Excited Hadrons in Two-Flavor Lattice QCD

Total Page:16

File Type:pdf, Size:1020Kb

Excited Hadrons in Two-Flavor Lattice QCD Excited Hadrons in Two-Flavor Lattice QCD Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) Eingereicht von Georg P. Engel Angefertigt am Institut f¨ur Physik der Karl-Franzens-Universit¨at Graz Betreuer und Gutachter Univ.Prof. Dr. Christian B. Lang Zweitgutachter Prof. Dr. Sasa Prelovsek Mai 2012 iii Pr¨aambel Ich best¨atige, dass es sich bei der hier vorgelegten Dissertation um eine Origi- nalarbeit handelt, die von mir selbstst¨andig angefertigt und abgefasst wurde. ............................................ (Georg P. Engel) iv To Anna v Abstract. The majority of the experimental knowledge about QCD observables is contained in the excited hadron spectrum. The present thesis provides an ab- initio, non-perturbative determination of the excited meson and baryon spectrum, using the lattice regularization of QCD. We use a Hybrid Monte Carlo algorithm to generate seven ensembles with two flavors of dynamical Chirally Improved quarks. The advantages of the improved action lie in small discretization effects and frequent tunneling of topological sectors, reducing autocorrelation. The pion masses are in the range of 250 to 600 MeV, the results are extrapolated to the physical pion mass. Three further ensembles are generated to investigate finite volume effects and to perform the infinite volume limit for specific observables. The strange hadron spectrum is accessed using partial quenching for the strange quark. The variational method is applied to access excited states and also to investigate the content of the physical states. The latter applies in particular to the approximate C-parity of strange mesons, the singlet/octet mixing of Λ baryons and the octet/decuplet mixing of Σ and Ξ baryons. The construction of interpolators is discussed for specific cases. In some baryon channels, Fierz identities force point-like interpolators to vanish exactly. We show that interpolators can be constructed nevertheless and propose two strategies, based on quark smearing and the Rarita-Schwinger condition, respectively. In general, our results compare nicely with experiment, and we even predict some new states and allow for insights concerning the content of the physical states. Part of the work has been published in [1–6], and further publications are in preparation. vi Zusammenfassung. Aus dem Experiment wissen wir, dass fast alle Hadro- nen angeregte Zust¨ande sind. Die vorliegende Dissertation liefert eine ab-initio, nicht-perturbative Bestimmung des angeregten Meson- und Baryonspektrum unter Verwendung der Gitter-Regularisierung von QCD. Mit Hilfe eines Hybrid Monte Carlo Algorithmus werden sieben Ensembles mit zwei dynamischen Chirally Im- proved Quarks erzeugt. Die Vorteile der verbesserten Wirkung liegen in kleinen Diskretisierungseffekten und h¨aufigem Tunneln der topologischen Sektoren, was eine geringe Autokorrelation zur Folge hat. Die Pionmassen in der vorgelegten Arbeit liegen im Bereich von 250 bis 600 MeV, die Resultate werden zur physikalischen Pion- masse extrapoliert. Drei weitere Ensembles f¨ur unterschiedliche Gittergr¨oßen werden erzeugt um Effekte des endlichen Volumens zu untersuchen und um den Limes zu unendlichem Volumen f¨ur bestimmte Observablen durchzuf¨uhren. Strange Quarks werden durch Partial Quenching eingef¨uhrt. Mit Hilfe der sogenannten Variations- methode studieren wir angeregte Zust¨ande und erforschen den Inhalt der physikalis- chen Zust¨ande. Insbesondere untersuchen wir die C-Parit¨at von strange Mesonen, das Mischen von Singlet und Oktett in Λ Baryonen und das Mischen von Oktett und Dekuplet in Σ und Ξ Baryonen. Die Konstruktion von Interpolatoren wird explizit f¨ur bestimmte F¨alle diskutiert. In einigen Baryon Kan¨alen erzwingen Fierz- Identit¨aten ein exaktes Verschwinden von punktf¨ormigen Interpolatoren. Wir zeigen, dass dennoch Interpolatoren konstruiert werden k¨onnen, und schlagen zwei Strate- gien daf¨ur vor, welche sich auf ausgedehnte Quarkquellen bzw. die Rarita-Schwinger Bedingung st¨utzen. Im Allgemeinen zeigen unsere Resultate gute Ubereinstimmung¨ mit dem Experiment. Dar¨uber hinaus k¨onnen wir auch einige Vorhersagen machen und finden Einblicke in den Inhalt der physikalischen Zust¨ande. Teile der Arbeit wurden in [1–6] publiziert, und weitere Publikationen sind in Vorbereitung. Contents 1 Introduction 1 2 QCD in the Continuum 5 3 QCD on the Lattice 7 3.1 TheLatticeRegulator .......................... 7 3.2 PhysicsontheLattice .......................... 9 3.2.1 ChiralSymmetry......................... 9 3.2.2 Poincar´eSymmetry . 10 3.2.3 Observables and Euclidean Correlators . 11 3.2.4 SettingtheScale ......................... 12 4 Setup of the Simulation 13 4.1 Action................................... 13 4.1.1 The Improved Gauge Action . 13 4.1.2 The Chirally Improved Dirac Operator . 14 4.2 Monte Carlo Integration of the Functional Integral . ...... 16 4.2.1 Generating Gauge Configurations . 16 4.2.2 The Hybrid Monte Carlo Algorithm . 17 4.2.3 Numerical Improvements for the HMC Algorithm . 18 4.3 MethodsinHadronSpectroscopy . 19 4.3.1 LinkSmearing .......................... 19 4.3.2 QuarkSmearing ......................... 21 4.3.3 Inverting the Dirac Operator . 24 4.3.4 Interpolator Construction . 24 4.3.5 Extracting Excited States . 28 4.4 From the Lattice to Nature: Hadron Phenomenology . 31 4.4.1 Determining and Approaching the Physical Point . 31 4.4.2 Energy Spectra in Finite and Infinite Systems . 32 5 Simulation Properties 35 5.1 Details of the Simulation . 35 5.2 MonteCarloTimeHistories . 36 vii viii Contents 6 Scale and Low Energy Parameters 41 6.1 Scale.................................... 41 6.2 SettingtheStrangeQuarkMass . 43 6.3 AxialWardIdentityQuarkMass . 43 6.4 DecayConstants ............................. 44 7 Results for the Meson Spectrum 47 7.1 AnalysisFlow............................... 47 7.2 IsovectorLightMesons. .. .. .. .. .. .. .. 48 7.2.1 Scalars............................... 48 7.2.2 Vectors .............................. 50 7.2.3 Tensors .............................. 52 7.3 MesonswithStrangeValenceQuarks. 53 7.3.1 Scalars............................... 54 7.3.2 Vectors .............................. 55 7.3.3 Tensors .............................. 58 7.4 IsoscalarLightMesons. .. .. .. .. .. .. .. 60 7.5 Summaryof the Results for the Meson Spectrum . 61 8 Results for the Baryon Spectrum 63 8.1 ResultsforLightBaryons . 63 8.1.1 Nucleons ............................. 63 8.1.2 DeltaBaryons .......................... 66 8.2 ResultsforStrangeBaryons . 68 8.2.1 LambdaBaryons ......................... 68 8.2.2 SigmaBaryons .......................... 72 8.2.3 XiBaryons ............................ 75 8.2.4 OmegaBaryons.......................... 77 8.3 Summary of the Results for the Baryon Spectrum . 78 9 Finite Volume and Other Systematic Effects 81 9.1 PossibleSourcesofSystematicErrors . 81 9.2 Finite Volume Generalities . 82 9.3 Volume Dependence of the Scale Setting . 83 9.4 Volume Dependence of Meson Energy Levels . 86 9.4.1 Strange Scalar Mesons . 87 9.4.2 Strange Vector Mesons . 88 9.5 Volume Dependence of Baryon Energy Levels . 88 9.5.1 Nucleon .............................. 89 9.5.2 DeltaBaryons .......................... 89 9.5.3 LambdaBaryons ......................... 90 9.5.4 SigmaBaryons .......................... 90 Contents ix 9.5.5 XiBaryons ............................ 91 9.5.6 OmegaBaryons.......................... 91 9.6 Summary ................................. 92 10 Summary and Conclusion 99 A The Chirally Improved Dirac Operator 101 B Meson Interpolators 103 B.1 C-Parity of Meson Interpolators . 103 B.1.1 General Considerations . 103 B.1.2 C-Parity at Zero Momentum: Gaussian Interpolators . 104 B.1.3 C-Parity at Zero Momentum: Derivatives . 106 B.1.4 C-Parity for Non-Zero Momentum . 107 B.2 Meson Interpolator Tables . 108 C Baryon Interpolators 115 C.1 Generalities ................................ 115 C.2 Baryon Interpolator Tables . 115 D Details of Fits and Results 119 x Contents List of Figures 3.1 Thelatticeregulator ........................... 8 4.1 The L¨uscher-Weisz improved gauge action . 14 4.2 The Chirally Improved Dirac operator . 15 4.3 Theconceptoflinksmearing . 20 5.1 Monte Carlo history for the dimensionless pion mass . ..... 38 5.2 Monte Carlo history and histogram for the topology . 38 5.3 SpectrumoftheDiracoperator . 39 5.4 Number of conjugate gradient steps needed . 39 6.1 Settingthescale ............................. 42 6.2 The ratio of the pseudoscalar decay constants FK/Fπ ......... 45 7.1 Energy levels for light scalar mesons: I(J)=1(0)........... 49 7.2 Eigenvectors and masses for light scalar mesons: I(J P C ) = 1(0++) . 50 7.3 Energy levels for light vector mesons: I(J)=1(1)........... 51 P C 7.4 Energy levels for light tensor mesons: I(J ) = 1(2−−) ....... 52 P C + 7.5 Energy levels for light tensor mesons: I(J ) = 1(2− ) ....... 52 7.6 Energy levels for light tensor mesons: I(J P C ) = 1(2++) ....... 53 7.7 Energy levels for strange scalar mesons: I(J) = 1/2(0) . 55 P 7.8 Energy levels for strange vector mesons: I(J ) = 1/2(1−)...... 56 7.9 Energy levels and eigenvectors for strange mesons: I(J P ) = 1/2(1+) 57 P 7.10 Eigenvectors for strange tensor mesons: I(J ) = 1/2(2−) ...... 58 7.11 Energy levels for strange tensor mesons: I(J) = 1/2(2) . 59 P C 7.12 Energy levels for isoscalar vector mesons: I(J ) = 0(1−−)..... 60 7.13 Energy levels for isoscalar tensor mesons: I(J P C ) = 0(2++)..... 61 7.14 Energylevelsformesons: Summary . 62 8.1 Energy levels for nucleon spin 1/2
Recommended publications
  • Properties of the Lowest-Lying Baryons in Chiral Perturbation Theory Jorge Mart´In Camalich
    Properties of the lowest-lying baryons in chiral perturbation theory Jorge Mart´ın Camalich Departamento De F´ısica Te´orica Universidad de Valencia TESIS DOCTORAL VALENCIA 2010 ii iii D. Manuel Jos´eVicente Vacas, Profesor Titular de F´ısica Te´orica de la Uni- versidad de Valencia, CERTIFICA: Que la presente Memoria Properties of the lowest- lying baryons in chiral perturbation theory ha sido realizada bajo mi direcci´on en el Departamento de F´ısica Te´orica de la Universidad de Valencia por D. Jorge Mart´ın Camalich como Tesis para obtener el grado de Doctor en F´ısica. Y para que as´ıconste presenta la referida Memoria, firmando el presente certificado. Fdo: Manuel Jos´eVicente Vacas iv A mis padres y mi hermano vi Contents Preface ix 1 Introduction 1 1.1 ChiralsymmetryofQCD. 1 1.2 Foundations of χPT ........................ 4 1.2.1 Leading chiral Lagrangian for pseudoscalar mesons . 4 1.2.2 Loops, power counting and low-energy constants . 6 1.2.3 Matrix elements and couplings to gauge fields . 7 1.3 Baryon χPT............................. 9 1.3.1 Leading chiral Lagrangian with octet baryons . 9 1.3.2 Loops and power counting in BχPT............ 11 1.4 The decuplet resonances in BχPT................. 14 1.4.1 Spin-3/2 fields and the consistency problem . 15 1.4.2 Chiral Lagrangian containing decuplet fields . 18 1.4.3 Power-counting with decuplet fields . 18 2 Electromagnetic structure of the lowest-lying baryons 21 2.1 Magneticmomentsofthebaryonoctet . 21 2.1.1 Formalism.......................... 22 2.1.2 Results............................ 24 2.1.3 Summary .........................
    [Show full text]
  • Weak Production of Strangeness and the Electron Neutrino Mass
    1 Weak Production of Strangeness as a Probe of the Electron-Neutrino Mass Proposal to the Jefferson Lab PAC Abstract It is shown that the helicity dependence of the weak strangeness production process v νv Λ p(e, e ) may be used to precisely determine the electron neutrino mass. The difference in the reaction rate for two incident electron beam helicities will provide bounds on the electron neutrino mass of roughly 0.5 eV, nearly three times as precise as the current bound from direct-measurement experiments. The experiment makes use of the HKS and Enge Split Pole spectrometers in Hall C in the same configuration that is employed for the hypernuclear spectroscopy studies; the momentum settings for this weak production experiment will be scaled appropriately from the hypernuclear experiment (E01-011). The decay products of the hyperon will be detected; the pion in the Enge spectrometer, and the proton in the HKS. It will use an incident, polarized electron beam of 194 MeV scattering from an unpolarized CH2 target. The ratio of positive and negative helicity events will be used to either determine or put a new limit on the electron neutrino mass. This electroweak production experiment has never been performed previously. 2 Table of Contents Physics Motivation …………………………………………………………………… 3 Experimental Procedure ………………………….………………………………….. 16 Backgrounds, Rates, and Beam Time Request ...…………….……………………… 26 References ………………………………………………………………………….... 31 Collaborators ………………………………………………………………………… 32 3 Physics Motivation Valuable insights into nucleon and nuclear structure are possible when use is made of flavor degrees of freedom such as strangeness. The study of the electromagnetic production of strangeness using both nucleon and nuclear targets has proven to be a powerful tool to constrain QHD and QCD-inspired models of meson and baryon structure, and elastic and transition form factors [1-5].
    [Show full text]
  • Arxiv:1106.4843V1
    Martina Blank Properties of quarks and mesons in the Dyson-Schwinger/Bethe-Salpeter approach Dissertation zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften (Dr.rer.nat.) Karl-Franzens Universit¨at Graz verfasst am Institut f¨ur Physik arXiv:1106.4843v1 [hep-ph] 23 Jun 2011 Betreuer: Priv.-Doz. Mag. Dr. Andreas Krassnigg Graz, 2011 Abstract In this thesis, the Dyson-Schwinger - Bethe-Salpeter formalism is investi- gated and used to study the meson spectrum at zero temperature, as well as the chiral phase transition in finite-temperature QCD. First, the application of sophisticated matrix algorithms to the numer- ical solution of both the homogeneous Bethe-Salpeter equation (BSE) and the inhomogeneous vertex BSE is discussed, and the advantages of these methods are described in detail. Turning to the finite temperature formalism, the rainbow-truncated quark Dyson-Schwinger equation is used to investigate the impact of different forms of the effective interaction on the chiral transition temperature. A strong model dependence and no overall correlation of the value of the transition temperature to the strength of the interaction is found. Within one model, however, such a correlation exists and follows an expected pattern. In the context of the BSE at zero temperature, a representation of the inhomogeneous vertex BSE and the quark-antiquark propagator in terms of eigenvalues and eigenvectors of the homogeneous BSE is given. Using the rainbow-ladder truncation, this allows to establish a connection between the bound-state poles in the quark-antiquark propagator and the behavior of eigenvalues of the homogeneous BSE, leading to a new extrapolation tech- nique for meson masses.
    [Show full text]
  • Measuring Particle Collisions Fundamental
    From Last Time… Something unexpected • Particles are quanta of a quantum field • Raise the momentum and the electrons and see – Represent excitations of the associated field what we can make. – Particles can appear and disappear • Might expect that we make a quark and an • Particles interact by exchanging other particles antiquark. The particles that make of the proton. – Electrons interact by exchanging photons – Guess that they are 1/3 the mass of the proton 333MeV • This is the Coulomb interaction µ, Muon mass: 100MeV/c2, • Electrons are excitations of the electron field electron mass 0.5 MeV/c2 • Photons are excitations of the photon field • Today e- µ- Instead we get a More particles! muon, acts like a heavy version of Essay due Friday µ + the electron e+ Phy107 Fall 2006 1 Phy107 Fall 2006 2 Accelerators CERN (Switzerland) • What else can we make with more energy? •CERN, Geneva Switzerland • Electrostatic accelerator: Potential difference V accelerate electrons to 1 MeV • LHC Cyclic accelerator • Linear Accelerator: Cavities that make EM waves • 27km, 14TeV particle surf the waves - SLAC 50 GeV electrons 27 km 7+7=14 • Cyclic Accelerator: Circular design allows particles to be accelerated by cavities again and again – LEP 115 GeV electrons – Tevatron 1 TeV protons – LHC 7 TeV protons(starts next year) Phy107 Fall 2006 3 Phy107 Fall 2006 4 Measuring particle collisions Fundamental Particles Detectors are required to determine the results of In the Standard Model the basic building blocks are the collisions. said to be ‘fundamental’ or not more up of constituent parts. Which particle isn’t ‘fundamental’: A.
    [Show full text]
  • Electromagnetic Radiation from Hot and Dense Hadronic Matter
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Electromagnetic Radiation from Hot and Dense Hadronic Matter Pradip Roy, Sourav Sarkar and Jan-e Alam Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta 700 064 India Bikash Sinha Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Calcutta 700 064 India Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Calcutta 700 064 India The modifications of hadronic masses and decay widths at finite temperature and baryon density are investigated using a phenomenological model of hadronic interactions in the Relativistic Hartree Approximation. We consider an exhaustive set of hadronic reactions and vector meson decays to estimate the photon emission from hot and dense hadronic matter. The reduction in the vector meson masses and decay widths is seen to cause an enhancement in the photon production. It is observed that the effect of ρ-decay width on photon spectra is negligible. The effects on dilepton production from pion annihilation are also indicated. PACS: 25.75.+r;12.40.Yx;21.65.+f;13.85.Qk Keywords: Heavy Ion Collisions, Vector Mesons, Self Energy, Thermal Loops, Bose Enhancement, Photons, Dileptons. I. INTRODUCTION Numerical simulations of QCD (Quantum Chromodynamics) equation of state on the lattice predict that at very high density and/or temperature hadronic matter undergoes a phase transition to Quark Gluon Plasma (QGP) [1,2]. One expects that ultrarelativistic heavy ion collisions might create conditions conducive for the formation and study of QGP. Various model calculations have been performed to look for observable signatures of this state of matter.
    [Show full text]
  • Arxiv:1606.09602V2 [Hep-Ph] 22 Jul 2016
    Baryons as relativistic three-quark bound states Gernot Eichmanna,1, Hèlios Sanchis-Alepuzb,3, Richard Williamsa,2, Reinhard Alkoferb,4, Christian S. Fischera,c,5 aInstitut für Theoretische Physik, Justus-Liebig–Universität Giessen, 35392 Giessen, Germany bInstitute of Physics, NAWI Graz, University of Graz, Universitätsplatz 5, 8010 Graz, Austria cHIC for FAIR Giessen, 35392 Giessen, Germany Abstract We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) cur- rents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish ‘expected’ from ‘unexpected’ physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson- Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom. Keywords: Baryon properties, Nucleon resonances, Form factors, Compton scattering, Dyson-Schwinger approach, Bethe-Salpeter/Faddeev equations, Quark-diquark model arXiv:1606.09602v2 [hep-ph] 22 Jul 2016 [email protected] [email protected].
    [Show full text]
  • Light-Front Wave Functions of Mesons, Baryons, and Pentaquarks with Topology-Induced Local Four-Quark Interaction
    PHYSICAL REVIEW D 100, 114018 (2019) Light-front wave functions of mesons, baryons, and pentaquarks with topology-induced local four-quark interaction Edward Shuryak Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA (Received 7 October 2019; published 11 December 2019) We calculate light-front wave functions of mesons, baryons and pentaquarks in a model including constituent mass (representing chiral symmetry breaking), harmonic confining potential, and four-quark local interaction of ’t Hooft type. The model is a simplified version of that used by Jia and Vary. The method used is numerical diagonalization of the Hamiltonian matrix, with a certain functional basis. We found that the nucleon wave function displays strong diquark correlations, unlike that for the Delta (decuplet) baryon. We also calculate a three-quark-five-quark admixture to baryons and the resulting antiquark sea parton distribution function. DOI: 10.1103/PhysRevD.100.114018 I. INTRODUCTION “relaxation” of the correlators to the lowest mass hadron in a given channel. A. Various roads towards hadronic properties (iii) Light-front quantization using also certain model Let us start with a general picture, describing various Hamiltonians, aimed at the set of quantities, available approaches to the theory of hadrons, identifying the from experiment. Deep inelastic scattering (DIS), as following: well as many other hard processes, use factorization (i) Traditional quark models (too many to mention here) theorems of perturbative QCD and nonperturbative are aimed at calculation of static properties (e.g., parton distribution functions (PDFs). Hard exclusive masses, radii, magnetic moments etc.). Normally all processes (such as e.g., form factors) are described in calculations are done in the hadron’s rest frame, using terms of nonperturbative hadron on-light-front wave certain model Hamiltonians.
    [Show full text]
  • Katya Gilbo George C. Marshall High School Intern of Catholic University
    Conceptual Studies for the π0 Hadronic Calorimeter Katya Gilbo George C. Marshall High School Research supported in part by NSF grants Marshall HS PHY-1019521 and PHY-1039446 Intern of Catholic University of America PHYSICS MOTIVATION RESEARCH QUESTION PROCEDURE How do we evaluate the performance of detectors for the 1. Write an Excel program to calculate the pion angle, pion energy, and Understanding the Composition of the Universe identification of pi0 decay photons in exclusive neutral pion pion momentum from input values of Q2 (the squared four- production and the components of detectors to identify kaons in momentum transfer carried by virtual photon or “the resolution of charged kaon production? the experiment”), W (center of mass energy), and the electron beam energy. Q2 Scattered Experimental Setup at JLAB Hall C Neutral Electron Electron Beam Pion Incoming Pion Angle Proton Target: Electron 1. Electron beam scatters off proton. Scattered Proton 2. Pion is produced. 2. The program calculates PERFECT pion value results, which means the pion detector (hadron calorimeter) is also PERFECT. Simulate real life pion values using normal inverse distribution: In order to understand matter, and even the human structure, physicists have The Norm. Inv. Function requires a known average and standard looked deeper and deeper into the composition of matter, from atoms to deviation. The average is the PERFECT pion value, while the standard protons to quarks. deviation is the calorimeter accuracy. Our group is investigating the structure of the charged and neutral pion and the 3. Pion decays into 3. Calculate the mass of the only undetected particle through the charged kaon, and the way their quark constituents interact through the strong two photons.
    [Show full text]
  • QCD Vs. the Centrifugal Barrier: a New QCD Effect
    Smith ScholarWorks Mathematics and Statistics: Faculty Publications Mathematics and Statistics 4-10-2014 QCD vs. the Centrifugal Barrier: a New QCD Effect Tamar Friedmann University of Rochester, [email protected] Follow this and additional works at: https://scholarworks.smith.edu/mth_facpubs Part of the Mathematics Commons Recommended Citation Friedmann, Tamar, "QCD vs. the Centrifugal Barrier: a New QCD Effect" (2014). Mathematics and Statistics: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/mth_facpubs/71 This Conference Proceeding has been accepted for inclusion in Mathematics and Statistics: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] EPJ Web of Conferences 70, 00027 (2014) DOI: 10.1051/epj conf/20147 000027 C Owned by the authors, published by EDP Sciences, 2014 QCD vs. the Centrifugal Barrier: a New QCD Effect Tamar Friedmann1,a 1University of Rochester, Rochester, NY Abstract. We propose an extended schematic model for hadrons in which quarks and diquarks alike serve as building blocks. The outcome is a reclassification of the hadron spectrum in which there are no radially excited hadrons: all mesons and baryons pre- viously believed to be radial excitations are orbitally excited states involving diquarks. Also, there are no exotic hadrons: all hadrons previously believed to be exotic are states involving diquarks and are an integral part of the model. We discuss the implications of this result for a new understanding of confinement and its relation to asymptotic freedom, as well as its implications for a novel relation between the size and energy of hadrons, whereby an orbitally excited hadron shrinks.
    [Show full text]
  • Pos(QNP2012)112 £ [email protected] [email protected] [email protected] Speaker
    Baryon properties from the covariant Faddeev equation PoS(QNP2012)112 Helios Sanchis-Alepuz£ University of Graz, Austria E-mail: [email protected] Reinhard Alkofer University of Graz, Austria E-mail: [email protected] Richard Williams University of Graz, Austria E-mail: [email protected] A calculation of the masses and electromagnetic properties of the Delta and Omega baryon to- gether with their evolution with the current quark mass is presented. Hereby a generalized Bethe- Salpeter approach with the interaction truncated to a dressed one-gluon exchange is employed. The model dependence is explored by investigating two forms for the dressed gluon exchange. Sixth International Conference on Quarks and Nuclear Physics April 16-20, 2012 Ecole Polytechnique, Palaiseau, Paris £Speaker. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Baryon properties from the covariant Faddeev equation Helios Sanchis-Alepuz 1. Introduction A covariant description of relativistic two- and three-body bound states is provided by the (generalised) Bethe-Salpeter equations. Until recently quark-diquark calculations of baryons were standard [1, 2, 3, 4, 5], whereas today calculations have reached parity with meson studies in the form of a more intricate three-body description [6, 7, 8, 9] at the level of the Rainbow-Ladder (RL) approximation. In the meantime, meson studies have made progress beyond RL [10, 11, 12, 13]. In the case of baryons, only one RL interaction has typically been tested, known as the Maris- Tandy model [14, 15].
    [Show full text]
  • Advanced Applications of Cosmic-Ray Muon Radiography." (2013)
    University of New Mexico UNM Digital Repository Nuclear Engineering ETDs Engineering ETDs 9-5-2013 ADVANCED APPLICATIONS OF COSMIC- RAY MUON RADIOGRAPHY John Perry Follow this and additional works at: https://digitalrepository.unm.edu/ne_etds Recommended Citation Perry, John. "ADVANCED APPLICATIONS OF COSMIC-RAY MUON RADIOGRAPHY." (2013). https://digitalrepository.unm.edu/ne_etds/4 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Nuclear Engineering ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. John Oliver Perry Candidate Department of Chemical and Nuclear Engineering Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Dr. Adam A. Hecht, Chairperson Dr. Cassiano R. E. de Oliveira Dr. Sally Seidel Dr. Konstantin Borozdin i ADVANCED APPLICATIONS OF COSMIC-RAY MUON RADIOGRAPHY BY JOHN PERRY B.S., Nuclear Engineering, Purdue University, 2007 M.S., Nuclear Engineering, Purdue University, 2008 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Engineering The University of New Mexico Albuquerque, New Mexico July, 2013 ii DEDICATION I dedicate this dissertation to my wife, Holly R. Perry. She has motivated me through my work selflessly and tirelessly. I struggle to think where I would be today without her. Holly has provided more emotional support throughout these past years than I could ever request. So, to her, thank you and I love you. iii ACKNOWLEDGEMENTS I graciously acknowledge my academic advisor, Dr.
    [Show full text]
  • Properties of the Lowest-Lying Baryons in Chiral Perturbation Theory Jorge Mart´In Camalich
    Properties of the lowest-lying baryons in chiral perturbation theory Jorge Mart´ın Camalich Departamento De F´ısica Te´orica Universidad de Valencia TESIS DOCTORAL VALENCIA 2010 ii iii D. Manuel Jos´eVicente Vacas, Profesor Titular de F´ısica Te´orica de la Uni- versidad de Valencia, CERTIFICA: Que la presente Memoria Properties of the lowest- lying baryons in chiral perturbation theory ha sido realizada bajo mi direcci´on en el Departamento de F´ısica Te´orica de la Universidad de Valencia por D. Jorge Mart´ınCamalich como Tesis para obtener el grado de Doctor en F´ısica. Y para que as´ıconste presenta la referida Memoria, firmando el presente certificado. Fdo: Manuel Jos´eVicente Vacas iv A mis padres y mi hermano vi Contents Preface ix 1 Introduction 1 1.1 ChiralsymmetryofQCD...................... 1 1.2 Foundations of χPT ........................ 4 1.2.1 Leading chiral Lagrangian for pseudoscalar mesons . 4 1.2.2 Loops, power counting and low-energy constants . 6 1.2.3 Matrix elements and couplings to gauge fields . 7 1.3 Baryon χPT............................. 9 1.3.1 Leading chiral Lagrangian with octet baryons . 9 1.3.2 Loops and power counting in BχPT............ 11 1.4 The decuplet resonances in BχPT................. 14 1.4.1 Spin-3/2 fields and the consistency problem . 15 1.4.2 Chiral Lagrangian containing decuplet fields . 17 1.4.3 Power-counting with decuplet fields . 18 2 Electromagnetic structure of the lowest-lying baryons 21 2.1 Magneticmomentsofthebaryonoctet . 21 2.1.1 Formalism.......................... 22 2.1.2 Results............................ 24 2.1.3 Summary .........................
    [Show full text]