Armatimonadetes

Total Page:16

File Type:pdf, Size:1020Kb

Armatimonadetes http://researchcommons.waikato.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. The First Insights into the Phylogeny, Genomics, and Ecology of the Novel Bacterial Phylum Armatimonadetes A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Biology at The University of Waikato by Chien-Yu Kevin Lee 2015 ii Executive Summary Currently, a large proportion of novel microbial evolutionary lineages is poorly understood due to limited coverage of representative species. These “candidate” lineages represent significant gaps in our understanding of microbial function and ecology. This study focused on Chthonomonas calidirosea, the earliest isolated species within Armatimonadetes, the most recently-recognised bacterial phylum. The overall aim of this research was to start to understand the ecology and phylogeny of Armatimonadetes, and provide a foundation for future research into the phylum, with the benefit of narrowing the current knowledge gaps on microbial diversity. This was achieved by integrating multiple data types (phylogenetics, genomics, and community profiling metagenomics). The initial stage of this research aimed to address and clarify conflicts in reported phylogeny of the phylum Armatimonadetes. This study generated a comprehensive reference phylogenetic tree of 16S rRNA genes for the phylum, so that the phylogenetic position of newly-identified phylotypes can be reliably associated across studies. Multiple robust statistical methods were used to arrive at a consensus on the partitioning of classes and neighbouring phyla. The process also helped to identify and exclude candidate phyla previously misattributed to Armatimonadetes, thus better defining the phylum for future studies. The deeply-branching phylogenetic relationship of Armatimonadetes with other bacterial phyla was resolved by the sequencing of C. calidirosea T49T genome and analysing concatenated amino acid sequences of conserved genes against homologs in other prokaryotic genomes. The phylogenomic analysis showed Chloroflexi to be the most closely related formal phylum to Armatimonadetes. This publication was the first analysis of a genome from the phylum Armatimonadetes, and provided evolutionarily- and genetically-distinct insights to the overall knowledge of microbial genetic diversity. Analysis of the genome showed a metabolism geared towards non-cellulosic carbohydrates as the carbon and energy source, which coincides with previous culture- based physiological experiments (Lee et al., 2011). Genetic mechanisms behind leucine auxotrophy and narrow pH growth range were also identified. These observations supported the theory that C. calidirosea T49T occupies the niche of a scavenger of diverse species of carbohydrates within geothermal environments, in association with cellulolytic community members. In addition, the genome exhibited an unusual disorganisation of functionally-related genes typically found in conserved operons. The relatively high abundance of sigma factors (relative to genome size) in strain T49T may play an important role in gene regulation and coordination of metabolic pathways to compensate for the scattering of operons. Overall, this research built upon the previous physiological iii characterisation C. calidirosea T49T (Lee et al., 2011), resulting in a more in-depth and integrated analysis of the bacterium through both phenotypic and genotypic information. Finally, to investigate the genome dynamics of the species (particularly in genome organisation and adaptation to various environments as a scavenger), and to provide ecological and evolutionary context beyond the single genome analysed, the genomes of three additional C. calidirosea isolates cultured from diverse locations across the Taupō Volcanic Zone were extracted, sequenced, and compared to T49T. The genomes exhibited higher within-species conservation than other thermophilic species such as Thermus thermophilus (Henne et al., 2004; Jiang et al., 2013; Oshima & Ariga, 1975) and Sulfolobus islandicus (Reno et al., 2009) isolated from similar geographical distance. No genomic rearrangements were identified between C. calidirosea isolates. The majority of variation was limited to single nucleotide polymorphisms, with a limited number of horizontally-transferred genes and differentially-present fast-evolving genes, such as restriction modification system. The phylogeny and carbohydrate utilisation profiles of the isolates correlated with the geographical relationship between the sample sites rather than with other factors, such as soil geochemistry or microbial communities of the sites. The correlation between geography and phylogeny, low abundance of C. calidirosea at all sample sites (ranging from 0.006 % to 0.3 %), and the high genomic conservation indicated rapid aeolian dispersal and localised extinction as the most probable causes of homogeneity between the populations. The findings contribute to a better understanding of the genome dynamics and ecology of C. calidirosea, as well as the dispersal possibilities of free-living bacteria between distinct and discrete habitats. These studies addressed the overarching aim to investigate the ecology and phylogeny of Armatimonadetes through the research outlined above. This body of work contributed greatly to our understanding of Armatimonadetes phylogeny, both by clarifying its internal taxonomy and its position relative to neighbouring clades. Furthermore, it contributed to understanding of Armatimonadetes ecology by richly describing the ecological niche, genome, and lifestyle of C. calidirosea. Not only does this work greatly increase our understanding of the newest of the 30 prokaryotic phyla (Euzéby, 2011, Retrieved in December 2014), it also provides a rich foundation for future study. iv Publications Resulting from this Thesis Dunfield, P. F., Tamas, I., Lee, K. C., Morgan, X. C., McDonald, I. R., & Stott, M. B. (2012). Electing a candidate: a speculative history of the bacterial phylum OP10. Environmental Microbiology, 14(12), 3069–80. doi:10.1111/j.1462- 2920.2012.02742.x Lee, K. C.-Y., Stott, M. B., & Dunfield, P. F. (2013). Phylum Armatimonadetes. In E. Rosenberg, E. F. DeLong, F. Thompson, S. Lory, & E. Stackebrandt (Eds.), The Prokaryotes (4th ed.). Springer. Lee, K. C. Y., Herbold, C. W., Dunfield, P. F., Morgan, X. C., McDonald, I. R., & Stott, M. B. (2013). Phylogenetic delineation of the novel phylum Armatimonadetes (former Candidate Division OP10) and definition of two novel candidate divisions. Applied and Environmental Microbiology, 79(7), 2484–7. doi:10.1128/AEM.03333- 12 Lee, K. C., Morgan, X. C., Dunfield, P. F., Tamas, I., McDonald, I. R., & Stott, M. B. (2014). Genomic analysis of Chthonomonas calidirosea, the first sequenced isolate of the phylum Armatimonadetes. The ISME Journal, 8, 1522–1533. doi:10.1038/ismej.2013.251 Lee, K. C., Stott, M. B., Dunfield, P. F., Huttenhower, C., McDonald, I. R., & Morgan, X. C. Comparative genomics and metagenomics of geographically-diverse Chthonomonas calidirosea isolates. Applied and Environmental Microbiology (In Revision). v Table of Contents Executive Summary ........................................................................................................... iii Publications Resulting from this Thesis .............................................................................. v Table of Contents ............................................................................................................... vi List of Figures ..................................................................................................................... x List of Tables ...................................................................................................................... xi Acknowledgements ........................................................................................................... xii Notes for the Readers ....................................................................................................... xiii List of Abbreviations ........................................................................................................ xiv Chapter 1 Introduction ..................................................................................................... 1 1.1 - The need to characterise the great prokaryotic unknown ....................................... 1 1.2 - A brief introduction to molecular and environmental microbiology ...................... 2 1.3 - The development of DNA sequencing technologies and community profiling ..... 5 1.4 - Extremophiles ......................................................................................................... 7 1.5 - Candidate Division OP10 and Phylum Armatimonadetes ...................................... 8 Chapter 2 Literature Review - “Phylum Armatimonadetes”.........................................
Recommended publications
  • Chemical Structures of Some Examples of Earlier Characterized Antibiotic and Anticancer Specialized
    Supplementary figure S1: Chemical structures of some examples of earlier characterized antibiotic and anticancer specialized metabolites: (A) salinilactam, (B) lactocillin, (C) streptochlorin, (D) abyssomicin C and (E) salinosporamide K. Figure S2. Heat map representing hierarchical classification of the SMGCs detected in all the metagenomes in the dataset. Table S1: The sampling locations of each of the sites in the dataset. Sample Sample Bio-project Site depth accession accession Samples Latitude Longitude Site description (m) number in SRA number in SRA AT0050m01B1-4C1 SRS598124 PRJNA193416 Atlantis II water column 50, 200, Water column AT0200m01C1-4D1 SRS598125 21°36'19.0" 38°12'09.0 700 and above the brine N "E (ATII 50, ATII 200, 1500 pool water layers AT0700m01C1-3D1 SRS598128 ATII 700, ATII 1500) AT1500m01B1-3C1 SRS598129 ATBRUCL SRS1029632 PRJNA193416 Atlantis II brine 21°36'19.0" 38°12'09.0 1996– Brine pool water ATBRLCL1-3 SRS1029579 (ATII UCL, ATII INF, N "E 2025 layers ATII LCL) ATBRINP SRS481323 PRJNA219363 ATIID-1a SRS1120041 PRJNA299097 ATIID-1b SRS1120130 ATIID-2 SRS1120133 2168 + Sea sediments Atlantis II - sediments 21°36'19.0" 38°12'09.0 ~3.5 core underlying ATII ATIID-3 SRS1120134 (ATII SDM) N "E length brine pool ATIID-4 SRS1120135 ATIID-5 SRS1120142 ATIID-6 SRS1120143 Discovery Deep brine DDBRINP SRS481325 PRJNA219363 21°17'11.0" 38°17'14.0 2026– Brine pool water N "E 2042 layers (DD INF, DD BR) DDBRINE DD-1 SRS1120158 PRJNA299097 DD-2 SRS1120203 DD-3 SRS1120205 Discovery Deep 2180 + Sea sediments sediments 21°17'11.0"
    [Show full text]
  • Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China
    Article Leaf-Associated Shifts in Bacterial and Fungal Communities in Response to Chicken Rearing Under Moso Bamboo Forests in Subtropical China Xiaoping Zhang 1, Zheke Zhong 1,*, Xu Gai 1, Jiafu Ying 2, Weifen Li 2, Xuhua Du 1, Fangyuan Bian 1 and Chuanbao Yang 1 1 China National Bamboo Research Center, Key Laboratory of Resources and Utilization of Bamboo of State Forestry Administration, Hangzhou 310012, China; [email protected] (X.Z.); [email protected] (X.G.); [email protected] (X.D.); [email protected] (F.B.); [email protected] (C.Y.) 2 College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] (J.Y.); wfl[email protected] (W.L.) * Correspondence: [email protected]; Tel.: +86-0571-88860734 Received: 25 January 2019; Accepted: 25 February 2019; Published: 1 March 2019 Abstract: Integrated bamboo-chicken farming (BCF) systems are a traditional agroforestry pattern with large economic benefits in subtropical China. However, little is known regarding the effect of this integration on the bamboo leaf-associated microbiome, which can be very important for disease control and nutrient turnover. In the present study, we compared the leaf-associated bacterial and fungal communities of moso bamboo (Phyllostachys edulis) in a BCF system and an adjacent moso bamboo forest (MBF). The results showed that Cyanobacteria and Ascomycota were the predominant microbial phyla associated with bamboo leaves. Chicken farming under the bamboo forest significantly increased the bacterial and fungal alpha diversity (observed operational taxonomic units (OTUs) and Simpson’s index) associated with bamboo leaves. Principal components analysis (PCoA) further confirmed the shifts in the bacterial and fungal communities caused by chicken farming.
    [Show full text]
  • Methanogenic Activity in Río Tinto, a Terrestrial Mars Analogue R
    Methanogenic activity in Río Tinto, a terrestrial Mars analogue R. Amils Centro de Biología Molecular Severo Ochoa (UAM-CSIC) y Centro de Astrobiología (INTA- CSIC) Frascati, noviembre 2009 new insides in the Mars exploration H2O on Mars methane (PFS) it can be concluded that on Mars there are sedimentary rocks that were formed in acidic conditions (acidic lakes or oceans) • possible terrestrial analogs: - submarine hydrothermalism - acidic environments to explore the deep sea requires expensive equipment (Alvin) natural acidic waters natural acidic environments: - areas with volcanic activity 0 SO2 + H2S ——> S + H2O - metal mining activities 3+ 2- + FeS2 + H2O —> Fe + SO4 + H in this case the extreme acidic conditions are promoted by biological activity geomicrobiology of metallic sulfides pyrite, molibdenite, tungstenite (thiosulfate mec.) 3+ 2- 2+ + FeS2+6Fe +3H2O → S2O3 +7Fe +6H 2- 3+ 2- 2+ + S2O3 +8Fe +5H2O → 2SO4 +8Fe +10H Rest of sulfides (polisulfide mec.) 3+ + 2+ 2+ 8MS+8Fe +8H → 8M +4H2Sn+8Fe (n≥2) 3+ o 2+ + 4H2Sn+8Fe → S8 +8Fe +8H o 2- + S8 +4H2O (S oxidizers) → SO4 +8H Bacterias come-meteoritos role of the microbial activity in the leaching of pyrite chemical 3+ reaction Fe Fe2+ microbial activity 2- + SO4 + H Rio Tinto rise at the heart of the Iberian Pyritic Belt Río Tinto is an acidic river, pH 2.3, 100 km long and with a high concentration of soluble metals the iron concentration at the origin is between 15-20 g/l and the sulfate is constant and around 15 g/l geoMICROBIOLOGY combination of conventional microbial ecology techniques and molecular ecology tools A B Phylogeny of acidophilic microorganisms detected in Rio Tinto Actinobacteria Cyanobacteria .
    [Show full text]
  • Genomics 98 (2011) 370–375
    Genomics 98 (2011) 370–375 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Whole-genome comparison clarifies close phylogenetic relationships between the phyla Dictyoglomi and Thermotogae Hiromi Nishida a,⁎, Teruhiko Beppu b, Kenji Ueda b a Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan b Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan article info abstract Article history: The anaerobic thermophilic bacterial genus Dictyoglomus is characterized by the ability to produce useful Received 2 June 2011 enzymes such as amylase, mannanase, and xylanase. Despite the significance, the phylogenetic position of Accepted 1 August 2011 Dictyoglomus has not yet been clarified, since it exhibits ambiguous phylogenetic positions in a single gene Available online 7 August 2011 sequence comparison-based analysis. The number of substitutions at the diverging point of Dictyoglomus is insufficient to show the relationships in a single gene comparison-based analysis. Hence, we studied its Keywords: evolutionary trait based on whole-genome comparison. Both gene content and orthologous protein sequence Whole-genome comparison Dictyoglomus comparisons indicated that Dictyoglomus is most closely related to the phylum Thermotogae and it forms a Bacterial systematics monophyletic group with Coprothermobacter proteolyticus (a constituent of the phylum Firmicutes) and Coprothermobacter proteolyticus Thermotogae. Our findings indicate that C. proteolyticus does not belong to the phylum Firmicutes and that the Thermotogae phylum Dictyoglomi is not closely related to either the phylum Firmicutes or Synergistetes but to the phylum Thermotogae. © 2011 Elsevier Inc.
    [Show full text]
  • Microbial Community Structure Dynamics in Ohio River Sediments During Reductive Dechlorination of Pcbs
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS Andres Enrique Nunez University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Nunez, Andres Enrique, "MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS" (2008). University of Kentucky Doctoral Dissertations. 679. https://uknowledge.uky.edu/gradschool_diss/679 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Andres Enrique Nunez The Graduate School University of Kentucky 2008 MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Agriculture at the University of Kentucky By Andres Enrique Nunez Director: Dr. Elisa M. D’Angelo Lexington, KY 2008 Copyright © Andres Enrique Nunez 2008 ABSTRACT OF DISSERTATION MICROBIAL COMMUNITY STRUCTURE DYNAMICS IN OHIO RIVER SEDIMENTS DURING REDUCTIVE DECHLORINATION OF PCBS The entire stretch of the Ohio River is under fish consumption advisories due to contamination with polychlorinated biphenyls (PCBs). In this study, natural attenuation and biostimulation of PCBs and microbial communities responsible for PCB transformations were investigated in Ohio River sediments. Natural attenuation of PCBs was negligible in sediments, which was likely attributed to low temperature conditions during most of the year, as well as low amounts of available nitrogen, phosphorus, and organic carbon.
    [Show full text]
  • Online Supplementary Figures of Chapter 3
    Online Supplementary Figures of Chapter 3 Fabio Gori Figures 1-30 contain pie charts showing the population characterization re- sulting from the taxonomic assignment computed by the methods. On the simulated datasets the true population distribution is also shown. 1 MTR Bacillales (47.11%) Thermoanaerobacterales (0.76%) Clostridiales (33.58%) Lactobacillales (7.99%) Others (10.55%) LCA Bacillales (48.38%) Thermoanaerobacterales (0.57%) Clostridiales (32.14%) Lactobacillales (10.07%) Others (8.84%) True Distribution 333 386 Prochlorales (5.84%) 535 Bacillales (34.61%) Halanaerobiales (4.37%) Thermoanaerobacterales (10.29%) Clostridiales (28.75%) Lactobacillales (9.38%) 1974 Herpetosiphonales (6.77%) 1640 249 587 Figure 1: Population distributions (rank Order) of M1, coverage 0.1x, by MTR and LCA, and the true population distribution. 2 MTR Bacillus (47.34%) Clostridium (14.61%) Lactobacillus (8.71%) Anaerocellum (11.41%) Alkaliphilus (5.14%) Others (12.79%) LCA Bacillus (51.41%) Clostridium (8.08%) Lactobacillus (9.23%) Anaerocellum (15.79%) Alkaliphilus (5.17%) Others (10.31%) True Distribution 386 552 Herpetosiphon (6.77%) 333 Prochlorococcus (5.84%) 587 Bacillus (34.61%) Clostridium (19.07%) Lactobacillus (9.38%) 249 Halothermothrix (4.37%) Caldicellulosiruptor (10.29%) Alkaliphilus (9.68%) 535 1974 1088 Figure 2: Population distributions (rank Genus) of M1, coverage 0.1x, by MTR and LCA, and the true population distribution. 3 MTR Prochlorales (0.07%) Bacillales (47.97%) Thermoanaerobacterales (0.66%) Clostridiales (32.18%) Lactobacillales (7.76%) Others (11.35%) LCA Prochlorales (0.10%) Bacillales (49.02%) Thermoanaerobacterales (0.59%) Clostridiales (30.62%) Lactobacillales (9.50%) Others (10.16%) True Distribution 3293 3950 Prochlorales (5.65%) 5263 Bacillales (36.68%) Halanaerobiales (3.98%) Thermoanaerobacterales (10.56%) Clostridiales (27.34%) Lactobacillales (9.03%) 21382 Herpetosiphonales (6.78%) 15936 2320 6154 Figure 3: Population distributions (rank Order) of M1, coverage 1x, by MTR and LCA, and the true population distribution.
    [Show full text]
  • Microbial Diversity in Raw Milk and Sayram Ketteki from Southern of Xinjiang, China
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435442; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Microbial diversity in raw milk and Sayram Ketteki from southern of Xinjiang, China DongLa Gao1,2,Weihua Wang1,2*,ZhanJiang Han1,3,Qian Xi1,2, ,RuiCheng Guo1,2,PengCheng Kuang1,2,DongLiang Li1,2 1 College of Life Science, Tarim University, Alaer, Xinjiang , China 2 Xinjiang Production and Construction Corps Key Laboratory of Deep Processing of Agricultural Products in South Xinjiang, Alar, Xinjiang ,China 3 Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang , China *Corresponding author E-mail: [email protected](Weihua Wang) bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435442; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Raw milk and fermented milk are rich in microbial resources, which are essential for the formation of texture, flavor and taste. In order to gain a deeper knowledge of the bacterial and fungal community diversity in local raw milk and home-made yogurts
    [Show full text]
  • Global Metagenomic Survey Reveals a New Bacterial Candidate Phylum in Geothermal Springs
    ARTICLE Received 13 Aug 2015 | Accepted 7 Dec 2015 | Published 27 Jan 2016 DOI: 10.1038/ncomms10476 OPEN Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs Emiley A. Eloe-Fadrosh1, David Paez-Espino1, Jessica Jarett1, Peter F. Dunfield2, Brian P. Hedlund3, Anne E. Dekas4, Stephen E. Grasby5, Allyson L. Brady6, Hailiang Dong7, Brandon R. Briggs8, Wen-Jun Li9, Danielle Goudeau1, Rex Malmstrom1, Amrita Pati1, Jennifer Pett-Ridge4, Edward M. Rubin1,10, Tanja Woyke1, Nikos C. Kyrpides1 & Natalia N. Ivanova1 Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum (‘Candidatus Kryptonia’) found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic ‘blind spot’ because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. 1 Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA. 2 Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.
    [Show full text]
  • Thitiwut Vongkampang WEBB
    Exploring strategies to improve volumetric hydrogen productivities of Caldicellulosiruptor species Vongkampang, Thitiwut 2021 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Vongkampang, T. (2021). Exploring strategies to improve volumetric hydrogen productivities of Caldicellulosiruptor species. Department of Applied Microbiology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Exploring strategies to improve volumetric hydrogen productivities of Caldicellulosiruptor species THITIWUT VONGKAMPANG | APPLIED MICROBIOLOGY | LUND UNIVERSITY AN ECOLABEL 3041 0903 NORDIC SW ryck, Lund 2021 Printed by Media-T Mer de Glace is the largest glacier in France’s alpine, covering 30.4 sq.
    [Show full text]
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Fiber-Associated Spirochetes Are Major Agents of Hemicellulose Degradation in the Hindgut of Wood-Feeding Higher Termites
    Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites Gaku Tokudaa,b,1, Aram Mikaelyanc,d, Chiho Fukuia, Yu Matsuuraa, Hirofumi Watanabee, Masahiro Fujishimaf, and Andreas Brunec aTropical Biosphere Research Center, Center of Molecular Biosciences, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan; bGraduate School of Engineering and Science, University of the Ryukyus, Nishihara, 903-0213 Okinawa, Japan; cResearch Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; dDepartment of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607; eBiomolecular Mimetics Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634 Ibaraki, Japan; and fDepartment of Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, 753-8512 Yamaguchi, Japan Edited by Nancy A. Moran, University of Texas at Austin, Austin, TX, and approved November 5, 2018 (received for review June 25, 2018) Symbiotic digestion of lignocellulose in wood-feeding higher digestion in the hindgut of higher termites must be attributed to termites (family Termitidae) is a two-step process that involves their entirely prokaryotic microbial community (5). endogenous host cellulases secreted in the midgut and a dense The gut microbiota of higher termites comprises more than bacterial community in the hindgut compartment. The genomes of 1,000 bacterial phylotypes, which are organized into distinc- the bacterial gut microbiota encode diverse cellulolytic and hemi- tive communities colonizing the microhabitats provided by the cellulolytic enzymes, but the contributions of host and bacterial compartmentalized intestine, including the highly differentiated symbionts to lignocellulose degradation remain ambiguous.
    [Show full text]
  • Bacterial Community Structure in High-Arctic Snow and Freshwater As Revealed by Pyrosequencing of 16S Rrna Genes and Cultivation Annette K
    RESEARCH/REVIEW ARTICLE Bacterial community structure in High-Arctic snow and freshwater as revealed by pyrosequencing of 16S rRNA genes and cultivation Annette K. Møller,1 Ditte A. Søborg,1 Waleed Abu Al-Soud,2 Søren J. Sørensen2 & Niels Kroer1 1 Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark 2 Department of Biology, University of Copenhagen, Sølvgade 83H, DK-1307 K Copenhagen, Denmark Keywords Abstract Taxonomic diversity; microbial assemblages; bacterial density; DOC. The bacterial community structures in High-Arctic snow over sea ice and an ice-covered freshwater lake were examined by pyrosequencing of 16S rRNA Correspondence genes and 16S rRNA gene sequencing of cultivated isolates. Both the Niels Kroer, pyrosequence and cultivation data indicated that the phylogenetic composition Department of Environmental Science, of the microbial assemblages was different within the snow layers and between Aarhus University, snow and freshwater. The highest diversity was seen in snow. In the middle Frederiksborgvej 399, and top snow layers, , and dominated, DK-4000 Roskilde, Denmark. Proteobacteria Bacteroidetes Cyanobacteria E-mail: [email protected] although Actinobacteria and Firmicutes were relatively abundant also. High numbers of chloroplasts were also observed. In the deepest snow layer, large percentages of Firmicutes and Fusobacteria were seen. In freshwater, Bacter- oidetes, Actinobacteria and Verrucomicrobia were the most abundant phyla while relatively few Proteobacteria and Cyanobacteria were present. Possibly, light intensity controlled the distribution of the Cyanobacteria and algae in the snow while carbon and nitrogen fixed by these autotrophs in turn fed the heterotrophic bacteria. In the lake, a probable lower light input relative to snow resulted in low numbers of Cyanobacteria and chloroplasts and, hence, limited input of organic carbon and nitrogen to the heterotrophic bacteria.
    [Show full text]