Disertaciones Astronómicas Boletín Número 66 De Efemérides Astronómicas 24 De Febrero De 2021

Total Page:16

File Type:pdf, Size:1020Kb

Disertaciones Astronómicas Boletín Número 66 De Efemérides Astronómicas 24 De Febrero De 2021 Disertaciones astronómicas Boletín Número 66 de efemérides astronómicas 24 de febrero de 2021 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. 50 años del CCD. Imagen 1: Un CCD en el instrumento ESPRESSO del Very Large Telescope (VLT). Con 81 millones de píxeles, este es uno de los CCD monolíticos más grandes del mundo. Crédito: ESO / Olaf Iwert. En 1969, dos investigadores diseñaron la estructura básica de un CCD, o dispositivo de carga acoplada, y definieron sus principios operativos. Desde entonces, estos dispositivos han jugado un papel muy importante en la astronomía, así como en nuestra vida diaria. Imagen 2: Willard Boyle, a la izquierda, y George Smith prueban un sensor CCD en 1970 en los laboratorios Bell.AP/. El uso de CCD en la fotografía cotidiana se produjo unos 20 años después de la aplicación de los CCD científicos a la astronomía; los CCD astronómicos fueron los pioneros de la fotografía digital. Pero hay una gran diferencia entre los sensores de imagen CCD científicos que utilizamos en ESO para astronomía y los CCD comerciales, como los que se utilizan en las cámaras de vídeo. Los CCD científicos se adelgazan, se iluminan en la parte trasera y se tratan en la superficie para recopilar la mayor cantidad de información posible sobre el objeto observado. Los CCD científicos también suelen ser monocromáticos, lo que significa que no filtran los colores, por lo que recolectan toda la luz disponible con la mayor eficiencia posible. Los CCD comerciales, por otro lado, producen principalmente imágenes en color. Imagen 3: Imagen que muestra la disposición del sistema de capas y pixeles en un chip CCD. Imagen: Wikipedia. El primer CCD fue desarrollado por dos físicos de Bell Labs, Willard Boyle y George Smith, quienes originalmente estaban interesados en la tecnología de transistores, que se inventó unos 20 años antes que el CCD. Como el primer CCD se produjo utilizando una instalación de fabricación de transistores, yo diría que la invención del CCD al menos requirió la invención del transistor. Como suele ser el caso, los detectores en sí mismos y las tecnologías de fabricación utilizadas se desarrollan en paralelo: los científicos e ingenieros (¡y el empresario ocasional!) Están constantemente ampliando los límites de lo que es posible. Los CCD modernos dependen en gran medida de una serie de tecnologías de fabricación muy bien desarrolladas, y probablemente ocurrirá que los usos novedosos de estas tecnologías den lugar a la próxima generación de detectores para astronomía. ¿cómo funciona exactamente un CCD? Los CCD funcionan convirtiendo la luz en un patrón de carga electrónica en un chip de silicio. Este patrón de carga se convierte en una forma de onda de video, se digitaliza y se almacena como un archivo de imagen en una computadora. El efecto fotoeléctrico es fundamental para el funcionamiento de un CCD: Los átomos de un cristal de silicio tienen electrones dispuestos en bandas de energía discretas. La banda de energía inferior se llama Banda de Valencia, la banda superior es Banda de Conducción. La mayoría de los electrones ocupan la banda de valencia, pero pueden excitarse hacia la banda de conducción por calentamiento o por absorción de un fotón; La energía requerida para esta transición es de 1,26 electronvoltios. Una vez en esta banda de conducción, el electrón puede moverse libremente en la red del cristal de silicio. Deja un "agujero" en la banda de valencia que actúa como un portador cargado positivamente. En ausencia de un campo eléctrico externo, el agujero y el electrón se volverán a combinar rápidamente y se perderán. En un CCD se introduce un campo eléctrico para barrer estos portadores de carga y evitar la recombinación. Los electrones generados térmicamente son indistinguibles de los electrones fotogenerados. Constituyen una fuente de ruido conocida como "corriente oscura" / RUIDO ELECTRÓNICO, y es importante que los CCD se mantengan fríos para reducir su número. 1.26eV corresponde a la energía de la luz con una longitud de onda de 1 micrón. Más allá de esta longitud de onda, el silicio se vuelve transparente y los CCD construidos a partir de silicio se vuelven insensibles. Imagen 4: Analogía del funcionamiento del CCD Imagen: Wikipedia. Un CCD es una matriz bidimensional de millones de píxeles, cada uno de los cuales recoge fotones de luz y los convierte en una carga eléctrica cuando el CCD se expone a la luz. En lugar de usar un cable para detectar la carga de cada píxel, la carga se transfiere primero verticalmente y luego horizontalmente para alcanzar un solo amplificador de salida que mide la cantidad de carga de cada píxel. La analogía clásica es pensar en un CCD como un conjunto de cubos recolectores de lluvia a lo largo de una serie de cintas transportadoras; Primero, las cintas transportadoras mueven los envases en una dirección, sobre una sola cinta transportadora que mueve todos los envases en una dirección perpendicular para verter el agua en un cilindro medidor que contabiliza la cantidad de agua en cada cubo, uno por uno. Una analogía común para el funcionamiento de un CCD es la siguiente: un número de cubos (píxeles) se distribuye en un campo (plano focal de un telescopio) en una matriz cuadrada. Los cubos se colocan encima de una serie de cintas transportadoras paralelas y recogen la lluvia (fotones) en todo el campo. Las cintas transportadoras están inicialmente estacionarias, mientras que la lluvia llena lentamente los cubos (durante el curso de la exposición). Una vez que la lluvia se detiene (el obturador de la cámara se cierra), las cintas transportadoras comienzan a girar y transfieren los cubos de lluvia, uno por uno, a un cilindro de medición (amplificador electrónico) en la esquina del campo (en la esquina del CCD). Primero, abrimos el obturador y dejamos que la lluvia (luz) caiga sobre la matriz, llenando los cubos (píxeles). Al final de la exposición, cerramos el obturador. Ahora, las vasijas se mueven a lo largo de las cintas transportadoras. Vierta el primer juego de cubos en la cinta transportadora especial (el registro de serie) al final de la matriz. Registra también el contenido de este balde y luego se repite hasta que se hayan leído todos los baldes de la cinta transportadora especial. Imagen 5: CCD del instrumento ESPRESSO del The Very Large Telescope (VLT), que tiene 81 millones de pixels. Es uno de los más grandes monolitos del mundo. Crédito: ESO/Olaf Iwert En los últimos 50 años, los CCD han mejorado mucho de muchas maneras. Para empezar, ahora contienen más píxeles. Los píxeles también pueden ser más grandes o más pequeños según el diseño óptico del instrumento. Ahora también tenemos transistores de salida optimizados con menos "ruido de lectura" mientras operamos a una velocidad más alta, transferencia de carga más eficiente, empaquetado mecánico mejorado para un mejor enfriamiento, mayor eficiencia cuántica, menos ruido de corriente oscura, menos defectos dentro del área de imagen, mejor óptica revestimientos, mayor fiabilidad ... ¡la lista continúa! Otro avance es que los CCD ahora pueden diseñarse especialmente para ser óptimamente sensibles a longitudes de onda de luz específicas. Un ejemplo de esto es el uso de detectores optimizados para los extremos azul y rojo del espectro visible, como por ejemplo el que se usa en el instrumento ESPRESSO del Very Large Telescope. Constelación de la semana: Sagitta, La Flecha. Imagen 6: Constelación Sagitta. Sagitta se puede ver sobre Aquila en esta placa del Espejo de Urania (1825). La constelación de Sagitta se encuentra en el cielo del norte. Su nombre significa "la flecha" en latín. Sagitta es una de las constelaciones griegas. Fue catalogado por primera vez por el astrónomo griego Ptolomeo en el siglo II. Representa la flecha de Heracles en la mitología griega. Sagitta es la tercera constelación más pequeña del cielo. No tiene estrellas más brillantes que la cuarta magnitud y contiene pocos objetos notables de cielo profundo. Estos incluyen el cúmulo globular Messier 71 (NGC 6838) y la Nebulosa Collar, una nebulosa planetaria descubierta en 2005. Sagitta es la constelación número 86 en tamaño, ocupando un área de solo 80 grados cuadrados. Las únicas constelaciones más pequeñas que Sagitta son Equuleus y Crux. Sagitta se encuentra en el cuarto cuadrante del hemisferio norte (NQ4) y se puede ver en latitudes entre + 90 ° y -70 °, desde cualquier lugar de la Tierra excepto el Círculo Antártico. Las constelaciones vecinas son Aquila, Delphinus, Hercules y Vulpecula. Sagitta pertenece a la familia de constelaciones de Hércules, junto con Aquila, Ara, Centaurus, Corona Australis, Corvus, Crater, Crux, Cygnus, Hercules, Hydra, Lupus, Lyra, Ophiuchus, Scutum, Sextans, Serpens, Triangulum Australe y Vulpecula. Sagitta contiene un objeto Messier, el cúmulo globular Messier 71 (M71, NGC 6838). No hay lluvias de meteoritos asociadas con la constelación. Sagitta contiene tres estrellas con nombre formal. Los nombres de estrellas aprobados por la Unión Astronómica Internacional (IAU) son Sham, Uruk y Sansuna. Sagitta no tiene estrellas más brillantes que la magnitud 3.00 y contiene solo una estrella ubicada a 10 parsecs (32.6 años luz) de la Tierra. La estrella más brillante de la constelación es Gamma Sagittae, con una magnitud aparente de 3,51. La estrella más cercana es Gliese 745 (clase espectral M1.0VI), ubicada a una distancia de 28,14 años luz de la Tierra. Sagitta tiene tres estrellas con exoplanetas conocidos. HD 231701 (clase espectral F8V) tiene un planeta parecido a Júpiter, descubierto en 2007, y 15 Sagittae (G0V) tiene una compañera enana marrón de largo período, detectada en 2002. La compañera es una enana subestelar de gran masa, solo unas Júpiter tiene masas por debajo del límite de una estrella. HAT-P-34 (F8) también tiene un planeta en tránsito, descubierto en 2012.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • 2016 Publication Year 2021-04-23T14:32:39Z Acceptance in OA@INAF Age Consistency Between Exoplanet Hosts and Field Stars Title B
    Publication Year 2016 Acceptance in OA@INAF 2021-04-23T14:32:39Z Title Age consistency between exoplanet hosts and field stars Authors Bonfanti, A.; Ortolani, S.; NASCIMBENI, VALERIO DOI 10.1051/0004-6361/201527297 Handle http://hdl.handle.net/20.500.12386/30887 Journal ASTRONOMY & ASTROPHYSICS Number 585 A&A 585, A5 (2016) Astronomy DOI: 10.1051/0004-6361/201527297 & c ESO 2015 Astrophysics Age consistency between exoplanet hosts and field stars A. Bonfanti1;2, S. Ortolani1;2, and V. Nascimbeni2 1 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy e-mail: [email protected] 2 Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, 35122 Padova, Italy Received 2 September 2015 / Accepted 3 November 2015 ABSTRACT Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photo- metric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform deriva- tion of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of 0 log RHK and v sin i, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Improving Transit Predictions of Known Exoplanets with TERMS
    EPJ Web of Conferences 11,11 06005 (2011) DOI:10.1051/epjconf/20111106005 © Owned by the authors, published by EDP Sciences, 2011 Improving Transit Predictions of Known Exoplanets with TERMS S.R. Kane1, D. Ciardi1, D. Fischer2, G. Henry3, A. Howard4, E. Jensen5, G. Laughlin6, S. Mahadevan7, K. von Braun1, J. Wright7 1 NASA Exoplanet Science Institute, Caltech, Pasadena, CA, 91125, USA 2 Dept of Astronomy, Yale University, New Haven, CT, 06520, USA 3 Tennessee State University, Nashville, TN, 37209, USA 4 Dept of Astronomy, University of California, Berkeley, CA, 94720, USA 5 Dept of Physics & Astronomy, Swarthmore College, Swarthmore, PA, 19081, USA 6 UCO/Lick Observatory, University of California, Santa Cruz, CA, 95064, USA 7 Dept of Astronomy & Astrophysics, Pennsylvania State University, University Park, PA, 16802, USA Abstract. Transiting planet discoveries have largely been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parameters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project that is monitoring these host stars at predicted transit times. 1. Introduction Monitoring known radial velocity (RV) planets at predicted transit times, particu- larly those planets in relatively eccentric orbits, presents an avenue through which to investigate the mass-radius relationship of exoplanets into unexplored regions of pe- riod/periastron space (Kane & von Braun 2008, 2009). Here we describe techniques for refining ephemerides and performing follow-up observations (Kane et al. 2009). These methods are used by the Transit Ephemeris Refinement and Monitoring Survey (TERMS).
    [Show full text]
  • Transit Spectroscopy of a Temperate Jupiter Abstract 1. Introduction 2
    EPSC Abstracts Vol. 11, EPSC2017-775, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Transit spectroscopy of a temperate Jupiter T. Encrenaz (1), G. Tinetti (2) and A. Coustenis (1) (1) LESIA, Paris Observatory, Meudon, France, (2) Dept. of Physics and Astronomy, University College London, UK ([email protected]) Abstract Name MP(MJ) P(d) D(AU) TP In this study, we consider the expected infrared (K) transmission spectrum of a temperate Jupiter, with an HD 134113 b 47 202 0.64 295 equilibrium temperature ranging between 350 and 500 HD 233604 b 6.6 192 0.747 434 K, and we analyse the best conditions for the host star HD 28185 b 5.7 383 1.03 320 to be filled in order to optimize the S/N ratio of its HD 32518 b 3.04 157 0.59 395 transmission spectrum. According to our analysis, HD 159243 c 1.9 248 0.8 338 temperate Jupiters around M stars could have an HD 9446 c 1.82 193 0.654 342 -4 amplitude signal higher than 10 in primary transits, HD 141399 c 1.33 202 0.69 390 with revolution periods of a few tens of days and HD 231701 b 1.08 142 0.53 419 transit durations of a few hours. In order to enlarge the Kepler-11 g 0.95 118 0.46 392 sampling of exoplanets to be observed with ARIEL HD 92788 c 0.9 162 0.6 392 (presently focussed on objects warmer than 500 K) [1], HD 37124 b 0.675 154 0.53 331 some of these objects could be considered as HD 45364 c 0.66 343 0.897 252 additional possible targets for the mission.
    [Show full text]
  • Determining the True Mass of Radial-Velocity Exoplanets with Gaia 9 Planet Candidates in the Brown-Dwarf/Stellar Regime and 27 Confirmed Planets
    Astronomy & Astrophysics manuscript no. exoplanet_mass_gaia c ESO 2020 September 30, 2020 Determining the true mass of radial-velocity exoplanets with Gaia 9 planet candidates in the brown-dwarf/stellar regime and 27 confirmed planets F. Kiefer1; 2, G. Hébrard1; 3, A. Lecavelier des Etangs1, E. Martioli1; 4, S. Dalal1, and A. Vidal-Madjar1 1 Institut d’Astrophysique de Paris, Sorbonne Université, CNRS, UMR 7095, 98 bis bd Arago, 75014 Paris, France 2 LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92195 Meudon, France? 3 Observatoire de Haute-Provence, CNRS, Universiteé d’Aix-Marseille, 04870 Saint-Michel-l’Observatoire, France 4 Laboratório Nacional de Astrofísica, Rua Estados Unidos 154, 37504-364, Itajubá - MG, Brazil Submitted on 2020/08/20 ; Accepted for publication on 2020/09/24 ABSTRACT Mass is one of the most important parameters for determining the true nature of an astronomical object. Yet, many published exoplan- ets lack a measurement of their true mass, in particular those detected thanks to radial velocity (RV) variations of their host star. For those, only the minimum mass, or m sin i, is known, owing to the insensitivity of RVs to the inclination of the detected orbit compared to the plane-of-the-sky. The mass that is given in database is generally that of an assumed edge-on system (∼90◦), but many other inclinations are possible, even extreme values closer to 0◦ (face-on). In such case, the mass of the published object could be strongly underestimated by up to two orders of magnitude.
    [Show full text]
  • Evidence for Enhanced Chromospheric Ca II H and K Emission in Stars with Close-In Extrasolar Planets
    A&A 540, A82 (2012) Astronomy DOI: 10.1051/0004-6361/201118247 & c ESO 2012 Astrophysics Evidence for enhanced chromospheric Ca II H and K emission in stars with close-in extrasolar planets T. Krejcovᡠ1 and J. Budaj2 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 61137 Brno, Czech Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic e-mail: [email protected] Received 11 October 2011 / Accepted 13 February 2012 ABSTRACT Context. The planet-star interaction is manifested in many ways. It has been found that a close-in exoplanet causes small but mea- surable variability in the cores of a few lines in the spectra of several stars, which corresponds to the orbital period of the exoplanet. Stars with and without exoplanets may have different properties. Aims. The main goal of our study is to search for the influence that exoplanets might have on atmospheres of their host stars. Unlike the previous studies, we do not study changes in the spectrum of a host star or differences between stars with and without exoplanets. We aim to study a large number of stars with exoplanets and the current level of their chromospheric activity and to look for a possible correlation with the exoplanetary properties. Methods. To analyse the chromospheric activity of stars, we exploited our own and publicly available archival spectra, measured the equivalent widths of the cores of Ca II H and K lines, and used them to trace their activity. Subsequently, we searched for their dependence on the orbital parameters and the mass of the exoplanet.
    [Show full text]
  • Radial Velocities from the N2K Project: 6 New Cold Gas Giant Planets Orbiting HD 55696, HD 98736, HD 148164, HD 203473, and HD 211810 Kristo Ment,1, 2 Debra A
    Draft version September 6, 2018 Typeset using LATEX preprint style in AASTeX62 Radial velocities from the N2K Project: 6 new cold gas giant planets orbiting HD 55696, HD 98736, HD 148164, HD 203473, and HD 211810 Kristo Ment,1, 2 Debra A. Fischer,1 Gaspar Bakos,3 Andrew W. Howard,4 and Howard Isaacson5 1Department of Astronomy, Yale University, 52 Hillhouse Avenue, New Haven, CT 06511, USA 2Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 3Department of Astrophysical Sciences, Princeton University, NJ 08544, USA 4Department of Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 5Department of Astronomy, University of California, Berkeley, CA 94720, USA (Received February 15, 2018; Revised August 23, 2018; Accepted August 29, 2018) Submitted to AJ ABSTRACT The N2K planet search program was designed to exploit the planet-metallicity cor- relation by searching for gas giant planets orbiting metal-rich stars. Here, we present the radial velocity measurements for 378 N2K target stars that were observed with the HIRES spectrograph at Keck Observatory between 2004 and 2017. With this data set, we announce the discovery of six new gas giant exoplanets: a double-planet system or- biting HD 148164 (M sin i of 1.23 and 5.16 MJUP) and single planet detections around HD 55696 (M sin i = 3.87 MJUP), HD 98736 (M sin i= 2.33 MJUP), HD 203473 (M sin i = 7.8 MJUP), and HD 211810 (M sin i = 0.67 MJUP). These gas giant companions have orbital semi-major axes between 1.0 and 6.2 AU and eccentricities ranging from 0.13 to 0.71.
    [Show full text]
  • Refining Exoplanet Ephemerides and Transit Observing Strategies
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 121:1386–1394, 2009 December © 2009. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Refining Exoplanet Ephemerides and Transit Observing Strategies STEPHEN R. KANE,1 SUVRATH MAHADEVAN,2 KASPAR VON BRAUN,1 GREGORY LAUGHLIN,3 AND DAVID R. CIARDI1 Received 2009 August 27; accepted 2009 September 27; published 2009 November 16 ABSTRACT. Transiting planet discoveries have yielded a plethora of information regarding the internal structure and atmospheres of extrasolar planets. These discoveries have been restricted to the low-periastron distance regime due to the bias inherent in the geometric transit probability. Monitoring known radial velocity planets at predicted transit times is a proven method of detecting transits, and presents an avenue through which to explore the mass- radius relationship of exoplanets in new regions of period/periastron space. Here we describe transit window cal- culations for known radial velocity planets, techniques for refining their transit ephemerides, target selection criteria, and observational methods for obtaining maximum coverage of transit windows. These methods are currently being implemented by the Transit Ephemeris Refinement and Monitoring Survey (TERMS). 1. INTRODUCTION stellar radiation. Recent observations of HD 80606b by Gillon (2009) and Pont et al. (2009) suggest a spin-orbit misalignment Planet formation theories thus far extract much of their caused by a Kozai mechanism; a suggestion which could be information from the known transiting exoplanets, which are largely in the short-period regime. This is because transit sur- investigated in terms of period and eccentricity dependencies veys that have provided the bulk of the transiting planet discov- if more long-period transiting planet were known.
    [Show full text]
  • IAU WGSN 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]