A SUBSTELLAR COMPANION in a 1.3 Yr NEARLY CIRCULAR ORBIT of HD 16760∗,†

Total Page:16

File Type:pdf, Size:1020Kb

A SUBSTELLAR COMPANION in a 1.3 Yr NEARLY CIRCULAR ORBIT of HD 16760∗,† The Astrophysical Journal, 703:671–674, 2009 September 20 doi:10.1088/0004-637X/703/1/671 C 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A SUBSTELLAR COMPANION IN A 1.3 yr NEARLY CIRCULAR ORBIT OF HD 16760∗,† Bun’ei Sato1, Debra A. Fischer2, Shigeru Ida3, Hiroki Harakawa3, Masashi Omiya4, John A. Johnson5, Geoffrey W. Marcy6, Eri Toyota7, Yasunori Hori3, Howard Isaacson2, Andrew W. Howard6, and Kathryn M. G. Peek6 1 Global Edge Institute, Tokyo Institute of Technology, 2-12-1-S6-6 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; [email protected] 2 Department of Physics & Astronomy, San Francisco State University, San Francisco, CA 94132, USA 3 Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan 4 Department of Physics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan 5 Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA 6 Department of Astronomy, University of California, Berkeley, CA, USA 7 Kobe Science Museum, 7-7-6 Minatoshima-Nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan Received 2009 March 2; accepted 2009 July 31; published 2009 August 31 ABSTRACT We report the detection of a substellar companion orbiting the G5 dwarf HD 16760 from the N2K sample. Precise Doppler measurements of the star from Subaru and Keck revealed a Keplerian velocity variation with a period of 466.47 ± 0.35 d, a semiamplitude of 407.71 ± 0.84 m s−1, and an eccentricity of 0.084 ± 0.003. Adopting a stellar mass of 0.78 ± 0.05 M, we obtain a minimum mass for the companion of 13.13 ± 0.56 MJUP, which is close to the planet/brown-dwarf transition, and the semimajor axis of 1.084 ± 0.023 AU. The nearly circular orbit despite the large mass and intermediate orbital period makes this companion unique among known substellar companions. Key words: planetary systems – stars: individual (HD 16760) 1. INTRODUCTION by core accretion. Massive companions with 10 Jupiter-mass (MJUP) could be formed by core-accretion depending on the During the past decade, precise Doppler surveys have ob- assumed truncation condition for gas accretion (Ida & Lin served 3000 of the closest and brightest main-sequence stars 2004b;Alibertetal.2005; Mordasini et al. 2007). Or they could and have detected more than 250 extrasolar planets so far (e.g., be formed by gravitational disk instability as has been suggested Butler et al. 2006; Udry & Santos 2007). The planets show a for the formation of brown-dwarf companions. In fact, an upper surprising diversity in their masses, orbital periods, and eccen- limit of planet mass has not been well established theoretically tricities, and the statistical distribution and correlation of these or observationally. In core accretion, the limit is regulated by a parameters now begin to serve as the test cases for theories of balance between gap opening (e.g., Ida & Lin 2004a; Crida et al. planet formation and evolution (e.g., Ida & Lin 2004a, 2004b, 2006), the inflow rate due to viscous diffusion and dissipation 2005). timescales of protoplanetary disks (e.g., D’Angelo et al. 2003; Stellar metallicity is one of the key parameters that controls Dobbs-Dixon et al. 2007; Tanigawa & Ikoma 2007). Planet planet formation. It is well known that frequency of giant planets mass might also depend on subsequent evolution of planets by becomes higher as stellar metallicity increases (e.g., Santos et al. mechanisms such as giant impacts (Baraffe et al. 2008). In disk 2003; Fischer & Valenti 2005, and references therein). Such a instability, planet mass depends primarily on the mass ratio trend favors a core-accretion model as the main mechanism of between the disk and central star. Observational properties of giant planet formation, because high metallicity likely increases planets help to constrain the planet formation models. Currently, the surface density at the midplane of the protoplanetary disk, no significant difference in stellar metallicity has been found making it easier to build metal cores massive enough to accrete for planets above and below ∼ 10 MJUP (e.g., Santos et al. gas envelope (e.g., Ida & Lin 2004b;Alibertetal.2005). It 2003; Fischer & Valenti 2005). Indeed, very high-mass planets has also been noted that there is a possible flat tail in the (i.e., greater than 10 MJUP) are rare; a larger sample would low-metallicity regime of the frequency distribution (Santos improve statistics for extracting information regarding the upper et al. 2004; Sozzetti et al. 2009). This might suggest the limit of planet mass and correlations between planet mass and existence of a distinct formation mechanism, disk instability, metallicity. which is not dependent on metallicity (Boss 2002). Correlations The N2K consortium began precise Doppler surveys at Keck, between metallicity and orbital parameters are inconclusive. Magellan, and Subaru in 2004, targeting a new set of 2000 No significant trends have been found in period–metallicity metal-rich solar-type stars (Fischer et al. 2005). The main and eccentricity–metallicity distribution, although hints of some purpose of the survey was to search for short-period planets weak correlations have been pointed out (e.g., Santos et al. 2003; with a high-cadence observational strategy in order to find Fischer & Valenti 2005). prospective transiting planets. The sample was biased toward It has also been pointed out that in addition to the presence of high-metallicity stars in order to increase the detection rate of the gas giant planets, the mass of the detected planet or the total mass planets. From the collective N2K surveys, we have discovered of all planets in a system are correlated with high metallicity seven short-period (P 5 days) planets so far including: HD (e.g., Santos et al. 2003; Fischer & Valenti 2005), as predicted 88133 (Fischer et al. 2005), the transiting planet HD 149026 (Sato et al. 2005), HD 149143 and HD 109749 (Fischer et al. ∗ Based on data collected by the Subaru Telescope, which is operated by the 2006), HD 86081, HD 224693, and HD 33283 (Johnson et al. National Astronomical Observatory of Japan. 2006). † Based on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of The metallicity-biased sample is expected to contain many Technology. Keck time has been granted by NOAO and NASA. long-period planets as well as short-period ones. Therefore, we 671 672 SATO ET AL. Vol. 703 have continued to observe stars with significant radial velocity Table 1 variations and we have also detected 13 intermediate-period Stellar Parameters for HD 16760 (18–1405 days) planets: HD 5319 and HD 75898 (Robinson Parameter Value et al. 2007), HD 11506, HD 125612, HD 170469, HD 231701 V 8.7 and the transiting planet HD 17156 (Fischer et al. 2007), the MV 5.41 double planet system HIP 14810 (Wright et al. 2007), HD B−V 0.715 205732 and HD 154672 (Lopez-Morales et al. 2008), HD B.C. −0.108 179079 and HD 73534 (Valenti et al. 2009). These planets Spectral type G5V help to investigate correlations between properties of planets Parallax (mas) 22.00 (2.35) and stellar metallicity in more detail, especially in the high- Teff (K) 5629 (44) metallicity regime. log g 4.47 (0.06) [Fe/H] +0.067 (0.05) Here, we report the discovery of a substellar companion to − v sin i (km s 1) 0.5 (0.5) the G5 dwarf star HD 16760 in a 1.3 yr nearly circular orbit M (M) 0.78 (0.05) from the N2K sample. The companion has a minimum mass of Star RStar (R) 0.81 (0.27) 13.13 MJUP, which is just above the deuterium-burning threshold LStar (L) 0.72 (0.43) that is often used to distinguish brown dwarfs from planets. SHK 0.176 − log RHK 4.93 2. STELLAR PARAMETERS HD 16760 (HIP 12638) is listed in the Hipparcos catalog et al. 2002) to provide a fiducial wavelength reference for precise (ESA 1997) as a G5V star with a visual magnitude V = 8.7 and radial velocity measurements. We adopted the setup of StdI2b a color index B − V = 0.715. The revised Hipparcos parallax for all the data, which simultaneously covers a wavelength = ± region of 3500–6100 Å by a mosaic of two CCDs. The slit width of π 22.00 2.35 mas (van Leeuwen 2007) corresponds to a distance of 45.5 pc and yields the absolute visual magnitude of was set to 0.8 for the first four data (2004–2005) and 0.6forthe last six ones (2006–2008), giving a reciprocal resolution (λ/Δλ) MV = 5.41. The star is probably a visual binary system having a Hipparcos double star catalog entry. The secondary is separated of 45,000 and 60,000, respectively. Typical signal-to-noise ratio −1 by 14.6 arcsec which corresponds to a projected separation of (S/N) was 140–200 pix with exposure time of 110–300 s about 660 AU. A high-resolution spectroscopic analysis with depending on the observing conditions. Radial velocity analysis Spectroscopy Made Easy (SME; Valenti & Piskunov 1996) for an I2-superposed stellar spectrum was carried out with a code described in Valenti & Fischer (2005) derives an effective developed by Sato et al. (2002), which is based on a technique temperature T = 5629 ± 44 K, a surface gravity log g = by Butler et al. (1996) and Valenti et al. (1995), giving a Doppler eff −1 4.47 ± 0.06, rotational velocity v sin i = 0.5 ± 0.5 km s−1, precision of about 4–5 m s .
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Maio - 2017 Francisco Jânio Cavalcante
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE CENTRO DE CIÊNCIAS EXATAS E DA TERRA DEPARTAMENTO DE FÍSICA TEÓRICA E EXPERIMENTAL PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA EVOLUÇÃO DO ÍNDICE DE FREIO MAGNÉTICO PARA ESTRELAS DO TIPO SOLAR FRANCISCO JÂNIO CAVALCANTE NATAL (RN) MAIO - 2017 FRANCISCO JÂNIO CAVALCANTE EVOLUÇÃO DO ÍNDICE DE FREIO MAGNÉTICO PARA ESTRELAS DO TIPO SOLAR Tese de Doutorado apresentada ao Programa de Pós-Graduação em Física do Departamento de Física Teórica e Experimental da Universidade Federal do Rio Grande do Norte como requisito parcial para a obtenção do grau de Doutor em Física. Orientador: Dr. Daniel Brito de Freitas NATAL (RN) MAIO - 2017 UFRN / Biblioteca Central Zila Mamede Catalogação da Publicação na Fonte Cavalcante, Francisco Jânio. Evolução do índice de freio magnético para estrelas do tipo solar / Francisco Jânio Cavalcante. - 2017. 166 f. : il. Tese (doutorado) - Universidade Federal do Rio Grande do Norte, Centro de Ciências Exatas e da Terra, Programa de Pós-Graduação em Física. Natal, RN, 2017. Orientador: Prof. Dr. Daniel Brito de Freitas. 1. Rotação estelar - Tese. 2. Freio magnético - Tese. 3. Distribuição e estatística - Tese. I. Freitas, Daniel Brito de. II. Título. RN/UF/BCZM CDU 524.3 Para Pessoas Especiais: A minha avó, minha mãe e minha namorada Ester Saraiva da Silva (in memorian) Cleta Carneiro Cavalcante Simone Santos Martins Agradecimentos Agradeço ao bom e generoso Deus, quem me deu muitas coisas no decorrer da minha vida. Deu-me compreensão e amparo nos momento de aflição e tristeza, saúde para continuar nesta caminhada. Ofereceu-me sua luz no momento em que a escuridão sufocava meu espírito.
    [Show full text]
  • Arxiv:1305.7264V2 [Astro-Ph.EP] 21 Apr 2014 Spain
    Draft version September 18, 2018 Preprint typeset using LATEX style emulateapj v. 08/22/09 THE MOVING GROUP TARGETS OF THE SEEDS HIGH-CONTRAST IMAGING SURVEY OF EXOPLANETS AND DISKS: RESULTS AND OBSERVATIONS FROM THE FIRST THREE YEARS Timothy D. Brandt1, Masayuki Kuzuhara2, Michael W. McElwain3, Joshua E. Schlieder4, John P. Wisniewski5, Edwin L. Turner1,6, J. Carson7,4, T. Matsuo8, B. Biller4, M. Bonnefoy4, C. Dressing9, M. Janson1, G. R. Knapp1, A. Moro-Mart´ın10, C. Thalmann11, T. Kudo12, N. Kusakabe13, J. Hashimoto13,5, L. Abe14, W. Brandner4, T. Currie15, S. Egner12, M. Feldt4, T. Golota12, M. Goto16, C. A. Grady3,17, O. Guyon12, Y. Hayano12, M. Hayashi18, S. Hayashi12, T. Henning4, K. W. Hodapp19, M. Ishii12, M. Iye13, R. Kandori13, J. Kwon13,22, K. Mede18, S. Miyama20, J.-I. Morino13, T. Nishimura12, T.-S. Pyo12, E. Serabyn21, T. Suenaga22, H. Suto13, R. Suzuki13, M. Takami23, Y. Takahashi18, N. Takato12, H. Terada12, D. Tomono12, M. Watanabe24, T. Yamada25, H. Takami12, T. Usuda12, M. Tamura13,18 Draft version September 18, 2018 ABSTRACT We present results from the first three years of observations of moving group targets in the SEEDS high-contrast imaging survey of exoplanets and disks using the Subaru telescope. We achieve typical contrasts of ∼105 at 100 and ∼106 beyond 200 around 63 proposed members of nearby kinematic moving groups. We review each of the kinematic associations to which our targets belong, concluding that five, β Pictoris (∼20 Myr), AB Doradus (∼100 Myr), Columba (∼30 Myr), Tucana-Horogium (∼30 Myr), and TW Hydrae (∼10 Myr), are sufficiently well-defined to constrain the ages of individual targets.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • David Charbonneau Refereed Publications As of May 2015
    David Charbonneau Refereed Publications as of May 2015 160. Low False Positive Rate of Kepler Candidates Estimated From A Combination Of Spitzer And Follow-Up Observations Désert, Jean-Michel; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Bryson, Stephen T.; Knutson, Heather A.; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Latham, David W.; Seager, Sara The Astrophysical Journal, Volume 804, Issue 1, article id. 59 (2015). 159. The Mass of Kepler-93b and The Composition of Terrestrial Planets Dressing, Courtney D.; Charbonneau, David; Dumusque, Xavier; Gettel, Sara; Pepe, Francesco; Collier Cameron, Andrew; Latham, David W.; Molinari, Emilio; Udry, Stéphane; Affer, Laura; Bonomo, Aldo S.; Buchhave, Lars A.; Cosentino, Rosario; Figueira, Pedro; Fiorenzano, Aldo F. M.; Harutyunyan, Avet; Haywood, Raphaëlle D.; Johnson, John Asher; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David F.; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Chris The Astrophysical Journal, Volume 800, Issue 2, article id. 135 (2015). 158. An Empirical Calibration to Estimate Cool Dwarf Fundamental Parameters from H-band Spectra Newton, Elisabeth R.; Charbonneau, David; Irwin, Jonathan; Mann, Andrew W. The Astrophysical Journal, Volume 800, Issue 2, article
    [Show full text]
  • Download This Article in PDF Format
    A&A 562, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201321493 & c ESO 2014 Astrophysics Li depletion in solar analogues with exoplanets Extending the sample, E. Delgado Mena1,G.Israelian2,3, J. I. González Hernández2,3,S.G.Sousa1,2,4, A. Mortier1,4,N.C.Santos1,4, V. Zh. Adibekyan1, J. Fernandes5, R. Rebolo2,3,6,S.Udry7, and M. Mayor7 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, C/ Via Lactea s/n, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 4 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal 5 CGUC, Department of Mathematics and Astronomical Observatory, University of Coimbra, 3049 Coimbra, Portugal 6 Consejo Superior de Investigaciones Científicas, CSIC, Spain 7 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland Received 18 March 2013 / Accepted 25 November 2013 ABSTRACT Aims. We want to study the effects of the formation of planets and planetary systems on the atmospheric Li abundance of planet host stars. Methods. In this work we present new determinations of lithium abundances for 326 main sequence stars with and without planets in the Teff range 5600–5900 K. The 277 stars come from the HARPS sample, the remaining targets were observed with a variety of high-resolution spectrographs. Results. We confirm significant differences in the Li distribution of solar twins (Teff = T ± 80 K, log g = log g ± 0.2and[Fe/H] = [Fe/H] ±0.2): the full sample of planet host stars (22) shows Li average values lower than “single” stars with no detected planets (60).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Arxiv:0809.1275V2
    How eccentric orbital solutions can hide planetary systems in 2:1 resonant orbits Guillem Anglada-Escud´e1, Mercedes L´opez-Morales1,2, John E. Chambers1 [email protected], [email protected], [email protected] ABSTRACT The Doppler technique measures the reflex radial motion of a star induced by the presence of companions and is the most successful method to detect ex- oplanets. If several planets are present, their signals will appear combined in the radial motion of the star, leading to potential misinterpretations of the data. Specifically, two planets in 2:1 resonant orbits can mimic the signal of a sin- gle planet in an eccentric orbit. We quantify the implications of this statistical degeneracy for a representative sample of the reported single exoplanets with available datasets, finding that 1) around 35% percent of the published eccentric one-planet solutions are statistically indistinguishible from planetary systems in 2:1 orbital resonance, 2) another 40% cannot be statistically distinguished from a circular orbital solution and 3) planets with masses comparable to Earth could be hidden in known orbital solutions of eccentric super-Earths and Neptune mass planets. Subject headings: Exoplanets – Orbital dynamics – Planet detection – Doppler method arXiv:0809.1275v2 [astro-ph] 25 Nov 2009 Introduction Most of the +300 exoplanets found to date have been discovered using the Doppler tech- nique, which measures the reflex motion of the host star induced by the planets (Mayor & Queloz 1995; Marcy & Butler 1996). The diverse characteristics of these exoplanets are somewhat surprising. Many of them are similar in mass to Jupiter, but orbit much closer to their 1Carnegie Institution of Washington, Department of Terrestrial Magnetism, 5241 Broad Branch Rd.
    [Show full text]
  • A Search for the Transit of HD 168443B: Improved Orbital
    Submitted for publication in the Astrophysical Journal A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry Genady Pilyavsky1, Suvrath Mahadevan1,2, Stephen R. Kane3, Andrew W. Howard4,5, David R. Ciardi3, Chris de Pree6, Diana Dragomir3,7, Debra Fischer8, Gregory W. Henry9, Eric L. N. Jensen10, Gregory Laughlin11, Hannah Marlowe6, Markus Rabus12, Kaspar von Braun3, Jason T. Wright1,2, Xuesong X. Wang1 [email protected] [email protected] ABSTRACT The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work 1Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 2Center for Exoplanets & Habitable Worlds, Pennsylvania State University, 525 Davey Laboratory, Uni- versity Park, PA 16802 3NASA Exoplanet Science Institute, Caltech, MS 100-22, 770 South Wilson Avenue, Pasadena, CA 91125 4Department of Astronomy, University of California, Berkeley, CA 94720 5Space Sciences Laboratory, University of California, Berkeley, CA 94720 6Department of Physics and Astronomy, Agnes Scott College, 141 East College Avenue, Decatur, GA arXiv:1109.5166v1 [astro-ph.EP] 23 Sep 2011 30030, USA 7Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T1Z1, Canada 8Department of Astronomy, Yale University, New Haven, CT 06511 9Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 10Dept of Physics & Astronomy, Swarthmore College, Swarthmore, PA 19081 11UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 12Departamento de Astonom´ıay Astrof´ısica, Pontificia Universidad Cat´olica de Chile, Casilla 306, Santiago 22, Chile –2– we present the search for transits of HD168443b, a massive planet orbiting the bright star HD 168443 (V =6.92) with a period of 58.11 days.
    [Show full text]
  • 2001 Astronomy Magazine Index
    2001 Astronomy magazine index Subject index Chandra X-ray Observatory, telescope of, free-floating planets, 2:20, 22 12:76 A Christmas Star, 1:102 absolute visual magnitude, 1:86 cold dark matter, 3:24, 26 G active region 9393, 7:22 colors, of celestial objects, 9:82–83 Gagarin, Yuri, 4:36–41 Africa, observation from, 4:107–112, 10:48– Comet Borrelly, 9:33–37 galaxies 53 comets, 2:93 clusters of Andromeda Galaxy computers, accessing image archives with, in constellation Leo, 5:28 constellations of, 11:64–69 7:40–45 Massive Cluster Survey (MACS), consuming other galaxies, 12:25 corona of Sun, 1:24, 26 3:28 warp in disk of, 5:22 cosmic rays collisions of, 6:24 animal astronauts, 4:43–47 general information, 1:36–39 space between, 9:81 apparent visual magnitude, 1:86 origin of, 1:43–47 gamma ray bursts, 1:28, 30 Apus (constellation), 7:80–84 cosmology Ganymede (Jupiter's moon), 5:26 Aquila (constellation), 8:66–70 and particle physics, 6:39–43 Gemini Telescope, 2:26, 28 Ara (constellation), 7:80–84 unanswered questions, 6:46–52 Giodorno Bruno crater, 11:28, 30 Aries (constellation), 11:64–69 Gliese 876 (red dwarf star), 4:18 artwork, astronomical, 12:80–85 globular clusters, viewing, 8:72 asteroids D green stars, 3:82–85 around Zeta Leporis (star), 11:26 dark matter Groundhog Day, 2:96–97 cold, 3:24, 26 near Earth, 8:44–49 astronauts, animal as, 4:43–47 distribution of, 12:30, 32 astronomers, amateur, 10:88–89 whether exists, 8:26–31 H Hale Telescope, 9:46–53 astronomical models, 9:22, 24 deep sky objects, 7:87 HD 168443 (star), 4:18 Astronomy.com website, 1:78–84 Delphinus (constellation), 10:72–76 HD 82943 (star), 8:18 astrophotography DigitalSky Voice software, 8:65 HH 237 (meteor), 6:22 black holes, 1:26, 28 Dobson, John, 9:68–71 HR 1998 (star), 11:26 costs of basic equipment, 5:86 Dobsonian telescopes HST.
    [Show full text]
  • Disertaciones Astronómicas Boletín Número 66 De Efemérides Astronómicas 24 De Febrero De 2021
    Disertaciones astronómicas Boletín Número 66 de efemérides astronómicas 24 de febrero de 2021 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. 50 años del CCD. Imagen 1: Un CCD en el instrumento ESPRESSO del Very Large Telescope (VLT). Con 81 millones de píxeles, este es uno de los CCD monolíticos más grandes del mundo. Crédito: ESO / Olaf Iwert. En 1969, dos investigadores diseñaron la estructura básica de un CCD, o dispositivo de carga acoplada, y definieron sus principios operativos. Desde entonces, estos dispositivos han jugado un papel muy importante en la astronomía, así como en nuestra vida diaria. Imagen 2: Willard Boyle, a la izquierda, y George Smith prueban un sensor CCD en 1970 en los laboratorios Bell.AP/. El uso de CCD en la fotografía cotidiana se produjo unos 20 años después de la aplicación de los CCD científicos a la astronomía; los CCD astronómicos fueron los pioneros de la fotografía digital. Pero hay una gran diferencia entre los sensores de imagen CCD científicos que utilizamos en ESO para astronomía y los CCD comerciales, como los que se utilizan en las cámaras de vídeo. Los CCD científicos se adelgazan, se iluminan en la parte trasera y se tratan en la superficie para recopilar la mayor cantidad de información posible sobre el objeto observado. Los CCD científicos también suelen ser monocromáticos, lo que significa que no filtran los colores, por lo que recolectan toda la luz disponible con la mayor eficiencia posible. Los CCD comerciales, por otro lado, producen principalmente imágenes en color. Imagen 3: Imagen que muestra la disposición del sistema de capas y pixeles en un chip CCD.
    [Show full text]