Habitat Ecology of a Relict Red-Backed Vole Population in Iowa William Simon Blagen Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Habitat Ecology of a Relict Red-Backed Vole Population in Iowa William Simon Blagen Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1967 Habitat ecology of a relict red-backed vole population in Iowa William Simon Blagen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Blagen, William Simon, "Habitat ecology of a relict red-backed vole population in Iowa " (1967). Retrospective Theses and Dissertations. 3994. https://lib.dr.iastate.edu/rtd/3994 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfilmed exactly as received 68-2802 BLAGEN, William Simon, 1916- HABITAT ECOLOGY OF A RELICT RED-BACKED VOLE POPULATION IN IOWA. Iowa State University, Ph.D., 1967 Zoology University Microfilms, Inc., Ann Arbor, Michigan HABITAT ECOLOGY OF A RELICT RED-BACKED VOLE POPULATION IN lOm • by William Simon Blagen A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject; Zoology (Animal Ecology) Approved Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1967 11 TABLE OF CONTENTS Page INTRODUCTION 1 HISTORY OF THE SPECIES IN IOWA 3 DESCRIPTION OF THE AREA 11 Geology and Climatology 11 Vegetation 17 Topography and Soils of the Altamont 21 Settlement and Land Usage in Northern Iowa 23 Pilot Knob State Park 25 VEGETATION STUDIES 30 Objectives 30 Review of Literature 31 Vegetational Sampling Areas 33 Methods 36 Results 43 ABIOTIC FACTORS 5I Objectives 51 Review of Literature 5I Description of Study Areas 54 Methods 57 Results 64 FAUNA 80 Mammals 80 Birds 81 Amphibians and Reptiles 82 Invertebrates 83 ill Page SMALL MAMMAL POPULATIONS; PART I. DEVELOPMENT OF TRAPPING METHODS 84 Objectives 84 Review of Literature 84 Description of Study Areas 86 Methods 89 Results 94 SMALL MAMMAL POPULATIONS; PART II, INTENSIVE STUDIES OF POPULATIONS 106 Objectives 106 Review of Literature 106 Description of Study Areas 110 Methods 111, Results 113 THE RED-BACKED VOLE 143 Population Density 143 Activity 144 Population Characteristics 145 Food Preference I5L Habitat Preference I55 Interspecific Relationships I60 Distribution of Clethrionomys I62 DISCUSSION 167 SUMMARY 175 LITERATURE CITED I78 ACKNOWLEDGMENTS 186 APPENDIX 187 iv LIST OF FIGURES Page Figure 1. Distribution of the genus Clethrionomys in North America . 4 Figure 2, Marginal records for Clethrionomys gapperi loringi in Minnesota and Iowa 7 Figure 3* Map of the Des Moines lobe in Iowa showing the four morainal systems 12 Figure 4. Map of the Des Moines lobe, late Wisconsin (Cary-Mankato) glaciation . 15 Figure 5. Original forest cover in Iowa 19 Figure 6. Map of annual rainfall distribution in Iowa 20 Figure ?. Natural vegetation of Minnesota in the pre-settlement era . 22 Figure 8. Aerial photograph of Pilot Knob State Park and contiguous woods in 1958 .27 Figure 9. Forest study area along northwestern border of Pilot Knob State Park 35 Figure 10. Old-field study area in west central section of Pilot Knob State Park 35 Figure 11. Vegetational sampling areas in the forest and old-field at Pilot Knob State Park 38 Figure 12. Belt transect line across old-field at Pilot Knob State Park ......... 42 Figure 13. The author censusing woody-stemmed plants along a belt transect in the old-field at Pilot Knob State Park .... 42 Figure 14. Location of instrument shelter station number one in forest study area at Pilot Knob State Park 56 Figure I5. Instrument shelter station number two in old-field study area at Pilot Knob State Park 56 Figure 16. Location of instrument shelter station number three in brush study area at Pilot Knob State Park ....... 56 Figure I7. The author taking light penetration measurements with a Weston illumination meter 62 V Page Figure 18. The author taking surface temperature measurements with a Barnes infra-red thermometer 62 Figure 19. Daily maximum temperatures in three habitat types at various levels .... 66 Figure 20, Range of maximum temperatures in three habitat types at various levels 69 Figure 21, Hygrothermographs comparing relative humidities and temp­ eratures between forest and old-field habitats in summer . 72 Figure 22, Hygrothermographs comparing relative humidities and temp­ eratures between forest and old-field habitats in autumn . 72 Figure 23. A comparison of seasonal differences in hourly vapor pressure deficits between forest and old-field ... 75 Figure 24, Areas sampled for small mammals in Iowa 87 Figure 25- Trap station showing placement of a double-set of Museum. Special traps 92 Figure 26. Sample of daily field record sheet used for each trapline 92 'Figure 27. A trap-station plan in North-Woods showing four double-sets 112 Figure 28, Pilot Knob quadrat shoidjag total number of captures, by genera, taken at each trap-station during the period 7 July - 7 September 1966 II6 Figure 29. Composite of daily captures, by genera, showing regularity of immigration response to removal trapping at Pilot Knob quadrat 120 Figure 30. Daily captures of Clethrionomys at Pilot Knob quadrat during the period 7 July - 7 September I966 . 123 Figure 3I. Plotting of capture totals at peaks and troughs of 5-day intervals related to the moonlight cycle .... 128 Figure 32. Continuous removal study showing social relationship among genera at Pilot Knob during the period 7 July - 7 September I966 I3I Figure 33. North-Woods trapline showing total number of captures, by genera, taken at each trap-set within each station during the period 17 July - 8 September I966 I35 vi Page Figure 3^. Composite of daily captures, by genera, showing regularity of immigration response to removal trapping at North-Woods trapline I38 Figure 35. Variability in body weight and body length in Clethrionomys compared to bi-eeding condition, in Iowa . 149 Figure 36. Outer, eastern moraine of the Cary-Mankato drift of the Des Moines lobe, Wisconsin glaciation, showing trapping sites I65 Figure 37. Presettleraent vegetation in south central Minnesota and north central Iowa I7I Figure 33. Southern margin of the range of Clethrionomys gapperi loringi in north central United States I74 vil LIST OF TABLES Page Table 1. Institutions which reported possessing no specimens of Clethrionomys gapperi from southeastern South Dakota, southern Minnesota or any location in Iowa ........ 188 Table 2. A list of flora collected at Pilot Knob State Park during the summer months, 1963-1966 189 Table 3. Comparison of results obtained by different methods of determining canopy coverage and frequency of occurrence in Daubenmire (1959) plots in grassland 196 Table k. Results of the Daubenmire (1959) method of determining canopy coverage and frequency of occurrence in plots in forest 198 Table 5» Census of woody-stemmed plants in the old-field. Pilot Knob State Park, 1964-1966 200 Table 6. A comparison of temperatures, relative humidities and vapor pressure deficits between forest and old-field study sites in summer . 202 Table ?. A comparison of temperatures, relative humidities and vapor pressure deficits between forest and old-field study sites in autumn . 203 Table 8, A comparison of three-hour interval and seasonal differences in the average illumination received . at various levels in each study site 204 Table 9. Surface temperatures in microenvironments of the old-field study area, 13 August I965 . 206 Table 10. Surface temperatures in microenvironments of the forest study area, 13 August I965 207 Table 11. Mammals of the "great circle" recorded by the author . 208 Table 12. Birds observed frequenting or nesting at Pilot Knob State Park during the nesting season and summer 210 Table 13. Amphibians and reptiles recorded by the author at Pilot Knob State Park 213 Table 14. A comparison of captures, by genera, in double-sets versus single-sets in various grassland areas of Iowa during summer months, I96I-I966, 39 baited traplines . 214 viii Page Table 15. A comparison of the instances of traps sprung for all causes, excluding heavy rain, in the double-set versus single-set system in grassland. 39 baited traplines . , 215 Table l6. A comparison of captures, by genera, in double-sets versus single-sets in various grassland areas of Iowa during summer months, 1962-1964. 5 unbaited traplines . 216 Table 17. A comparison of the instances of traps sprung for all causes, excluding heavy rain, in the double-set versus single-set system in grassland, 5 unbaited traplines . 217 Table 18, A comparison of captures, by genera, in double-sets versus single-sets in various forest areas of Iowa during summer months (S), I962-I966, and fall months (F), 1962-1965, 166 baited traplines 218 Table 19. A comparison of the instances of traps sprung for all causes, excluding heavy rain, in the double-set versus single-set system in forests. I66 baited traplines , , , , 219 Table 20. A comparison of captures, by genera, in double-sets versus single-sets in various forest areas during summer months, I962-I965, 6 unbaited traplines 220 Table 21, A comparison of the instances of traps sprung for all
Recommended publications
  • Populusspp. Family: Salicaceae Aspen
    Populus spp. Family: Salicaceae Aspen Aspen (the genus Populus) is composed of 35 species which contain the cottonwoods and poplars. Species in this group are native to Eurasia/north Africa [25], Central America [2] and North America [8]. All species look alike microscopically. The word populus is the classical Latin name for the poplar tree. Populus grandidentata-American aspen, aspen, bigtooth aspen, Canadian poplar, large poplar, largetooth aspen, large-toothed poplar, poplar, white poplar Populus tremuloides-American aspen, American poplar, aspen, aspen poplar, golden aspen, golden trembling aspen, leaf aspen, mountain aspen, poplar, popple, quaking asp, quaking aspen, quiver-leaf, trembling aspen, trembling poplar, Vancouver aspen, white poplar Distribution Quaking aspen ranges from Alaska through Canada and into the northeastern and western United States. In North America, it occurs as far south as central Mexico at elevations where moisture is adequate and summers are sufficiently cool. The more restricted range of bigtooth aspen includes southern Canada and the northern United States, from the Atlantic coast west to the prairie. The Tree Aspens can reproduce sexually, yielding seeds, or asexually, producing suckers (clones) from their root system. In some cases, a stand could then be composed of only one individual, genetically, and could be many years old and cover 100 acres (40 hectares) or more. Most aspen stands are a mosaic of several clones. Aspen can reach heights of 120 ft (48 m), with a diameter of 4 ft (1.6 m). Aspen trunks can be quite cylindrical, with little taper and few limbs for most of their length. They also can be very crooked or contorted, due to genetic variability.
    [Show full text]
  • Genital Morphology Linked to Social Status in the Bank Vole (Myodes Glareolus)
    Behav Ecol Sociobiol (2012) 66:97–105 DOI 10.1007/s00265-011-1257-4 ORIGINAL PAPER Genital morphology linked to social status in the bank vole (Myodes glareolus) Jean-François Lemaître & Steven A. Ramm & Nicola Jennings & Paula Stockley Received: 29 September 2010 /Revised: 29 August 2011 /Accepted: 30 August 2011 /Published online: 13 September 2011 # Springer-Verlag 2011 Abstract Since genital morphology can influence the spinosity did not differ according to male social status or outcome of post-copulatory sexual selection, differences in show evidence of positive allometry. We conclude that the genitalia of dominant and subordinate males could be a dominant male bank voles may benefit from an enlarged factor contributing to the fertilisation advantage of domi- baculum under sperm competition and/or cryptic female nant males under sperm competition. Here we investigate choice and that differences in penile morphology for the first time if penile morphology differs according to according to male social status might be important but male social status in a promiscuous mammal, the bank vole as yet largely unexplored source of variation in male (Myodes glareolus). In this species, dominant males reproductive success. typically achieve higher reproductive success than subordi- nates in post-copulatory sexual selection, and male genital Keywords Allometry. Baculum . Genitalia . Penile spines . morphology is complex, including both a baculum (os Sexual selection . Social dominance . Sperm competition penis) and penile spines. Our results show that despite no difference in body size associated with male social status, baculum width is significantly larger in dominant male Introduction bank voles than in subordinates. We also found evidence of positive allometry and a relatively high coefficient of Understanding the causes of variation in male reproductive phenotypic variation in the baculum width of male bank success is a key goal of sexual selection research.
    [Show full text]
  • Recent Declines of Populus Tremuloides in North America Linked to Climate ⇑ James J
    Forest Ecology and Management 299 (2013) 35–51 Contents lists available at SciVerse ScienceDirect Forest Ecology and Managemen t journal homepage: www.elsevier.com/locate/foreco Recent declines of Populus tremuloides in North America linked to climate ⇑ James J. Worrall a, , Gerald E. Rehfeldt b, Andreas Hamann c, Edward H. Hogg d, Suzanne B. Marchetti a, Michael Michaelian d, Laura K. Gray c a US Forest Service, Rocky Mountain Region, Gunnison, CO 81230, USA b US Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA c University of Alberta, Dept. of Renewable Resources, Edmonton, Alberta, Canada T6G 2H1 d Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada T6H 3S5 article info abstract Article history: Populus tremuloides (trembling aspen) recently experie nced extensive crown thinning,branch dieback, Available online 29 January 2013 and mortality across North America. To investigate the role of climate, we developed a range-wide bio- climate model that characterizes clima tic factors controlling distribution ofaspen. We also examined Keywords: indices of moisture stress, insect defoliation and other factors as potential causes of the decline. Historic Decline climate records show that most decline regions experienced exceptionally severe droug htpreceding the Dieback recent episodes. The bioclimate model, driven primarily by maximum summer temperature sand April– Die-off September precipitation, shows that decline tended to occur in marginally suitable habitat, and that cli- Drought matic suitability decreased markedly in the period leading up to decline in almost all decline regions. Climate envelope Climatic niche Other factors, notably multi- year defoliation bytent caterpillars (Malacosoma spp.) and stem damage by fungi and insects, also play a substantial role in decline episodes, and may amplify or prolong the impacts of moisture stress on aspen over large areas.
    [Show full text]
  • Populus Tremula
    Populus tremula Populus tremula in Europe: distribution, habitat, usage and threats G. Caudullo, D. de Rigo The Eurasian aspen (Populus tremula L.) is a fast-growing broadleaf tree that is native to the cooler temperate and boreal regions of Europe and Asia. It has an extremely wide range, as a result of which there are numerous forms and subspecies. It can tolerate a wide range of habitat conditions and typically colonises disturbed areas (for example after fire, wind-throw, etc.). It is considered to be a keystone species because of its ecological importance for other species: it has more host-specific species than any other boreal tree. The wood is mainly used for veneer and pulp for paper production as it is light and not particularly strong, although it also has use as a biomass crop because of its fast growth. A number of hybrids have been developed to maximise its vigour and growth rate. Eurasian aspen (Populus tremula L.) is a medium-size, fast-growing tree, exceptionally reaching a height of 30 m1. The Frequency trunk is long and slender, rarely up to 1 m in diameter. The light < 25% branches are rather perpendicular, giving to the crown a conic- 25% - 50% 50% - 75% pyramidal shape. The leaves are 5-7 cm long, simple, round- > 75% ovate, with big wave-shaped teeth2, 3. They flutter in the slightest Chorology Native breeze, constantly moving and rustling, so that trees can often be heard but not seen. In spring the young leaves are coppery-brown and turn to golden yellow in autumn, making it attractive in all vegetative seasons1, 2.
    [Show full text]
  • Poplar Chap 1.Indd
    Populus: A Premier Pioneer System for Plant Genomics 1 1 Populus: A Premier Pioneer System for Plant Genomics Stephen P. DiFazio,1,a,* Gancho T. Slavov 1,b and Chandrashekhar P. Joshi 2 ABSTRACT The genus Populus has emerged as one of the premier systems for studying multiple aspects of tree biology, combining diverse ecological characteristics, a suite of hybridization complexes in natural systems, an extensive toolbox of genetic and genomic tools, and biological characteristics that facilitate experimental manipulation. Here we review some of the salient biological characteristics that have made this genus such a popular object of study. We begin with the taxonomic status of Populus, which is now a subject of ongoing debate, though it is becoming increasingly clear that molecular phylogenies are accumulating. We also cover some of the life history traits that characterize the genus, including the pioneer habit, long-distance pollen and seed dispersal, and extensive vegetative propagation. In keeping with the focus of this book, we highlight the genetic diversity of the genus, including patterns of differentiation among populations, inbreeding, nucleotide diversity, and linkage disequilibrium for species from the major commercially- important sections of the genus. We conclude with an overview of the extent and rapid spread of global Populus culture, which is a testimony to the growing economic importance of this fascinating genus. Keywords: Populus, SNP, population structure, linkage disequilibrium, taxonomy, hybridization 1Department of Biology, West Virginia University, Morgantown, West Virginia 26506-6057, USA; ae-mail: [email protected] be-mail: [email protected] 2 School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA; e-mail: [email protected] *Corresponding author 2 Genetics, Genomics and Breeding of Poplar 1.1 Introduction The genus Populus is full of contrasts and surprises, which combine to make it one of the most interesting and widely-studied model organisms.
    [Show full text]
  • Non-Target Species Hazard Or Brodifacoum Use in Orchards for Meadow Vole Control
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Eastern Pine and Meadow Vole Symposia for March 1981 NON-TARGET SPECIES HAZARD OR BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL Mark H. Merson Virginia Polytechnic Institute and State University, Winchester, Virginia Ross E. Byers Virginia Polytechnic Institute and State University, Winchester, Virginia Follow this and additional works at: https://digitalcommons.unl.edu/voles Part of the Environmental Health and Protection Commons Merson, Mark H. and Byers, Ross E., "NON-TARGET SPECIES HAZARD OR BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL" (1981). Eastern Pine and Meadow Vole Symposia. 58. https://digitalcommons.unl.edu/voles/58 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Eastern Pine and Meadow Vole Symposia by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. NON-TARGET SPECIES HAZARD OF BRODIFACOUM USE IN ORCHARDS FOR MEADOW VOLE CONTROL Mark H. Merson and Ross E. Byers Winchester Fruit Research Laboratory Virginia Polytechnic Institute and State University Winchester, Virginia 22601 This year we entered into our second year of non-target species hazard assessment of Brodifacoum used (BFC; ICI Americas, Inc.) as an orchard rodenticide. The primary emphasis of this work has been to in- vestigate the effects of BFC on birds of prey through secondary poison- ing. The hazard level of BFC to raptors should be dependent on the levels found in post-treatment collections of meadow voles (Microtus pennsylvanicus).
    [Show full text]
  • Auggie Creek Restoration/Fuels Project Threatened, Endangered, and Sensitive Plant Report Darlene Lavelle December 17, 2008
    Auggie Creek Restoration/Fuels Project Threatened, Endangered, and Sensitive Plant Report Darlene Lavelle December 17, 2008 Introduction The Seeley Lake Ranger District, Lolo National Forest (LNF), is proposing a restoration project designed to restore forest conditions on approximately 965 acres of Forest Service lands within the Auggie, Seeley, and Mountain Creek drainages. The vegetation treatments are designed to develop a diverse mix of vegetative composition and structure, reduce the risk of bark beetle infestations, and reduce the threat of sustained high intensity wildfire in the wildland-urban interface. Commercial and noncommercial treatments are proposed to reduce stand density, ladder fuels and ground litter, and some dead and down woody debris. Reducing fuels would thereby reduce the risk from insect and disease damage and also the potential for high intensity natural fires around private homes. Fire would also allow an increase of nutrients to plants on the site. Other project proposals include: • Herbicide treatment of weeds along the approximate 12.45 miles of timber haul routes and landings and the approximate 2.37 miles of stored or decommissioned roads mentioned below; • Build about 0.59 miles of temporary road for tree harvest and then decommission these roads. • Store about 1.78 miles of road (close roads to vehicular traffic but keep roads for future use) • Plant western larch and Douglas-fir on about 44 acres within the commercial treatment units to enhance species diversity. • Replace two culverts which are fish barriers, along Swamp Creek and Trail Creek. • Implement additional best management practices (BMPs) involving road drainage at the Morrell Creek Bridge.
    [Show full text]
  • Recovery Plan for the Amargosa Vole
    Recovery Plan for the Amargosa Vole (Microtus californicus scirpensis) ( As the Nation’s principal conservation agency, the ~ Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use ofour land and water resources, protecting our fish and wildlife, preserving the environ mental and cultural values of our national parks ~, and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energyand mineral resourcesand works toassure that ~‘ theirdevelopment is in the best interests ofall our people. ~4 The Department also has a major responsibility for American Indian reservation communities and for people ~<‘ who live in island Territories under U.S. administration. AMARGOSA VOLE (Microtus cahfornicus scirpensis) RECOVERY PLAN September, 1997 7— U.S. Department ofthe Interior Fish and Wildlife Service Region One, Portland, Oregon DISCLAIMER PAGE Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, sometimes prepared with the assistance ofrecovery teams, contractors, State agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved.
    [Show full text]
  • Mather Field Vernal Pools California Vole
    Mather Field Vernal Pools common name California Vole scientific name Microtus californicus phylum Chordata class Mammalia order Rodentia family Muridae habitat common in grasslands, wetlands Jack Kelly Clark, © University of California Regents and wet meadows size up to 14 cm long excluding tail description The California Vole is covered with grayish-brown fur. Its ears and legs are short and it has pale feet. It has a cylindrical shape (like a toilet paper roll) with a tail that is 1/3 the length of the body. fun facts California Voles make paths through the grasslands leading to the mouths of their underground burrows. These surface "runways" are worn into the grass by daily travel. When chased by a predator, a vole can make a fast dash for the safety of its underground burrow using these cleared runways. If you walk quickly across the grassland you will often surprise a California Vole and see it scurry to its burrow. life cycle California Voles reach maturity in one month. Female voles have litters of four to eight young. In areas with abundant food and mild weather, each female can have up to five litters in a year. ecology The California Vole can dig its own underground burrow system but it often begins by using Pocket Gopher burrows. The tunnels are usually 1 to 5 meters long and up to one half meter below ground, with a nesting den somewhere inside. The ends of the burrows are left open. Many insects, spiders, centipedes, and other animals live in their burrows. Thus, the California Vole creates habitat for other species and the Pocket Gopher improves habitat for the vole.
    [Show full text]
  • Native Plant List CITY of OREGON CITY 320 Warner Milne Road , P.O
    Native Plant List CITY OF OREGON CITY 320 Warner Milne Road , P.O. Box 3040, Oregon City, OR 97045 Phone: (503) 657-0891, Fax: (503) 657-7892 Scientific Name Common Name Habitat Type Wetland Riparian Forest Oak F. Slope Thicket Grass Rocky Wood TREES AND ARBORESCENT SHRUBS Abies grandis Grand Fir X X X X Acer circinatumAS Vine Maple X X X Acer macrophyllum Big-Leaf Maple X X Alnus rubra Red Alder X X X Alnus sinuata Sitka Alder X Arbutus menziesii Madrone X Cornus nuttallii Western Flowering XX Dogwood Cornus sericia ssp. sericea Crataegus douglasii var. Black Hawthorn (wetland XX douglasii form) Crataegus suksdorfii Black Hawthorn (upland XXX XX form) Fraxinus latifolia Oregon Ash X X Holodiscus discolor Oceanspray Malus fuscaAS Western Crabapple X X X Pinus ponderosa Ponderosa Pine X X Populus balsamifera ssp. Black Cottonwood X X Trichocarpa Populus tremuloides Quaking Aspen X X Prunus emarginata Bitter Cherry X X X Prunus virginianaAS Common Chokecherry X X X Pseudotsuga menziesii Douglas Fir X X Pyrus (see Malus) Quercus garryana Garry Oak X X X Quercus garryana Oregon White Oak Rhamnus purshiana Cascara X X X Salix fluviatilisAS Columbia River Willow X X Salix geyeriana Geyer Willow X Salix hookerianaAS Piper's Willow X X Salix lucida ssp. lasiandra Pacific Willow X X Salix rigida var. macrogemma Rigid Willow X X Salix scouleriana Scouler Willow X X X Salix sessilifoliaAS Soft-Leafed Willow X X Salix sitchensisAS Sitka Willow X X Salix spp.* Willows Sambucus spp.* Elderberries Spiraea douglasii Douglas's Spiraea Taxus brevifolia Pacific Yew X X X Thuja plicata Western Red Cedar X X X X Tsuga heterophylla Western Hemlock X X X Scientific Name Common Name Habitat Type Wetland Riparian Forest Oak F.
    [Show full text]
  • Habitat, Home Range, Diet and Demography of the Water Vole (Arvicola Amphibious): Patch-Use in a Complex Wetland Landscape
    _________________________________________________________________________Swansea University E-Theses Habitat, home range, diet and demography of the water vole (Arvicola amphibious): Patch-use in a complex wetland landscape. Neyland, Penelope Jane How to cite: _________________________________________________________________________ Neyland, Penelope Jane (2011) Habitat, home range, diet and demography of the water vole (Arvicola amphibious): Patch-use in a complex wetland landscape.. thesis, Swansea University. http://cronfa.swan.ac.uk/Record/cronfa42744 Use policy: _________________________________________________________________________ This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author. Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository. Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.) http://www.swansea.ac.uk/library/researchsupport/ris-support/ Habitat, home range, diet and demography of the water vole(Arvicola amphibius): Patch-use in a complex wetland landscape A Thesis presented by Penelope Jane Neyland for the degree of Doctor of Philosophy Conservation Ecology Research Team (CERTS) Department of Biosciences College of Science Swansea University ProQuest Number: 10807513 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • The Evolutive Dynamic of the Bank Vole (Myodes Glareolus): Spatial
    The evolutive dynamic of the bank vole (Myodes glareolus) : Spatial structure of the morphometric variations Ronan Ledevin To cite this version: Ronan Ledevin. The evolutive dynamic of the bank vole (Myodes glareolus) : Spatial structure of the morphometric variations. Paleontology. Université Claude Bernard - Lyon I, 2010. English. NNT : 2010LYO10196. tel-00832801 HAL Id: tel-00832801 https://tel.archives-ouvertes.fr/tel-00832801 Submitted on 11 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : 196 - 2010 Année 2010 THESE Présentée devant l’UNIVERSITE CLAUDE BERNARD – LYON 1 pour l’obtention du DIPLOME DE DOCTORAT (arrêté du 7 août 2006) Présentée et soutenue publiquement le 25 Octobre 2010 Par M. Ronan LEDEVIN La dynamique évolutive du campagnol roussâtre (Myodes glareolus) : structure spatiale des variations morphométriques Jury Rapporteurs : M. J.-C. AUFFRAY : Directeur de Recherche (Université de Montpellier II) M. A. CARDINI : Lecturer (Universitá di Modena e Reggio Emilia) Examinateurs : Mme D. PONTIER : Professeur des Universités (Université de Lyon I) M. J. R. MICHAUX : Chercheur Qualifié (Université de Liège, en accueil au CBGP de Montpellier) Directeur de Thèse : Mme S. RENAUD : Chargé de Recherche (Université de Lyon I) N° d’ordre : Année 2010 THESE Présentée devant l’UNIVERSITE CLAUDE BERNARD – LYON 1 pour l’obtention du DIPLOME DE DOCTORAT (arrêté du 7 août 2006) Présentée et soutenue publiquement le 25 Octobre 2010 Par M.
    [Show full text]