RESISTANCE of WHEAT to SEPTORIA NODORUM BERK. by Elizabeth Anne Baker B.Sc.(Lond.) a Thesis Submitted in Part Fulfilment Of

Total Page:16

File Type:pdf, Size:1020Kb

RESISTANCE of WHEAT to SEPTORIA NODORUM BERK. by Elizabeth Anne Baker B.Sc.(Lond.) a Thesis Submitted in Part Fulfilment Of RESISTANCE OF WHEAT TO SEPTORIA NODORUM BERK. By Elizabeth Anne Baker B.Sc.(Lond.) A thesis submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy of the University of London Department of Botany and Plant Technology, Imperial College of Science and Technology, Silwood Park Field Station, Ascot, Berkshire. October 1975 ABSTRACT In laboratory tests on detached leaves wheat cultivars infected by S. nodorum showed continuous variation in symptoms through different degrees of necrosis, chlorosis and lesion extent. There was a dis- appearance of surface wax under the hyphae and appressoria. Although surface growth was similar in resistant and susceptible cultivars, colonisation within the leaf, in the former case, was less and restricted to the area beneath the infection droplet. No structural barriers were observed and staining reactions for lignin were negative. The exact relationship of the hyphae to the host cells could not be ascertained. At low inoculum concentrations lesion development was delayed, and in the resistant cultivar lesions often failed to develop at all. The intensity of the browning/necrotic reaction was partly suppressed in the dark and coalescence of lesions in the susceptible cultivar was prevented at 25°C. Liquid cultures of S. nodorum failed to yield any phytotoxic principles. In the field inoculations at later growth stages resulted in higher overall % infection compared to the earlier inoculations. On resistant plants fewer lesions developed and less of these spread than on the susceptible ones. High yielding cultivars had a lower % infection and lower infection rate on.the flag leaf and ear compared to the lower yielding cultivars, although in the former case a high % infection of Lile - lower leaves resulted in an apparently higher total % infection. Levels of the antifungal benzoxazolinone derivatives were shown to decrease with age; these substances could not be detected in plants over 2-3 weeks old. Other compounds, which remain to be identified, but which were active against S. nodorum, were extracted from plants at all growth stages. There were no qualitative differences between resistant and susceptible cultivars, but generally speaking the extracts from the resistant cultivar were more active. Infected tissue extracts were usually more inhibitory to S. nodorum than the extracts from healthy control material. CONTENTS Page ABSTRACT 2 INTRODUCTION AND LITERATURE REVIEW 8 MATERIALS AND METHODS 116 A. Fungi 16 B. Culture media 16 C. Plant material 18 D. Inoculation procedure , 20 E. Observation of leaf surfacqs 22 F. Preparation of material for light microscopy 22 G. Preparation of material for stereoscan 24 electron microscopy H. Extraction of plant material 25 J. Separation and purification techniques 25 K. Location and estimation of substances 27 L. Field experiments 31 M. Statistical analyses 33 EXPERIMENTAL RESULTS SECTION 1: Varietal reactions on detached leaves and 36 factors affecting their development Varietal reactions, 37 Macroscopic and microscopic development 41 of the resistant and susceptible reactions Effect of centrifugation of spores on 56 subsequent lesion development Effect of spore concentration on lesion 59 development Effect of light and temperature on 62 lesion development Investigation of the possible toxic 65 effect of S.nodorum DISCUSSION 72 SECTION 2: Development of S.nodorum infection on 77 winter and spring wheat in the field Field experiment 1A: The effects and 78 possible interactions of inoculation date, variety and leaves on development of S.nodorum infection on winter wheat. Development of S.nodorum infection 81 Analysis of variance (whole plants) 88 Meteorological conditions 1974 90 Microclimate of the crop canopy 93 Differences between parts of plant 98 Analysis of variance (parts of plant) I00 Apparent infection rates 104 Summary of infection data 108 Field experiment 18: A detailed study II0 of infection in naturally infected and artificially inoculated plants of winter wheat. Increase of lesion number and %infection 112 for flag and second leaves of winter wheat Meteorological conditions 1975 120 Statistical analysis 123 Summary 125 DISCUSSION 127 Field experiment 2A: The effects and 132 . possible interactions of inoculation date, variety and leaves on development of S.nodorum infection on spring wheat Development of S.nodorum infection 134 Analysis of variance (whole plants) 140 Meteorological conditions 142 Differences between parts of plant 143 Apparent infection rates 145 Summary of infection data 148 Field experiment 28: A detailed study of 150 infection in naturally infected and artificially inoculated plants of spring wheat Increase of lesion number and %infection 151 for flag and second leaves and ears of spring wheat Meteorological conditions 161 Statistical analysis 162 Summary 164 DISCUSSION 166 SECTION 3: Studies on pre- and post-formed antifungal 169 compounds in winter wheat resistant and susceptible to S.nodorum I.The presence of pre- and post-formed 170 inhibitors of S.nodorum in crude and partially purified extracts of wheat tissues of varying ages 1.Healthy week old seedlings 170 2.Healthy and inoculated 30 day old glass- 172 house grown plants 3.Healthy and inoculated 7 week old glass- 177 house grown plants 4.Healthy and inoculated and naturally 183 infected 6 month old field grown plants Summary 188 II.Chromatographic separation and assay of 191 pre- and post-formed antifungal compounds in winter wheat of varying ages 1.Preformed inhibitors present in healthy 192 intact wheat plants '2.Potential antifungal compounds in healthy 195 intact wheat plants 3.Antifungal compounds in artificially 202 inoculated wheat 4.Antifungal compounds at various growth 219 stages in healthy and naturally infected field grown winter wheat Summary 21,5 III. The disappearance of the benzoxazinone 219 compounds in winter wheat resistant and susceptible to S.nodorum A.1.Glasshouse grown plants 219 2.Cooled cabinet grown plants 220 3.Field grown plants 220 B.1.Assessment of ferric chloride reaction 221 by optical density 2.Assessment of benzoxazinones by UV spectra 223 C. The levels of benzoxazinones in healthy 223 wheat plants DISCUSSION 228 FINAL DISCUSSION 232 BIBLIOGRAPHY 235 ACKNOWLEDGEMENTS 242 APPENDICES 243 1A. Weekly mean % S.nodorum infection, winter wheat 1974 244 18. Detailed study of infection, winter wheat 1975 263 Summary of data for 1974 270 Summary of data for 1975 271 2A. Weekly mean % S.nodorum infection, spring wheat 1974 2721 28. Detailed study of infection, spring wheat 1974 293 3. Spore droplet bioassays 330 INTRODUCTION AND LITERATURE REVIEW "Septoria - the lurking threat to wheat yields" This headline appeared in Farmers Weekly in 1973, and although Septoria disease of wheat has been recognised in England since 1845 (Berkeley) only recently has the extent of yield loss been appreciated. A three year (1970-1972) study by the Agricultural Development and Advisory Service, covering 500 acres on 300 farms showed that Septoria spp. caused worst diseases of wheat and were far more serious nationally than mildew or yellow rust. Yield reductions of up to 65% have been recorded (Jenkins and Morgan, 1969; BrOnnimann, Sally and Sharp, 1972). Also, since grain quality is adversely affected and quality requirements for selling wheat for denaturing are strict, the importance of the disease should not be underestimated. Septoria disease is important in the wheat growing areas of over 50 countries (CMI Plant Disease Distribution Map No. 397). Why has Septoria suddenly become so important? Disease build-up has resulted from a succession of mild winters and cool damp summers, combined with an increasing wheat acreage, particularly of the more susceptible dwarf cultivars (Scott, 1973). Emphasis on non-ploughing techniques which result in less efficient stubble cultivations is another factor. The two most prevalent species are Leptosphaeria (Septoria) nodorum Berk., and Septoria tritici Rob. ex Desm. The common names are leaf and glume blotch, and leaf spot respectively. Both species are specialised facultative parasites, which infect Triticum spp. to a high degree but can be made to weakly infect a number of other cereals and grasses (Weber, 1922; Schmiedeknecht, 1967; Dereveyankin, 1969; Shearer and Zadoks, 1972). So far no_physiological races are known, only differences in mycelial growth behaviour and sporulation ability (BrOnnimann, 1968a; Scharen and Krupinsky, 1970a). The symptoms of Septoria diseases are difficult to distinguish and identify, particularly in the early stages of infection when aporulating bodies are absent, and can be confused with natural senescence. The species Septoria nodorum has been used in this research. It can attack all aerial parts of the plant, although appreciable effects on yield -. only occur when the flag leaf and ear become heavily infected (BrOnnimann, 1968a). Penetration is by pycnidiospores, directly through the cuticle, after which=hyphae enlarge slightly and-grow intercellularly before entering the cells (Weber, 1922). However the exact relationship of the fungal hyphae with host cell walls remains to be determined, since it has proved impossible to stain hyphae satisfactorily within the leaf (Morgan, 1974). Lesions on the leaves occur most usually near the tip in natural infections, and appear as linear light brown spots with a yellow margin. In susceptible cultivars the lesions spread and coalesce, but they remain limited necrotic flecks in non-compatible reactions. On the
Recommended publications
  • Meeting Report the Aaronsohn-ITMI International Conference
    Israel Journal of Plant Sciences Vol. 55 2007 pp. 315–319 Meeting Report The Aaronsohn-ITMI International Conference CATHERINE FEUILLET,a PETER LANGRIDGE,b AND ROBBIE WAUGHc aUMR INRA-UBP 1095, Amélioration et Santé des Plantes, Domaine de Crouelle, 234 Avenue du Brézet, 63100 Clermont-Ferrand, France bAustralian Centre for Plant Functional Genomics, University of Adelaide, SA 5064, Australia cScottish Crop Research Institute, Invergowrie, DD2 5DA, UK The Aaronsohn-ITMI international conference was held 16–20 April 2007 in Tiberias (Israel) to celebrate the 100 year anniversary of the rediscovery of wild emmer wheat by Aaron Aaronsohn in Rosh Pinna, a few kilometers away from Tiberias. The workshop, attended by more than 110 participants from 22 countries, also provided an opportunity to discuss the latest developments in Triticeae genetics and genomics. WILD EMMER WHEAT programs as a source of new alleles. Wild emmer wheat also represents a key material for studying the evolution In the opening session of the workshop, Shaul Katz (He- of wheat genomes and the impact of polyploidization brew Univ., Israel) reported on the history of the discov- on genome structure and evolution, as exemplified ery of wild emmer wheat, the wild ancestor of tetraploid by Moshe Feldman (Weizman Institute, Israel) in his wheat. This goes back to 1855 when botanists (Kotschy, lecture. There is genetic asymmetry between the A and Koernicke) from Austria came to Palestine and found a B genomes of wild emmer wheat. For example, genes sample of a cereal with ancestral features (“Urweizen”) controlling inflorescence morphology, growth habit, do- that had not been previously recorded.
    [Show full text]
  • Wild Wheat to Productive Drylands: Global Scientific Practice and the Agroecological Remaking of Palestine
    Geoforum 78 (2017) 43–51 Contents lists available at ScienceDirect Geoforum journal homepage: www.elsevier.com/locate/geoforum Wild wheat to productive drylands: Global scientific practice and the agroecological remaking of Palestine Omar Tesdell Department of Geography, Birzeit University, PO Box 14, Birzeit, West Bank, Palestine article info abstract Article history: This paper traces how scientific research on wheat (Triticum) worked to establish Palestine as a region Received 23 May 2016 sought for colonization. Recent work in geography has refined our understanding of agricultural expan- Received in revised form 16 November 2016 sion as an outcome of colonization, however, this work leaves the place-making capacity of agricultural Accepted 18 November 2016 research largely unexplored. My claim is that rather than a byproduct of colonization, wheat research served to remake Palestine as a biophysical region in need of improvement and colonization. I show how a shift in the plant sciences from research in taxonomy to plant breeding corresponded to an Keywords: agro-climatic shift on Palestine from an undesirable, arid region to a promising dryland agricultural Agro-climatology region. In this way, wheat research drew Palestine and the United States into a wider effort to transform Agro-ecology Colonization arid areas into agricultural drylands. Drawing on a previously unexplored episode of technical coopera- Palestine tion between researchers in the United States and Palestine, I argue that we must examine how wildness, United States native-ness, and agro-climatic suitability are scientifically constituted within and not apart from colonial Drylands conquest. In doing so, the paper calls for reconsideration within geography and political ecology of the place-making relationship between colonization and scientific practice.
    [Show full text]
  • One Thousand Objects for the Microscope
    WITH ILLUSTRATIONS Frederick Warne and Co., Publishers, ._t_ ~l S GTl It H{ FI T HIC EST LIBER MEUS, testES EST DEUS; SI QUIS ME QUERIT .A% HIC NOMEN ERIT. - . a>V T /. 13 I 5 ing, irlllU 11/A 111 UlUiig, *-r j .. __ Notice.—This completely New Poultry Book is the only one the Author has fully written ; all others bearing her name being only edited by her, and much anterior to this volume. Bedford Street, Strand. Frederick Warne and Co., Publishers, WARNE’S USEFUL BOOKS-Continued. Fcap. 8vo, Is. each, boards, with Practical Illustrations. Angling, and How to Angle. A Practical Guide to Bottom-Fishing, Trolling, Spinning, Fly-Fishing, and Sea-Fishing. By J. T. Burgess. Illustrated. “An excellent little volume, and full of advice the angler will treasure."— Sunday Times. “ A practical and handy guide.’’—Spectator. The Common Sea-Weeds of the British Coast and Channel Islands. With some Insight into the Microscopic Beauties of their Structure and Fructification. By Mrs. L. Lane Clarke. With Original Plates printed in Tinted Litho. “This portable cheap little manual will serve as an admirable introduction to the study of sea-weeds.”—Field. The Common Shells of the Sea-Shore. By the Rev. J. G. Wood. “ The book is so copiously illustrated, that it is impossible to find a shell which cannot be identified by reference to the engravings.”—Vide Preface. “It would be difficult to select a more pleasant sea-side companion than this.” —Observer. The Dog : Its Varieties and Management in Health and Disease. Bird-Keeping : A Practical Guide for the Management of Cage Birds.
    [Show full text]
  • Food Processing and Breeding Strategies for Coeliac-Safe and Healthy Wheat Products T
    Food Research International 110 (2018) 11–21 Contents lists available at ScienceDirect Food Research International journal homepage: www.elsevier.com/locate/foodres Food processing and breeding strategies for coeliac-safe and healthy wheat products T Aurélie Jouanina,b, Luud J.W.J. Gilissena, Lesley A. Boydb, James Cockramb, Fiona J. Leighb, Emma J. Wallingtonb, Hetty C. van den Broecka, Ingrid M. van der Meera, Jan G. Schaarta, ⁎ Richard G.F. Vissera, Marinus J.M. Smuldersa, a Wageningen University & Research, Wageningen, The Netherlands b NIAB, Cambridge CB3 0LE, UK ARTICLE INFO ABSTRACT Keywords: A strict gluten-free diet is currently the only treatment for the 1–2% of the world population who suffer from Gluten coeliac disease (CD). However, due to the presence of wheat and wheat derivatives in many food products, Gliadin avoiding gluten consumption is difficult. Gluten-free products, made without wheat, barley or rye, typically T cell epitope require the inclusion of numerous additives, resulting in products that are often less healthy than gluten-based Coeliac disease equivalents. Here, we present and discuss two broad approaches to decrease wheat gluten immunogenicity for Plant breeding CD patients. The first approach is based on food processing strategies, which aim to remove gliadins or all gluten Food processing fi Mutation breeding from edible products. We nd that several of the candidate food processing techniques to produce low gluten- Genome editing immunogenic products from wheat already exist. The second approach focuses on wheat breeding strategies to remove immunogenic epitopes from the gluten proteins, while maintaining their food-processing properties. A combination of breeding strategies, including mutation breeding and possibly genome editing, will be necessary to produce coeliac-safe wheat.
    [Show full text]
  • IPM Update/Fungicide Resistance
    IPM Update/Fungicide resistance Neil Havis, Crop Protection Lead, SRUC Introduction 2019 – temperature up on the 30 year average Introduction 2019 rainfall – wet summer (esp May and August) following a near average spring (march figures were higher than average) Introduction 2019 rainfall – wet summer- late attack from splash borne diseases Introduction 2019 sunshine – normal service resumed IPM • Work is ongoing to develop effective, sustainable and profitable IPM programmes in barley • Various projects funded by RESAS, AHDB Mains of Loirston and commercial sponsors https://voluntaryinitiative.org.uk/schemes/integrated-pest-management/ Winter barley IPM: Sow date*Cv*Fungicide • Late sown crops sown 3-4 weeks later than early sown. • 2 Varieties: Surge (res), Tower (sus) • 4 fungicide programmes: 0/1/2/3 sprays 10.5 • Greater fungicide requirement in 10 early sown + susceptible crops 9.5 9 8.5 8 Medium2 spray programme 7.5 Untreated Yield t/ha Yield Untreated 7 6.5 6 EarlyEarly LateLate EarlyEarly LateLate sown sown sown sown Surge Tower Winter barley IPM: Sow date*Cv*Fungicide 16 • Early sowing decreases GLA in disease 14 years. 12 10 • Due to RLS (both years) and also tan spot EarlyEarly sown 1 % 8 - 2019. F 6 LateLate sown 4 RLS • Susceptible variety= less GLA, more 2 disease. 0 Medium UntreatedUntreated 120 2 spray prog. 100 10 80 8 1 - F 60 EarlyEarly sown 6 40 EarlyEarly sown GLA LateLate sown % 20 4 LateLate sown Tan Spot % Tan 0 - 2 Surge Tower Surge Tower 2019 0 2018 2019 Surge Tower Fungicide treatments for all trials Trt T0
    [Show full text]
  • POWDERY MILDEW RESISTANCE of the LITHUANIAN WINTER WHEAT BREEDING MATERIAL Þilvinas Liatukas* and Vytautas Ruzgas**
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 63 (2009), No. 1/2 (660/661), pp. 37–44. DOI: 10.2478/v10046-009-0013-x POWDERY MILDEW RESISTANCE OF THE LITHUANIAN WINTER WHEAT BREEDING MATERIAL Þilvinas Liatukas* and Vytautas Ruzgas** * Lithuanian Institute of Agriculture, Instituto al.1, Akademija, Këdainiai district, LT-58344, LITHUANIA; E-mail: [email protected] ** Lithuanian University of Agriculture, Akademija, Studentø str. 11, Kaunas district, LT-53361, LITHUANIA; E-mail: [email protected] Communicated by Îzaks Raðals At the Lithuanian Institute of Agriculture, during 2004–2006, resistance to powdery mildew of ap- proximately 1,500 winter wheat lines was assessed in check and competitive trial nurseries. Our experimental evidence showed that there were no genotypes with effective resistance single- genes among the lines tested. Effective powdery mildew resistance from start to end of vegeta- tion season depended on the quantitative resistance level. The most resistant lines were evalu- ated with a score of 2 and area under the disease progress curve (AUDPC) values ranging between 1.0–5.4. The most susceptible genotypes from the collection nurseries had score 8–9 and AUDPC values ranging between 1350–2220. The correlations between maximal disease se- verity and AUDPC values were strong (r = 0.79–0.92). Genotypes with AUDPC values up to 10 represented 93 lines or 7% in the check trial nursery and 22 lines or 9% in the competitive trial nursery. Lines evaluated with a score 4–5 and AUDPC value 100–300 dominated in 2004. In the next year the dominant genotypes had resistance scores 3–4 and AUDPC value 50–200.
    [Show full text]
  • A Brief Handbook of the Diseases of Cultivated Plants in Ohio
    Cornell "University OF THE flew jporfe State (Tolleoe of Horiculture \^.^r23.a Cornell University Library SB 624.03S4 diseases of cult A brief handbook of the Cornell University Library The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924003214529 BULLETIN OF THE Ohio Agricultural Experiment Station Number 214 ' March, 1910. A BRIEF HANDBOOK OF THE DISEASES OF CULTIVATED PLANTS IN OHIO By A. D. SELBY INTRODUCTION The idea of disease is not a simple one, though it may seem so before trying to define it. In reality the term "disease" as applied to plants, means any change in that plant toward reduced vigor, etc., from the ordinary or average behavior. To put it another way, a plant is said to be "diseased" when it shows any deviation from the ordinary or average behavior of that plant in respect to appearance, growth, color of bark, foliage, fruitfulness, time of dropping leaves or length of life; in short, when the plant fails to conform to those averages which we have established by extended observation for the species and variety in question, we say it is diseased. Under such a general definition, variegated or purple hued sports would be included, although potentially rather than actually in diminished succumb easily to parasitic attack and, as - vigor. Variegated sports later investigations show, are really suffering from enzymatic troubles. The more usual symptoms of disease are marked by evident curled or differences in the plant.
    [Show full text]
  • Supporting Your Success Science Highlights 2015-17
    Grains Research and Development Supporting your success Science Highlights 2015-17 - 4 - Important disclaimer The Chief Executive Officer of the Department of Agriculture and Food and the State of Western Australia accept no liability whatsoever by reason of negligence or otherwise arising from the use or release of this information or any part of it. Copyright Copyright © Western Australian Agriculture Authority, 2017 Western Australian Government materials, including website pages, documents, images and recordings, are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever without prior written permission of the Western Australian Agriculture Authority. The department will recognise and protect the right of authors and creators as required under the Copyright Act 1968. Accessibility Copies of this document may be available in alternative formats upon request. 3 Baron-Hay Court, South Perth WA 6151 Tel: +61 (0)8 9368 3333 Email: [email protected] agric.wa.gov.au 5 Forward and Royalties for Regions Investment in science and industry development 1 key to profitable agrifood sector..........................................................................................................................
    [Show full text]
  • Septoria Leaf Spot and Glume Blotch of Wheat
    Journal of the Department of Agriculture, Western Australia, Series 4 Volume 7 Number 4 1966 Article 6 1-1-1966 Septoria leaf spot and glume blotch of wheat W A. Shipton Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4 Part of the Agronomy and Crop Sciences Commons, and the Plant Pathology Commons Recommended Citation Shipton, W A. (1966) "Septoria leaf spot and glume blotch of wheat," Journal of the Department of Agriculture, Western Australia, Series 4: Vol. 7 : No. 4 , Article 6. Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture4/vol7/iss4/6 This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 4 by an authorized administrator of Research Library. For more information, please contact [email protected], [email protected], [email protected]. PLANT DISEASES SEPTORIA LEAF SPOT AND GLUME BLOTCH OF WHEAT By W. A. SHIPTON, Ph.D., Plant Pathologist SEPTORIA leaf spot and glume blotch of wheat occur throughout Australia and are cap­ able of reducing crop yields. While no estimates of yield losses are yet available in Western Australia both diseases can cause serious damage to crops. Septoria leaf spot is caused by the fun­ Environmental Conditions Favouring the gus Septoria tritici Rob. ex Desm. and Disease glume blotch by the related Septoria Infection may take place over a wide nodorum Berk. range of temperatures. The disease is Glume blotch and Septoria leaf spot usually conspicuous in cool to mild, wet were first recorded in Western Australia conditions, but may occur in warmer in 1905 and 1924 respectively (Sutton, 1920; weather provided that there is sufficient Carne and Campbell, 1924), and now occur moisture for infection.
    [Show full text]
  • Evaluation of D-Genome Synthetic Hexaploid Wheats and Advanced Derivatives for Powdery Mildew Resistance
    Pak. J. Bot., 49(2): 735-743, 2017. EVALUATION OF D-GENOME SYNTHETIC HEXAPLOID WHEATS AND ADVANCED DERIVATIVES FOR POWDERY MILDEW RESISTANCE KHOLA RAFIQUE1, CHAUDHARY ABDUL RAUF1, ALVINA GUL2, HADI BUX3*, AHMAD ALI4, RABIA ASMA MEMON3, SUMAIRA FARRAKH5 AND ABDUL MUJEEB-KAZI6,7 1Department of Plant Pathology, PMAS Arid Agriculture University Rawalpindi, Pakistan 2Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan 3Institute of Plant Sciences, University of Sindh, Jamshoro, Pakistan 4Center of Plant Sciences and Biodiversity, University of Swat, Pakistan 5Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan6 6Department of Botany, University of Sargodha, Sargodha, Pakistan 7Texas A&M University, Texas, USA *Corresponding author: [email protected] Abstract The present study was undertaken to characterize 32 D-genome synthetic hexaploid wheats (SHWs) of an Elite-II sub- set and their 60 advanced derivatives. At seedling stage under controlled glasshouse conditions in Murree, the SHWs showed complete resistance/ immune to susceptible disease reactions viz., two (6.25%) were immune, eighteen (56.25%) were resistant, nine (28.12%) were intermediate, whereas three (9.37%) were susceptible. The BW/SH derivatives also demonstrated complete resistance/ immune to intermediate reactions viz., 51 (85%) were immune, 5 (8.33%) were resistant while 4 (6.66%) were intermediate. Adult plant resistance (APR) evaluated at the hill off-station summer site in Kaghan was 100% in SHWs (32/32) and 80% (48/60) in BW/SH derivatives. Several genotypes provided resistance at both plant stages viz., 20 (62.5%) SHWs and 45 (75%) BW/SH derivatives.
    [Show full text]
  • Effects of Temperature on Wheat-Pathogen Interactions
    Effects of temperature on wheat-pathogen interactions Ruth Bryant A thesis submitted to the University of East Anglia for the degree of Doctor of Philosophy John Innes Centre September 2013 © This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any other information derived there from, may be published without the author’s prior, written consent 1 Abstract Climate change is affecting UK agriculture, and research is needed to prepare crops for the future. Wheat is the UK’s most important crop, and needs to be protected from losses caused by disease. While direct effect of the environment on pathogen spread is often reported, effect of the environment on host defence is not. Many wheat resistance genes are temperature sensitive and these were used as a starting point to investigate defence temperature sensitivity in wheat starting with yellow rust resistance gene Yr36, previously shown to be temperature-sensitive. The effect of temperature on resistance was shown to be independent of Yr36 in breeding line UC1041, and was more likely to be due to a previously-uncharacterised background temperature sensitivity. These results suggest that temperature changes, rather than thresholds, might influence some disease resistance mechanisms. Understanding this phenomenon could enable the breeding of more stable defence in crops. In order to gain further insight into how temperature changes influence resistance, plants were grown under different thermoperiods and challenged with different types of pathogens; Results showed that resistance to multiple pathogens in one cultivar Claire was enhanced under variable temperatures, compared to constant temperatures.
    [Show full text]
  • Registrations of Cultivars
    REGISTRATIONS OF CULTIVARS Registration of ‘Roane’ Wheat f. sp. tritici E´ m. Marchal; syn. Blumeria graminis (DC.) E.O. Speer]. The identity of the resistance genes in Roane is not ‘Roane’ (Reg. no. CV-899, PI 612958) is a full-season, high known, but it likely inherited the gene Pm4a from IN65309C1- yielding, apically awnleted soft red winter wheat (Triticum 18-2-3-2, and also may possess Pm3a from VA 71-54-147. aestivum L.) with exceptionally high test weight and resistance Roane was resistant to 34 of 38 isolates of E. graminis in to a broad spectrum of plant pathogens and insect pests. The seedling tests of entries in the 1996 UESRWWN, conducted Virginia Agricultural Experiment Station released Roane in by USDA-ARS at Raleigh, NC. Tests conducted by the the fall of 1999. Roane wheat was named in honor of Curtis USDA-ARS Cereal Disease Laboratory in St. Paul, MN, indi- W. Roane, Professor Emeritus, Virginia Polytechnic Institute cate that Roane possesses Gene Lr11, but is susceptible in and State University, for his contributions toward the develop- the seedling stage to the most prevalent races of leaf rust ment of disease and insect resistant small grain cultivars. (caused by Puccinia triticina Eriks.). However, in field tests Roane was derived from the three-way cross of VA 71-54- Roane had an average leaf rust severity (0–9) score of 3.0, 147/‘Coker 68-15’//IN65309C1-18-2-3-2. The first two parents, compared with scores of 4.6 for Pocahontas (Lr11) and 5.4 VA 71-54-147 (CItr 17449) and Coker 68-15 (CItr 15291), are for FFR555W (Lr10), indicating that Roane possesses some also the parents of the cultivar Saluda (Starling et al., 1986).
    [Show full text]