Range Expansion in an Invasive Small Mammal: Influence of Life-History and Habitat Quality

Total Page:16

File Type:pdf, Size:1020Kb

Range Expansion in an Invasive Small Mammal: Influence of Life-History and Habitat Quality View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Biol Invasions (2012) 14:2203–2215 DOI 10.1007/s10530-012-0225-x ORIGINAL PAPER Range expansion in an invasive small mammal: influence of life-history and habitat quality Thomas A. White • Mathieu G. Lundy • W. Ian Montgomery • Sally Montgomery • Sarah E. Perkins • Colin Lawton • John M. Meehan • Tom J. Hayden • Gerald Heckel • Neil Reid • Jeremy B. Searle Received: 22 November 2011 / Accepted: 9 April 2012 / Published online: 18 April 2012 Ó Springer Science+Business Media B.V. 2012 Abstract Invasive species pose a major threat to demographic parameters. We subsequently modelled biodiversity but provide an opportunity to describe the the processes involved in its range expansion using a processes that lead to changes in a species’ range. The rule-based spatially explicit simulation. Habitat suit- bank vole (Myodes glareolus) is an invasive rodent ability interacted with density-dependent parameters that was introduced to Ireland in the early twentieth to influence dispersal, most notably the density at century. Given its continuing range expansion, the which local populations started to donate emigrating substantial empirical data on its spread thus far, and individuals, the number of dispersing individuals and the absence of any eradication program, the bank vole the direction of dispersal. Whilst local habitat vari- in Ireland represents a unique model system for ability influenced the rate of spread, on a larger scale studying the mechanisms influencing the rate of range the invasion resembled a simple reaction–diffusion expansion in invasive small mammals. We described process. Our results suggest a Type 1 range expansion the invasion using a reaction–diffusion model where the rate of expansion is generally constant over informed by empirical data on life history traits and time, but with some evidence for a lag period T. A. White (&) Á J. B. Searle S. Montgomery Department of Ecology and Evolutionary Biology, W5@Odyssey, 2 Queen’s Quay, Belfast BT3 9QQ, Cornell University, Corson Hall, Ithaca, NY 14853-2701, Northern Ireland, UK USA e-mail: [email protected] S. E. Perkins Cardiff School of Biosciences, Biomedical Sciences T. A. White Á G. Heckel Building, Museum Avenue, Cardiff CF10 3AX, UK CMPG Lab, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, C. Lawton Switzerland Martin Ryan Institute, NUI, Galway, Ireland M. G. Lundy Á W. I. Montgomery J. M. Meehan Á T. J. Hayden School of Biological Sciences, Queen’s University School of Biology & Environmental Science, University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, College Dublin, Belfield, Dublin 4, Ireland Northern Ireland, UK W. I. Montgomery Á N. Reid Quercus, School of Biological Sciences, Queen’s University Belfast, MBC, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK 123 2204 T. A. White et al. following introduction. We demonstrate that a two- habitat (Morgia et al. 2011;Ovaskainen2004). Indeed, parameter empirical model and a rule-based spatially the distribution and abundance of suitable habitat explicit simulation are sufficient to accurately describe predicate successful colonization (Hanski 1999). Phys- the invasion history of a species that exhibits a ical features such as water bodies and mountain ranges complex, density-dependent pattern of dispersal. may act as barriers to dispersal (Gerlach and Musolf 2000; Kozakiewicz et al. 2009). Variation in climate, Keywords Invasive species Á Reaction–diffusion Á resources and landscape connectivity generate differ- Non-commensal Á Mammal Á Island Á Landscape Á ential rates of expansion across space (Grosholz 1996; Dispersal Á Life-history Phillips et al. 2008; Urban et al. 2008;With2002). Using model systems to understand how landscape influences the spread of colonizing species is critical to Introduction making realistic predictions of the likelihood of intro- duction and establishment of non-native species or Species’ introductions can be highly detrimental to successful re-introductions for conservation purposes natural communities, ecosystem integrity, agriculture, (Morgia et al. 2011;Ovaskainen2004). fisheries and public health (Lee 2002). However, they Small to medium-sized mammals include some of provide an opportunity to examine the processes the most notorious invasive species (Clout and Veitch which lead to changes in a species’ range, of relevance 2002), including the house mouse (Mus musculus), to both pure and applied population biology (Lodge Rattus species (R. rattus, R. norvegicus, R. exulans), the et al. 2006; Parmesan and Yohe 2003). European rabbit (Oryctolagus cuniculus), coypu (Myc- Successful colonisation by a non-native species ocastor coypus), muskrat (Ondatra zibethicus), grey progresses through three stages: (i) inoculation, (ii) squirrel (Sciurus carolinensis) and American mink establishment (often including a lag period) and (iii) (Neovison vison). However, it is rather rare to have the range expansion (Williamson 1996). There are three opportunity to study a small mammal invasion where distinct patterns of range expansion (Shigesada and the range is continuing to expand, and where the Kawasaki 1997; Shigesada et al. 1995): Type 1 is process of invasion is not being modified by an characterised by a radial invasion range (i.e. the eradication program. Here we examine the range square-root of the area of the range) which increases expansion of a non-commensal small mammal where linearly as a function of time. Such a pattern is derived the data available allow a particularly detailed analysis from population growth and simple short-distance of the invasion process. The bank vole (Myodes diffusion or local Brownian motion (Skellam 1951). glareolus, formerly of the genus Clethrionomys)is Expansion takes place only along the edge of the range widely distributed throughout Eurasia from Iberia to because in this situation dispersing individuals settle central Siberia and from northern Scandinavia to the in the vicinity of the parent population. Type 2 is Mediterranean but was not recorded in Ireland until characterised by a biphasic expansion typically with a 1964 (Claassens and O’Gorman 1965). Analysis of slow rate of spread initially followed by a higher mitochondrial DNA and vole parasite populations constant rate and Type 3 is characterised by an supports a single colonisation event in the late 1920s exponential rate of spread i.e. accelerating increase involving a small number of founders arriving on the over time (Shigesada and Kawasaki 1997; Shigesada southern shore of the Shannon estuary (Fairley 1971a, et al. 1995). Patterns 2 and 3 occur in species capable 1997;Ryanetal.1996; Stuart et al. 2007). The latter of long-distance dispersal relative to range size where suggest that to date of introduction was 1926 at Foynes, new colonies are established far beyond the edge of the Co Limerick, where heavy, earth moving equipment range. These scenarios assume uniform dispersal was landed from Germany prior to the construction of based on demographic processes but species can often the Shannon hydroelectricity scheme. The first system- possess complex reactions to landscape and habitat atic distribution surveys established that the bank vole structure which influence their direction and rate of was restricted to south-west Ireland (Fairley 1971b; spread (Gustafson and Gardner 1996). Fairley and O’Donnell 1970) and hindcast extrapola- Dispersal rates and range expansion may vary tions suggested that the species began to expand its according to the distribution and quality of suitable range (possibly after an initial lag period) sometime 123 Range expansion in an invasive small mammal 2205 during the 1940s or 1950s, expanding in all directions at thesis), and, (iv) 2010 (T. White field data, and an estimated rate of 1.0–4.5 km year-1 (Smal and Montgomery et al. 2012). Incidental records were also Fairley 1984). Recent work suggests that the bank vole collated (Fairley 1985, 1992; Leirs et al. 1987; may have major impacts on well-established small McHugh and Boyle 2010; McHugh and Lawton mammal communities in Ireland (Montgomery et al. 2005; Smal and Fairley 1978; Smiddy and Sleeman 2012) reducing population density of the wood mouse 1994). These collated records are shown in Fig. 1. (Apodemus sylvaticus) and pygmy shrew (Sorex min- utus ). Further, it interacts with another recent invader, Observed patterns of range expansion the greater-white toothed shrew Crocidura russula (Tosh et al. 2008), to bring about the extinction (or Range maps of species’ spread were created for 1969/ Sorex minutus severe reduction) of the pygmy shrew ( ), 70 (including non-systematic data collected from 1964 a rare example of invasional meltdown (Simberloff and to 1969), 1975, 1982, 1984, 1985, 1992, 2001, 2003 Von Holle 1999). Moreover, such changes in the small and 2010. Range boundaries for each time-point were mammal community are likely to alter ecosystem fitted using a-hull polygons using the R (CRAN 2011) processes at various trophic levels from plants to package alphahull where a = 1 (Burgman and Fox predators (Montgomery et al. 2012). Given the imprac- 2003). The land area occupied at each time point was ticality of eradication, it is probable that the bank vole’s calculated using the R package geosphere, and the range in Ireland will continue to expand until the whole pffiffiffiffiffiffiffiffiffi radial invasion range was calculated as A=p, where island is occupied. A is the invaded area. This assumed a circular We use an extensive dataset with detailed informa- distribution for the range area that expands equally tion on population distribution to determine the mech- in all directions. Used in an uninformed way this may anisms influencing the invasion and range spread of the be inappropriate for invasions which proceed in an bank vole in Ireland. Firstly, we examined how observed asymmetric manner, such as that of the bank vole in expansion rates fitted the expected patterns of Type 1, 2, Ireland whose invasion has been bounded in the south- and 3 invasions.
Recommended publications
  • Genital Morphology Linked to Social Status in the Bank Vole (Myodes Glareolus)
    Behav Ecol Sociobiol (2012) 66:97–105 DOI 10.1007/s00265-011-1257-4 ORIGINAL PAPER Genital morphology linked to social status in the bank vole (Myodes glareolus) Jean-François Lemaître & Steven A. Ramm & Nicola Jennings & Paula Stockley Received: 29 September 2010 /Revised: 29 August 2011 /Accepted: 30 August 2011 /Published online: 13 September 2011 # Springer-Verlag 2011 Abstract Since genital morphology can influence the spinosity did not differ according to male social status or outcome of post-copulatory sexual selection, differences in show evidence of positive allometry. We conclude that the genitalia of dominant and subordinate males could be a dominant male bank voles may benefit from an enlarged factor contributing to the fertilisation advantage of domi- baculum under sperm competition and/or cryptic female nant males under sperm competition. Here we investigate choice and that differences in penile morphology for the first time if penile morphology differs according to according to male social status might be important but male social status in a promiscuous mammal, the bank vole as yet largely unexplored source of variation in male (Myodes glareolus). In this species, dominant males reproductive success. typically achieve higher reproductive success than subordi- nates in post-copulatory sexual selection, and male genital Keywords Allometry. Baculum . Genitalia . Penile spines . morphology is complex, including both a baculum (os Sexual selection . Social dominance . Sperm competition penis) and penile spines. Our results show that despite no difference in body size associated with male social status, baculum width is significantly larger in dominant male Introduction bank voles than in subordinates. We also found evidence of positive allometry and a relatively high coefficient of Understanding the causes of variation in male reproductive phenotypic variation in the baculum width of male bank success is a key goal of sexual selection research.
    [Show full text]
  • Habitat, Home Range, Diet and Demography of the Water Vole (Arvicola Amphibious): Patch-Use in a Complex Wetland Landscape
    _________________________________________________________________________Swansea University E-Theses Habitat, home range, diet and demography of the water vole (Arvicola amphibious): Patch-use in a complex wetland landscape. Neyland, Penelope Jane How to cite: _________________________________________________________________________ Neyland, Penelope Jane (2011) Habitat, home range, diet and demography of the water vole (Arvicola amphibious): Patch-use in a complex wetland landscape.. thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa42744 Use policy: _________________________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.) http://www.swansea.ac.uk/library/researchsupport/ris-support/ Habitat, home range, diet and demography of the water vole(Arvicola amphibius): Patch-use in a complex wetland landscape A Thesis presented by Penelope Jane Neyland for the degree of Doctor of Philosophy Conservation Ecology Research Team (CERTS) Department of Biosciences College of Science Swansea University ProQuest Number: 10807513 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • The Evolutive Dynamic of the Bank Vole (Myodes Glareolus): Spatial
    The evolutive dynamic of the bank vole (Myodes glareolus) : Spatial structure of the morphometric variations Ronan Ledevin To cite this version: Ronan Ledevin. The evolutive dynamic of the bank vole (Myodes glareolus) : Spatial structure of the morphometric variations. Paleontology. Université Claude Bernard - Lyon I, 2010. English. NNT : 2010LYO10196. tel-00832801 HAL Id: tel-00832801 https://tel.archives-ouvertes.fr/tel-00832801 Submitted on 11 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : 196 - 2010 Année 2010 THESE Présentée devant l’UNIVERSITE CLAUDE BERNARD – LYON 1 pour l’obtention du DIPLOME DE DOCTORAT (arrêté du 7 août 2006) Présentée et soutenue publiquement le 25 Octobre 2010 Par M. Ronan LEDEVIN La dynamique évolutive du campagnol roussâtre (Myodes glareolus) : structure spatiale des variations morphométriques Jury Rapporteurs : M. J.-C. AUFFRAY : Directeur de Recherche (Université de Montpellier II) M. A. CARDINI : Lecturer (Universitá di Modena e Reggio Emilia) Examinateurs : Mme D. PONTIER : Professeur des Universités (Université de Lyon I) M. J. R. MICHAUX : Chercheur Qualifié (Université de Liège, en accueil au CBGP de Montpellier) Directeur de Thèse : Mme S. RENAUD : Chargé de Recherche (Université de Lyon I) N° d’ordre : Année 2010 THESE Présentée devant l’UNIVERSITE CLAUDE BERNARD – LYON 1 pour l’obtention du DIPLOME DE DOCTORAT (arrêté du 7 août 2006) Présentée et soutenue publiquement le 25 Octobre 2010 Par M.
    [Show full text]
  • The Bank Vole (Myodes Glareolus)
    !"# $$ %&%'&()& $! *+'%','*+)&'- . ... '%((*% ! "# $ !%!&' # ' ' (# #)* ' +,"# - . #, ,%,"# / ) +0 ' # ' ,1 , &&2,&% , ,345 26727&&87697!, "# / ) + # -# / #- , : / / # # # / # 0 # ,3# - # # ;0, -#< - # , ( ' / # ' # - ' ' #;0,1 ' / '' # #' ',3 ' / ' & %6 # #, -' ' / ,"# ## '' # '' # ' ,*# ' # ' ' / ' 86#,"#'' 5=7 ' # - # '5=4 # # / '',"# / ' / # '# ,"# / #' ' # ' ,1 # '#>? -##' # / , / ' ' ## % -# ' ,= ' # / # ' % , - / # # ' '# , / # ' / ! ! "#$! !%&#"$'( ! @ % 34459&79%9 34526727&&87697! 7%%&)# AA ,/,A B C 7%%&+ List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Blixt, M., Niklasson, B., Sandler, S. (2007) Characterization of -cell function of pancreatic islets isolated from bank voles de- veloping glucose intolerance/diabetes: an animal model show- ing features of both type 1 and type 2 diabetes mellitus, and a possible role of the Ljungan virus. General and Comparative Endocrinology, 154(1-3):41–47 II Blixt, M., Niklasson, B., Sandler, S. (2009) Suppression of bank vole pancreatic islet function by proinflammatory cytokines. Molecular and Cellular Endocrinology, 305(1-2):1–5 III Blixt, M.,
    [Show full text]
  • A New Permanent Cell Line Derived from the Bank Vole (Myodes Glareolus) As Cell Culture Model for Zoonotic Viruses
    Essbauer et al. Virology Journal 2011, 8:339 http://www.virologyj.com/content/8/1/339 RESEARCH Open Access A new permanent cell line derived from the bank vole (Myodes glareolus) as cell culture model for zoonotic viruses Sandra S Essbauer1*†, Ellen Krautkrämer2†, Sibylle Herzog3 and Martin Pfeffer4 Abstract Background: Approximately 60% of emerging viruses are of zoonotic origin, with three-fourths derived from wild animals. Many of these zoonotic diseases are transmitted by rodents with important information about their reservoir dynamics and pathogenesis missing. One main reason for the gap in our knowledge is the lack of adequate cell culture systems as models for the investigation of rodent-borne (robo) viruses in vitro. Therefore we established and characterized a new cell line, BVK168, using the kidney of a bank vole, Myodes glareolus, the most abundant member of the Arvicolinae trapped in Germany. Results: BVK168 proved to be of epithelial morphology expressing tight junctions as well as adherence junction proteins. The BVK168 cells were analyzed for their infectability by several arbo- and robo-viruses: Vesicular stomatitis virus, vaccinia virus, cowpox virus, Sindbis virus, Pixuna virus, Usutu virus, Inkoo virus, Puumalavirus, and Borna disease virus (BDV). The cell line was susceptible for all tested viruses, and most interestingly also for the difficult to propagate BDV. Conclusion: In conclusion, the newly established cell line from wildlife rodents seems to be an excellent tool for the isolation and characterization of new rodent-associated viruses and may be used as in vitro-model to study properties and pathogenesis of these agents. Background [3]. Rodents are known to be the reservoir hosts for a About 800 out of the ~1.400 known human pathogens variety of zoonotic viruses which are sometimes tedious are of zoonotic origin [1,2].
    [Show full text]
  • Fertility of the Post-Partum Bank Vole (Clethrionomys Glareolus) J
    Fertility of the post-partum bank vole (Clethrionomys glareolus) J. R. Clarke and S. Hellwing Department ofAgricultural and Forest Sciences, Agricultural Science Building, University of Oxford, Parks Road, Oxford 0X1 3PF, U.K. Summary. Analysis of records of a bank vole breeding colony suggests that fertility is high immediately post partum, declines during established lactation and rises after weaning of young. Mating tests with lactating females and females whose young had been removed at birth showed that receptivity is reduced during lactation, although amongst the females which did mate there was no difference between lactating and non-lactating animals in the proportion which produced litters. However, average size of litters at birth was significantly larger for the lactating than for the non-lactating females. There is some evidence suggesting that this difference may arise after ovulation has occurred. Virgin females were no more receptive or fertile than lactating females. Introduction Microtine rodents, of which the bank vole (Clethrionomys glareolus) and the short-tailed field vole (Microtus agrestis) are examples, exhibit regular alterations in population size (Krebs & Meyers, 1974). Explanations of such population cycles will need to take into account the reproductive biology of a species. Experimental studies have established for field voles and bank voles some of the basic reproductive characteristics which bear upon population growth: breeding seasons appear principally to be regulated by photoperiod (Clarke, 1981 ; Clarke et al., 1981); ovulation is induced by mating (Breed, 1967; Clarke, Clulow & Greig, 1970); and pregnancy can be blocked by a 'strange' male (Clulow & Clarke, 1968; Clarke & Clulow, 1973; Milligan, 1976a, b).
    [Show full text]
  • Phylogeography of a Holarctic Rodent (Myodes Rutilus): Testing High
    Journal of Biogeography (J. Biogeogr.) (2014) ORIGINAL Phylogeography of a Holarctic rodent ARTICLE (Myodes rutilus): testing high-latitude biogeographical hypotheses and the dynamics of range shifts Brooks A. Kohli1,2*, Vadim B. Fedorov3, Eric Waltari4 and Joseph A. Cook1 1Department of Biology and Museum of ABSTRACT Southwestern Biology, University of New Aim We used the Holarctic northern red-backed vole (Myodes rutilus)asa Mexico, Albuquerque, NM 87131-1051, USA, 2 model organism to improve our understanding of how dynamic, northern Department of Natural Resources and the Environment, University of New Hampshire, high-latitude environments have affected the genetic diversity, demography and Durham, NH 03824-3534, USA, 3Institute of distribution of boreal organisms. We tested spatial and temporal hypotheses Arctic Biology, University of Alaska Fairbanks, derived from previous mitochondrial studies, comparative phylogeography, pal- Fairbanks, AK 99775-7000, USA, 4Department aeoecology and the fossil record regarding diversification of M. rutilus in the of Biology, City College of New York, Palaearctic and Beringia. New York, NY 10031, USA Location High-latitude biomes across the Holarctic. Methods We used a multilocus phylogeographical approach combined with species distribution models to characterize the biogeographical and demo- graphic history of M. rutilus. Our molecular assessment included widespread sampling (more than 100 localities), species tree reconstruction and population genetic analyses. Results Three well-differentiated mitochondrial lineages correspond to geo- graphical regions, but nuclear genes were less structured. Multilocus divergence estimates indicated that diversification of M. rutilus was driven by events occurring before c. 100 ka. Population expansion in all three clades occurred prior to the Last Glacial Maximum (LGM) and presumably led to secondary contact.
    [Show full text]
  • Age Distribution of Red Tree Voles in Northern Spotted Owl Pellets Estimated from Molar Tooth Development
    Age Distribution of Red Tree Voles in Northern Spotted Owl Pellets Estimated from Molar Tooth Development Authors: Marks-Fife, Chad A., Forsman, Eric D., and Dugger, Katie M. Source: Northwest Science, 93(3-4) : 193-208 Published By: Northwest Scientific Association URL: https://doi.org/10.3955/046.093.0304 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-of-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Northwest-Science on 28 Aug 2020 Terms of Use: https://bioone.org/terms-of-use Access provided by United States Department of Agriculture National Agricultural Library (NAL) Chad A. Marks-Fife1, 2, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon
    [Show full text]
  • Campylobacter Spp. in Finnish Small Mammals Meeri Ylänen
    Campylobacter spp. in Finnish small mammals Meeri Ylänen Licentiate Thesis in Veterinary Medicine University of Helsinki Faculty of Veterinary Medicine Department of Food Hygiene and Environmental Health Environmental Hygiene 2020 Tiedekunta - Fakultet – Faculty Osasto - Avdelning – Department Eläinlääketieteellinen tiedekunta Elintarvikehygienian ja ympäristöterveyden osasto Tekijä - Författare - Author Meeri Ylänen Työn nimi - Arbetets titel - Title Campylobacter spp.in Finnish small mammals Oppiaine - Läroämne – Subject Ympäristöhygienia Työn laji - Arbetets art - Level Aika - Datum - Month and year Sivumäärä - Sidoantal - Number of pages Lisensiaatin tutkielma Huhtikuu 2020 39 + 2 liitettä (18 ja 2 sivua) Tiivistelmä - Referat – Abstract Kampylobakteerit ovat gramnegatiivisia, pääosin mikroaerobisia bakteereja, joita esiintyy monien eläinten suolistossa. Ihmisille kampylobakteerit ovat erityisesti suoliston taudinaiheuttajia ja kampylobakteerit ovatkin yleisimpiä bakteeriperäisiä ihmisten suolistotulehduksen aiheuttajia kehittyneissä maissa, myös Suomessa. Suolistotulehduksen lisäksi kampylobakteerit voivat aiheuttaa ihmisille esimerkiksi Guillain-Barré -hermostosairautta ja pitkäkestoisiakin niveloireita aiheuttavaa reaktiivista niveltulehdusta. Ihmisen tyypillisimmät taudinaiheuttajat kampylobakteereista ovat Campylobacter jejuni ja Campylobacter coli. Näistä kahdesta selvästi yleisempi taudinaiheuttaja on C. jejuni. Sekä C. jejuni että C. coli ovat termofiilisiä kampylobakteereja. Kampylobakteeritartunta on yleensä ulosteperäinen
    [Show full text]
  • Field & Bank Voles
    V o l e s - F I E L D & B A N K Microtus agrestis & Myodes glareolus Ecology I N T R O D U C T I O N D I E T There are three species of vole in the U.K with two subspecies of Both voles have a similar diet, common vole found on the islands grasses, roots, fruit, insects and of Guernsey and Orkney. Here we earthworms, however the field will consider the Field vole and vole will also eat bark during Bank vole. They are both the winter months. widespread and common through out the U.K and they both have a T H E I R I M P O R T A N C E conservation status of Least Concern. Voles are hugely important within the ecosystem as many I D E N T I F I C A T I O N predators depend on them as a They are both very similar in food source. Everything from appearance but the differences Owls - tawny and barn - to pine are: martens, foxes, stoats & even Field vole - Longer dark brown snakes all rely on voles. fur, small ears and a short tail. Bank vole - are deep chestnut colour with a lighter underside, blunt nose and their tail is less than half the length of their body. Head-body length: both 8-12 cm Tail length: Field - over a third of their body, Bank - less than half Weight Adult: 14 - 45g Lifespan: 18 months to 2 years. H A B I T A T As their names would suggest they normally like fields and banks but they both like hedgerows and tussocky grass fields as well.
    [Show full text]
  • Zoonotic Viruses in Three Species of Voles (Microtus Spp.) from Poland
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.259309; this version posted August 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Zoonotic viruses in three species of voles (Microtus spp.) 2 from Poland 3 4 Maciej Grzybek1*‡; Katarzyna Tołkacz2‡; Tarja Sironen3; Sanna Mäki3; Mohammed 5 Alsarraf2; Jolanta Behnke-Borowczyk4; Beata Biernat1, Joanna Nowicka1, Antti Vaheri3; 6 Heikki Henttonen5; Jerzy M. Behnke6¶; Anna Bajer2¶ 7 8 9 10 1Department of Tropical Parasitology, Medical University of Gdansk, Poland. 11 2Department of Parasitology, University of Warsaw, Warsaw, Poland. 12 3Department of Virology, University of Helsinki, Helsinki, Finland. 13 4Department of Forest Pathology, Poznan University of Life Sciences, Poznan, Poland 14 5Natural Resources Institute Finland, Helsinki, Finland. 15 6School of Life Sciences, University of Nottingham, Nottingham, UK. 16 17 18 ‡ These authors contributed equally to this work. 19 ¶ These authors contributed equally to this work. 20 21 22 *ADDRESS FOR CORRESPONDENCE: Maciej Grzybek, PhD; Department of Tropical 23 Parasitology, Medical University of Gdansk, Powstania Styczniowego 9B, 81-519 Gdynia, 24 Poland. Email: [email protected] Tel: + 4858 3491941 25 26 ABSTRACT 27 Rodents are known to be reservoir hosts for a plethora of zoonotic viruses and therefore play a 28 significant role in the dissemination of these pathogens. We trapped three vole species 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.22.259309; this version posted August 23, 2020.
    [Show full text]
  • And Bank Vole
    Journal of Virological Methods 274 (2019) 113729 Contents lists available at ScienceDirect Journal of Virological Methods journal homepage: www.elsevier.com/locate/jviromet Common vole (Microtus arvalis) and bank vole (Myodes glareolus) derived T permanent cell lines differ in their susceptibility and replication kinetics of animal and zoonotic viruses Florian Bindera, Matthias Lenkb, Saskia Weberc, Franziska Stoeka, Veronika Dillc, Sven Reicheb, Roland Riebeb, Kerstin Wernikec, Donata Hoffmannc, Ute Zieglera,g, Heiko Adlerd,e, Sandra Essbauerf, Rainer G. Ulricha,g,⁎ a Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald -InselRiems, Germany b Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Department of Experimental Animal Facilities and Biorisk Management, Bio-Bank, Collectionof Cell Lines in Veterinary Virology (CCLV), Südufer 10, 17493, Greifswald - Insel Riems, Germany c Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, 17493 Greifswald - Insel Riems,Germany d Comprehensive Pneumology Center, Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Marchioninistrasse 25, 81377 Munich, Germany e University Hospital Grosshadern, Ludwig-Maximilians-University, 81377 Munich, Germany f Bundeswehr Institute of Microbiology, Department Virology and Rickettsiology, Neuherbergstr. 11, 80937 Munich, Germany g German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Insel Riems, Germany ARTICLE INFO ABSTRACT Keywords: Pathogenesis and reservoir host adaptation of animal and zoonotic viruses are poorly understood due to missing Cell line adequate cell culture and animal models. The bank vole (Myodes glareolus) and common vole (Microtus arvalis) Cytopathic effect serve as hosts for a variety of zoonotic pathogens.
    [Show full text]