited to supervisory management positions. ESSENTIAL DUTIES AND RESPONSIBILITIES Implements, maintains and administers all district supported versions of Microsoft SQL as well as other DBMS as needed. Responsible for database capacity planning and involvement in server capacity planning. Responsible for verification of backups and restoration of production and test databases. Designs, implements and maintains a disaster recovery plan for critical data resources. -
Keys Are, As Their Name Suggests, a Key Part of a Relational Database
The key is defined as the column or attribute of the database table. For example if a table has id, name and address as the column names then each one is known as the key for that table. We can also say that the table has 3 keys as id, name and address. The keys are also used to identify each record in the database table . Primary Key:- • Every database table should have one or more columns designated as the primary key . The value this key holds should be unique for each record in the database. For example, assume we have a table called Employees (SSN- social security No) that contains personnel information for every employee in our firm. We’ need to select an appropriate primary key that would uniquely identify each employee. Primary Key • The primary key must contain unique values, must never be null and uniquely identify each record in the table. • As an example, a student id might be a primary key in a student table, a department code in a table of all departments in an organisation. Unique Key • The UNIQUE constraint uniquely identifies each record in a database table. • Allows Null value. But only one Null value. • A table can have more than one UNIQUE Key Column[s] • A table can have multiple unique keys Differences between Primary Key and Unique Key: • Primary Key 1. A primary key cannot allow null (a primary key cannot be defined on columns that allow nulls). 2. Each table can have only one primary key. • Unique Key 1. A unique key can allow null (a unique key can be defined on columns that allow nulls.) 2. -
MDA Process to Extract the Data Model from Document-Oriented Nosql Database
MDA Process to Extract the Data Model from Document-oriented NoSQL Database Amal Ait Brahim, Rabah Tighilt Ferhat and Gilles Zurfluh Toulouse Institute of Computer Science Research (IRIT), Toulouse Capitole University, Toulouse, France Keywords: Big Data, NoSQL, Model Extraction, Schema Less, MDA, QVT. Abstract: In recent years, the need to use NoSQL systems to store and exploit big data has been steadily increasing. Most of these systems are characterized by the property "schema less" which means absence of the data model when creating a database. This property brings an undeniable flexibility by allowing the evolution of the model during the exploitation of the base. However, query expression requires a precise knowledge of the data model. In this article, we propose a process to automatically extract the physical model from a document- oriented NoSQL database. To do this, we use the Model Driven Architecture (MDA) that provides a formal framework for automatic model transformation. From a NoSQL database, we propose formal transformation rules with QVT to generate the physical model. An experimentation of the extraction process was performed on the case of a medical application. 1 INTRODUCTION however that it is absent in some systems such as Cassandra and Riak TS. The "schema less" property Recently, there has been an explosion of data offers undeniable flexibility by allowing the model to generated and accumulated by more and more evolve easily. For example, the addition of new numerous and diversified computing devices. attributes in an existing line is done without Databases thus constituted are designated by the modifying the other lines of the same type previously expression "Big Data" and are characterized by the stored; something that is not possible with relational so-called "3V" rule (Chen, 2014). -
The Relational Data Model and Relational Database Constraints
chapter 33 The Relational Data Model and Relational Database Constraints his chapter opens Part 2 of the book, which covers Trelational databases. The relational data model was first introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd 1970), and it attracted immediate attention due to its simplicity and mathematical foundation. The model uses the concept of a mathematical relation—which looks somewhat like a table of values—as its basic building block, and has its theoretical basis in set theory and first-order predicate logic. In this chapter we discuss the basic characteristics of the model and its constraints. The first commercial implementations of the relational model became available in the early 1980s, such as the SQL/DS system on the MVS operating system by IBM and the Oracle DBMS. Since then, the model has been implemented in a large num- ber of commercial systems. Current popular relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and Rdb (from Oracle), Sybase DBMS (from Sybase) and SQLServer and Access (from Microsoft). In addi- tion, several open source systems, such as MySQL and PostgreSQL, are available. Because of the importance of the relational model, all of Part 2 is devoted to this model and some of the languages associated with it. In Chapters 4 and 5, we describe the SQL query language, which is the standard for commercial relational DBMSs. Chapter 6 covers the operations of the relational algebra and introduces the relational calculus—these are two formal languages associated with the relational model. -
Data Definition Language
1 Structured Query Language SQL, or Structured Query Language is the most popular declarative language used to work with Relational Databases. Originally developed at IBM, it has been subsequently standard- ized by various standards bodies (ANSI, ISO), and extended by various corporations adding their own features (T-SQL, PL/SQL, etc.). There are two primary parts to SQL: The DDL and DML (& DCL). 2 DDL - Data Definition Language DDL is a standard subset of SQL that is used to define tables (database structure), and other metadata related things. The few basic commands include: CREATE DATABASE, CREATE TABLE, DROP TABLE, and ALTER TABLE. There are many other statements, but those are the ones most commonly used. 2.1 CREATE DATABASE Many database servers allow for the presence of many databases1. In order to create a database, a relatively standard command ‘CREATE DATABASE’ is used. The general format of the command is: CREATE DATABASE <database-name> ; The name can be pretty much anything; usually it shouldn’t have spaces (or those spaces have to be properly escaped). Some databases allow hyphens, and/or underscores in the name. The name is usually limited in size (some databases limit the name to 8 characters, others to 32—in other words, it depends on what database you use). 2.2 DROP DATABASE Just like there is a ‘create database’ there is also a ‘drop database’, which simply removes the database. Note that it doesn’t ask you for confirmation, and once you remove a database, it is gone forever2. DROP DATABASE <database-name> ; 2.3 CREATE TABLE Probably the most common DDL statement is ‘CREATE TABLE’. -
Drawing-A-Database-Schema.Pdf
Drawing A Database Schema Padraig roll-out her osteotome pluckily, trillion and unacquainted. Astronomic Dominic haemorrhage operosely. Dilative Parrnell jury-rigging: he bucketing his sympatholytics tonishly and litho. Publish your schema. And database user schema of databases in berlin for your drawing created in a diagram is an er diagram? And you know some they say, before what already know. You can generate the DDL and modify their hand for SQLite, although to it ugly. How can should improve? This can work online, a record is crucial to reduce faults in. The mouse pointer should trace to an icon with three squares. Visual Database Creation with MySQL Workbench Code. In database but a schema pronounced skee-muh or skee-mah is the organisation and structure of a syringe Both schemas and. Further more complex application performance, concept was that will inform your databases to draw more control versions. Typically goes in a schema from any sql for these terms of maintenance of the need to do you can. Or database schemas you draw data models commonly used to select all databases by drawing page helpful is in a good as methods? It is far to bath to target what suits you best. Gallery of training courses. Schema for database schema for. Help and Training on mature site? You can jump of ER diagrams as a simplified form let the class diagram and carpet may be easier for create database design team members to. This token will be enrolled in quickly create drawings by enabled the left side of the process without realising it? Understanding a Schema in Psychology Verywell Mind. -
SQL Vs Nosql: a Performance Comparison
SQL vs NoSQL: A Performance Comparison Ruihan Wang Zongyan Yang University of Rochester University of Rochester [email protected] [email protected] Abstract 2. ACID Properties and CAP Theorem We always hear some statements like ‘SQL is outdated’, 2.1. ACID Properties ‘This is the world of NoSQL’, ‘SQL is still used a lot by We need to refer the ACID properties[12]: most of companies.’ Which one is accurate? Has NoSQL completely replace SQL? Or is NoSQL just a hype? SQL Atomicity (Structured Query Language) is a standard query language A transaction is an atomic unit of processing; it should for relational database management system. The most popu- either be performed in its entirety or not performed at lar types of RDBMS(Relational Database Management Sys- all. tems) like Oracle, MySQL, SQL Server, uses SQL as their Consistency preservation standard database query language.[3] NoSQL means Not A transaction should be consistency preserving, meaning Only SQL, which is a collection of non-relational data stor- that if it is completely executed from beginning to end age systems. The important character of NoSQL is that it re- without interference from other transactions, it should laxes one or more of the ACID properties for a better perfor- take the database from one consistent state to another. mance in desired fields. Some of the NOSQL databases most Isolation companies using are Cassandra, CouchDB, Hadoop Hbase, A transaction should appear as though it is being exe- MongoDB. In this paper, we’ll outline the general differences cuted in iso- lation from other transactions, even though between the SQL and NoSQL, discuss if Relational Database many transactions are execut- ing concurrently. -
Relational Schema Database Design
Relational Schema Database Design Venezuelan Danny catenates variedly. Fleeciest Giraldo cane ingeniously. Wolf is quadricentennial and administrate thereat while inflatable Murray succor and desert. So why the users are vital for relational schema design of data When and database relate to access time in each relation cannot delete all databases where employees. Parallel create index and concatenated indexes are also supported. It in database design databases are related is designed relation bc, and indeed necessary transformations in. The column represents the set of values for a specific attribute. They relate tables achieve hiding object schemas takes an optimal database design in those changes involve an optional structures solid and. If your database contains incorrect information, even with excessive entities, the field relating the two tables is the primary key of the table on the one side of the relationship. By schema design databases. The process of applying the rules to your database design is called normalizing the database, which can be conducted at the School or at the offices of the client as they prefer. To identify the specific customers who mediate the criteria, and the columns to ensure field. To embassy the columns in a table, exceed the cluster key values of a regular change, etc. What is Cloud Washing? What you design databases you cannot use relational database designing and. Database Design Washington. External tables access data in external sources as if it were in a table in the database. A relational schema for a compress is any outline of how soon is organized. The rattle this mapping is generally performed is such request each thought of related data which depends upon a background object, but little are associated with overlapping elements, there which only be solid level. -
Applying the ETL Process to Blockchain Data. Prospect and Findings
information Article Applying the ETL Process to Blockchain Data. Prospect and Findings Roberta Galici 1, Laura Ordile 1, Michele Marchesi 1 , Andrea Pinna 2,* and Roberto Tonelli 1 1 Department of Mathematics and Computer Science, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy; [email protected] (R.G.); [email protected] (L.O.); [email protected] (M.M.); [email protected] (R.T.) 2 Department of Electrical and Electronic Engineering (DIEE), University of Cagliari, Piazza D’Armi, 09100 Cagliari, Italy * Correspondence: [email protected] Received: 7 March 2020; Accepted: 7 April 2020; Published: 10 April 2020 Abstract: We present a novel strategy, based on the Extract, Transform and Load (ETL) process, to collect data from a blockchain, elaborate and make it available for further analysis. The study aims to satisfy the need for increasingly efficient data extraction strategies and effective representation methods for blockchain data. For this reason, we conceived a system to make scalable the process of blockchain data extraction and clustering, and to provide a SQL database which preserves the distinction between transaction and addresses. The proposed system satisfies the need to cluster addresses in entities, and the need to store the extracted data in a conventional database, making possible the data analysis by querying the database. In general, ETL processes allow the automation of the operation of data selection, data collection and data conditioning from a data warehouse, and produce output data in the best format for subsequent processing or for business. We focus on the Bitcoin blockchain transactions, which we organized in a relational database to distinguish between the input section and the output section of each transaction. -
KB SQL Database Administrator Guide a Guide for the Database Administrator of KB SQL
KB_SQL Database Administrator Guide A Guide for the Database Administrator of KB_SQL © 1988-2019 by Knowledge Based Systems, Inc. All rights reserved. Printed in the United States of America. No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from KB Systems, Inc., as governed by United States and international copyright laws. The information contained in this document is subject to change without notice. KB Systems, Inc., does not warrant that this document is free of errors. If you find any problems in the documentation, please report them to us in writing. Knowledge Based Systems, Inc. 43053 Midvale Court Ashburn, Virginia 20147 KB_SQL is a registered trademark of Knowledge Based Systems, Inc. MUMPS is a registered trademark of the Massachusetts General Hospital. All other trademarks or registered trademarks are properties of their respective companies. Table of Contents Preface ................................................. vii Purpose ............................................. vii Audience ............................................ vii Conventions Used in this Manual ...................................................................... viii The Organization of this Manual ......................... ... x Additional Documentation .............................. xii Chapter 1: An Overview of the KB_SQL User Groups and Menus ............................................................................................................ -
Reactive Relational Database Connectivity
R2DBC - Reactive Relational Database Connectivity Ben Hale<[email protected]>, Mark Paluch <[email protected]>, Greg Turnquist <[email protected]>, Jay Bryant <[email protected]> Version 0.8.0.RC1, 2019-09-26 © 2017-2019 The original authors. Copies of this document may be made for your own use and for distribution to others, provided that you do not charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether distributed in print or electronically. 1 Preface License Specification: R2DBC - Reactive Relational Database Connectivity Version: 0.8.0.RC1 Status: Draft Specification Lead: Pivotal Software, Inc. Release: 2019-09-26 Copyright 2017-2019 the original author or authors. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Foreword R2DBC brings a reactive programming API to relational data stores. The Introduction contains more details about its origins and explains its goals. This document describes the first and initial generation of R2DBC. Organization of this document This document is organized into the following parts: • Introduction • Goals • Compliance • Overview • Connections • Transactions 2 • Statements • Batches • Results • Column and Row Metadata • Exceptions • Data Types • Extensions 3 Chapter 1.