Electromagnetic Radiation from Hot and Dense Hadronic Matter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Properties of the Lowest-Lying Baryons in Chiral Perturbation Theory Jorge Mart´In Camalich
Properties of the lowest-lying baryons in chiral perturbation theory Jorge Mart´ın Camalich Departamento De F´ısica Te´orica Universidad de Valencia TESIS DOCTORAL VALENCIA 2010 ii iii D. Manuel Jos´eVicente Vacas, Profesor Titular de F´ısica Te´orica de la Uni- versidad de Valencia, CERTIFICA: Que la presente Memoria Properties of the lowest- lying baryons in chiral perturbation theory ha sido realizada bajo mi direcci´on en el Departamento de F´ısica Te´orica de la Universidad de Valencia por D. Jorge Mart´ın Camalich como Tesis para obtener el grado de Doctor en F´ısica. Y para que as´ıconste presenta la referida Memoria, firmando el presente certificado. Fdo: Manuel Jos´eVicente Vacas iv A mis padres y mi hermano vi Contents Preface ix 1 Introduction 1 1.1 ChiralsymmetryofQCD. 1 1.2 Foundations of χPT ........................ 4 1.2.1 Leading chiral Lagrangian for pseudoscalar mesons . 4 1.2.2 Loops, power counting and low-energy constants . 6 1.2.3 Matrix elements and couplings to gauge fields . 7 1.3 Baryon χPT............................. 9 1.3.1 Leading chiral Lagrangian with octet baryons . 9 1.3.2 Loops and power counting in BχPT............ 11 1.4 The decuplet resonances in BχPT................. 14 1.4.1 Spin-3/2 fields and the consistency problem . 15 1.4.2 Chiral Lagrangian containing decuplet fields . 18 1.4.3 Power-counting with decuplet fields . 18 2 Electromagnetic structure of the lowest-lying baryons 21 2.1 Magneticmomentsofthebaryonoctet . 21 2.1.1 Formalism.......................... 22 2.1.2 Results............................ 24 2.1.3 Summary ......................... -
Weak Production of Strangeness and the Electron Neutrino Mass
1 Weak Production of Strangeness as a Probe of the Electron-Neutrino Mass Proposal to the Jefferson Lab PAC Abstract It is shown that the helicity dependence of the weak strangeness production process v νv Λ p(e, e ) may be used to precisely determine the electron neutrino mass. The difference in the reaction rate for two incident electron beam helicities will provide bounds on the electron neutrino mass of roughly 0.5 eV, nearly three times as precise as the current bound from direct-measurement experiments. The experiment makes use of the HKS and Enge Split Pole spectrometers in Hall C in the same configuration that is employed for the hypernuclear spectroscopy studies; the momentum settings for this weak production experiment will be scaled appropriately from the hypernuclear experiment (E01-011). The decay products of the hyperon will be detected; the pion in the Enge spectrometer, and the proton in the HKS. It will use an incident, polarized electron beam of 194 MeV scattering from an unpolarized CH2 target. The ratio of positive and negative helicity events will be used to either determine or put a new limit on the electron neutrino mass. This electroweak production experiment has never been performed previously. 2 Table of Contents Physics Motivation …………………………………………………………………… 3 Experimental Procedure ………………………….………………………………….. 16 Backgrounds, Rates, and Beam Time Request ...…………….……………………… 26 References ………………………………………………………………………….... 31 Collaborators ………………………………………………………………………… 32 3 Physics Motivation Valuable insights into nucleon and nuclear structure are possible when use is made of flavor degrees of freedom such as strangeness. The study of the electromagnetic production of strangeness using both nucleon and nuclear targets has proven to be a powerful tool to constrain QHD and QCD-inspired models of meson and baryon structure, and elastic and transition form factors [1-5]. -
Selfconsistent Description of Vector-Mesons in Matter 1
Selfconsistent description of vector-mesons in matter 1 Felix Riek 2 and J¨orn Knoll 3 Gesellschaft f¨ur Schwerionenforschung Planckstr. 1 64291 Darmstadt Abstract We study the influence of the virtual pion cloud in nuclear matter at finite den- sities and temperatures on the structure of the ρ- and ω-mesons. The in-matter spectral function of the pion is obtained within a selfconsistent scheme of coupled Dyson equations where the coupling to the nucleon and the ∆(1232)-isobar reso- nance is taken into account. The selfenergies are determined using a two-particle irreducible (2PI) truncation scheme (Φ-derivable approximation) supplemented by Migdal’s short range correlations for the particle-hole excitations. The so obtained spectral function of the pion is then used to calculate the in-medium changes of the vector-meson spectral functions. With increasing density and temperature a strong interplay of both vector-meson modes is observed. The four-transversality of the polarisation tensors of the vector-mesons is achieved by a projector technique. The resulting spectral functions of both vector-mesons and, through vector domi- nance, the implications of our results on the dilepton spectra are studied in their dependence on density and temperature. Key words: rho–meson, omega–meson, medium modifications, dilepton production, self-consistent approximation schemes. PACS: 14.40.-n 1 Supported in part by the Helmholz Association under Grant No. VH-VI-041 2 e-mail:[email protected] 3 e-mail:[email protected] Preprint submitted to Elsevier Preprint Feb. 2004 1 Introduction It is an interesting question how the behaviour of hadrons changes in a dense hadronic medium. -
J. Stroth Asked the Question: "Which Are the Experimental Evidences for a Long Mean Free Path of Phi Mesons in Medium?"
J. Stroth asked the question: "Which are the experimental evidences for a long mean free path of phi mesons in medium?" Answer by H. Stroebele ~~~~~~~~~~~~~~~~~~~ (based on the study of several publications on phi production and information provided by the theory friends of H. Stöcker ) Before trying to find an answer to this question, we need to specify what is meant with "long". The in medium cross section is equivalent to the mean free path. Thus we need to find out whether the (in medium) cross section is large (with respect to what?). The reference would be the cross sections of other mesons like pions or more specifically the omega meson. There is a further reference, namely the suppression of phi production and decay described in the OZI rule. A “blind” application of the OZI rule would give a cross section of the phi three orders of magnitude lower than that of the omega meson and correspondingly a "long" free mean path. In the following we shall look at the phi production cross sections in photon+p, pion+p, and p+p interactions. The total photoproduction cross sections of phi and omega mesons were measured in a bubble chamber experiment (J. Ballam et al., Phys. Rev. D 7, 3150, 1973), in which a cross section ratio of R(omega/phi) = 10 was found in the few GeV beam energy region. There are results on omega and phi production in p+p interactions available from SPESIII (Near- Threshold Production of omega mesons in the Reaction p p → p p omega", Phys.Rev.Lett. -
Mass Shift of Σ-Meson in Nuclear Matter
Mass shift of σ-Meson in Nuclear Matter J. R. Morones-Ibarra, Mónica Menchaca Maciel, Ayax Santos-Guevara, and Felipe Robledo Padilla. Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, 66450, México. Facultad de Ingeniería y Arquitectura, Universidad Regiomontana, 15 de Mayo 567, Monterrey, N.L., 64000, México. April 6, 2010 Abstract The propagation of sigma meson in nuclear matter is studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in medium effect of sigma-omega mixing. We have also considered, by completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases respect to its value in vacuum and that the contribution of the sigma omega mixing effect on the mass shift is relatively small. Keywords: scalar mesons, hadrons in dense matter, spectral function, dense nuclear matter. PACS:14.40;14.40Cs;13.75.Lb;21.65.+f 1. INTRODUCTION The study of matter under extreme conditions of density and temperature, has become a very important issue due to the fact that it prepares to understand the physics for some interesting subjects like, the conditions in the early universe, the physics of processes in stellar evolution and in heavy ion collision. Particularly, the study of properties of mesons in hot and dense matter is important to understand which could be the signature for detecting the Quark-Gluon Plasma (QGP) state in heavy ion collision, and to get information about the signal of the presence of QGP and also to know which symmetries are restored [1]. -
Phenomenology of Gev-Scale Heavy Neutral Leptons Arxiv:1805.08567
Prepared for submission to JHEP INR-TH-2018-014 Phenomenology of GeV-scale Heavy Neutral Leptons Kyrylo Bondarenko,1 Alexey Boyarsky,1 Dmitry Gorbunov,2;3 Oleg Ruchayskiy4 1Intituut-Lorentz, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 2Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia 3Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 4Discovery Center, Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK- 2100 Copenhagen, Denmark E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: We review and revise phenomenology of the GeV-scale heavy neutral leptons (HNLs). We extend the previous analyses by including more channels of HNLs production and decay and provide with more refined treatment, including QCD corrections for the HNLs of masses (1) GeV. We summarize the relevance O of individual production and decay channels for different masses, resolving a few discrepancies in the literature. Our final results are directly suitable for sensitivity studies of particle physics experiments (ranging from proton beam-dump to the LHC) aiming at searches for heavy neutral leptons. arXiv:1805.08567v3 [hep-ph] 9 Nov 2018 ArXiv ePrint: 1805.08567 Contents 1 Introduction: heavy neutral leptons1 1.1 General introduction to heavy neutral leptons2 2 HNL production in proton fixed target experiments3 2.1 Production from hadrons3 2.1.1 Production from light unflavored and strange mesons5 2.1.2 -
Arxiv:1106.4843V1
Martina Blank Properties of quarks and mesons in the Dyson-Schwinger/Bethe-Salpeter approach Dissertation zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften (Dr.rer.nat.) Karl-Franzens Universit¨at Graz verfasst am Institut f¨ur Physik arXiv:1106.4843v1 [hep-ph] 23 Jun 2011 Betreuer: Priv.-Doz. Mag. Dr. Andreas Krassnigg Graz, 2011 Abstract In this thesis, the Dyson-Schwinger - Bethe-Salpeter formalism is investi- gated and used to study the meson spectrum at zero temperature, as well as the chiral phase transition in finite-temperature QCD. First, the application of sophisticated matrix algorithms to the numer- ical solution of both the homogeneous Bethe-Salpeter equation (BSE) and the inhomogeneous vertex BSE is discussed, and the advantages of these methods are described in detail. Turning to the finite temperature formalism, the rainbow-truncated quark Dyson-Schwinger equation is used to investigate the impact of different forms of the effective interaction on the chiral transition temperature. A strong model dependence and no overall correlation of the value of the transition temperature to the strength of the interaction is found. Within one model, however, such a correlation exists and follows an expected pattern. In the context of the BSE at zero temperature, a representation of the inhomogeneous vertex BSE and the quark-antiquark propagator in terms of eigenvalues and eigenvectors of the homogeneous BSE is given. Using the rainbow-ladder truncation, this allows to establish a connection between the bound-state poles in the quark-antiquark propagator and the behavior of eigenvalues of the homogeneous BSE, leading to a new extrapolation tech- nique for meson masses. -
Vector Mesons and an Interpretation of Seiberg Duality
Vector Mesons and an Interpretation of Seiberg Duality Zohar Komargodski School of Natural Sciences Institute for Advanced Study Einstein Drive, Princeton, NJ 08540 We interpret the dynamics of Supersymmetric QCD (SQCD) in terms of ideas familiar from the hadronic world. Some mysterious properties of the supersymmetric theory, such as the emergent magnetic gauge symmetry, are shown to have analogs in QCD. On the other hand, several phenomenological concepts, such as “hidden local symmetry” and “vector meson dominance,” are shown to be rigorously realized in SQCD. These considerations suggest a relation between the flavor symmetry group and the emergent gauge fields in theories with a weakly coupled dual description. arXiv:1010.4105v2 [hep-th] 2 Dec 2010 10/2010 1. Introduction and Summary The physics of hadrons has been a topic of intense study for decades. Various theoret- ical insights have been instrumental in explaining some of the conundrums of the hadronic world. Perhaps the most prominent tool is the chiral limit of QCD. If the masses of the up, down, and strange quarks are set to zero, the underlying theory has an SU(3)L SU(3)R × global symmetry which is spontaneously broken to SU(3)diag in the QCD vacuum. Since in the real world the masses of these quarks are small compared to the strong coupling 1 scale, the SU(3)L SU(3)R SU(3)diag symmetry breaking pattern dictates the ex- × → istence of 8 light pseudo-scalars in the adjoint of SU(3)diag. These are identified with the familiar pions, kaons, and eta.2 The spontaneously broken symmetries are realized nonlinearly, fixing the interactions of these pseudo-scalars uniquely at the two derivative level. -
Measuring Particle Collisions Fundamental
From Last Time… Something unexpected • Particles are quanta of a quantum field • Raise the momentum and the electrons and see – Represent excitations of the associated field what we can make. – Particles can appear and disappear • Might expect that we make a quark and an • Particles interact by exchanging other particles antiquark. The particles that make of the proton. – Electrons interact by exchanging photons – Guess that they are 1/3 the mass of the proton 333MeV • This is the Coulomb interaction µ, Muon mass: 100MeV/c2, • Electrons are excitations of the electron field electron mass 0.5 MeV/c2 • Photons are excitations of the photon field • Today e- µ- Instead we get a More particles! muon, acts like a heavy version of Essay due Friday µ + the electron e+ Phy107 Fall 2006 1 Phy107 Fall 2006 2 Accelerators CERN (Switzerland) • What else can we make with more energy? •CERN, Geneva Switzerland • Electrostatic accelerator: Potential difference V accelerate electrons to 1 MeV • LHC Cyclic accelerator • Linear Accelerator: Cavities that make EM waves • 27km, 14TeV particle surf the waves - SLAC 50 GeV electrons 27 km 7+7=14 • Cyclic Accelerator: Circular design allows particles to be accelerated by cavities again and again – LEP 115 GeV electrons – Tevatron 1 TeV protons – LHC 7 TeV protons(starts next year) Phy107 Fall 2006 3 Phy107 Fall 2006 4 Measuring particle collisions Fundamental Particles Detectors are required to determine the results of In the Standard Model the basic building blocks are the collisions. said to be ‘fundamental’ or not more up of constituent parts. Which particle isn’t ‘fundamental’: A. -
Kaon Pair Production in Pp, Pd, Dd and Pa Collisions at COSY
Kaon pair production in pp, pd, dd and pA collisions at COSY Michael Hartmann Institut für Kernphysik and Jülich Centre for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich, Germany E-mail: [email protected] An overview of experiments at the Cooler Synchrotron COSY on kaon-pair production in pp, pd, dd collisions in the close-to-threshold regime is given. These include results on f-meson production, where the meson is detected via its K+K− decay. The study of f production on a range of heavier nuclear targets allows one to deduce a value of the f width in nuclei and its variation with the f momentum. XLIX International Winter Meeting on Nuclear Physics, BORMIO2011 January 24-28, 2011 Bormio, Italy c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Kaon pair production at COSY 1. Introduction The cooler synchrotron COSY [1] at the Forschungszentrum Jülich in Germany can accelerate protons and deuterons up to about 3.7 GeV/c. Both polarized and unpolarized beams are available. Excellent beam quality is achieved with the help of electron and/or stochastic cooling. COSY can be used as an accelerator for external target experiments and as a storage ring for internal target experiments. Kaon pair production experiments have been performed at the internal spectrometer ANKE by the COSY-ANKE collaboration, at the internal COSY-11 spectrometer by the COSY-11 collaboration, and at the external BIG KARL spectrograph by the COSY-MOMO collaboration. 103 102 10 pn → dφ total corss section [nb] pp → ppφ 1 pp → ppφ pd → 3Heφ pn → dK+K pp → ppK+K 1 10 pp → ppK+K pp → ppK+K o pp → dK+K pd → 3HeK+K 2 10 dd → 4HeK+K 0 20 40 60 80 100 Excess energy [MeV] Figure 1: World data set on total cross sections for kaon-pair production in terms of the excess energy for each reaction. -
Researcher 2015;7(8)
Researcher 2015;7(8) http://www.sciencepub.net/researcher Curie Particle And The Relation Between The Masses Of Sub-Atomic Particles, Supporting (Bicep2`S) Experiments, Mass Of Neutrino, Present “The Lhcb Collaboration” & “Atlas” Experiments. Nirmalendu Das Life Member (1): THE VON KARMAN SOCIETY for Advanced Study and Research in Mathematical Science (UKS), Old Post Office line, Jalpaiguri, Life Member (2): Indian Science Congress Association, India. Resident Address: MUKUL DEEP, Saratpally, W.No.- 40, 74/48, Meghlal Roy Road Haiderpara, Siliguri – 734006, Dist: Jalpaiguri, West Bengal, India. Mob: +91-9475089337, Email: [email protected], [email protected] Abstract: Light is very sensitive matter. In terms of mass of a photon is important in every field of matter thus for the universe. The scientists of many countries are trying to find the mass of photon by experiment since 1936 and continuing this work in various countries. But the obtained results are differing to each other. So, we cannot consider these mass of a photon. On the other hand matter is made by the photons. We get this idea from the Einstein equation E = mc2. Again, energy is nothing but the bunch of photons. I calculate the mass of a photon (1.6596x10-54 gm) [1] and this mass is applicable to all fields. Here, in this article, we can calculate the mass of “Curie particle” (Unknown to us) by using this mass of photon & is related to Higgs and other sub-atomic particles. The energy of Higgs particle is very low as per BICEP2`s experimental report [2] and I reported about this matter in the year 2011 to “The Authority of CERN, Editor of Press release of CERN and many other places” by emailing, but did not get answer in this regards. -
PARTICLE DECAYS the First Kaons from the New DAFNE Phi-Meson
PARTICLE DECAYS K for KLi The first kaons from the new DAFNE phi-meson factory at Frascati underline a fascinating chapter in the evolution of particle physics. As reported in the June issue (p7), in mid-April the new DAFNE phi-meson factory at Frascati began operation, with the KLOE detector looking at the physics. The DAFNE electron-positron collider operates at a total collision energy of 1020 MeV, the mass of the phi- meson, which prefers to decay into pairs of kaons.These decays provide a new stage to investigate CP violation, the subtle asymmetry that distinguishes between mat ter and antimatter. More knowledge of CP violation is the key to an increased understanding of both elemen tary particles and Big Bang cosmology. Since the discovery of CP violation in 1964, neutral kaons have been the classic scenario for CP violation, produced as secondary beams from accelerators. This is now changing as new CP violation scenarios open up with B particles, containing the fifth quark - "beauty", "bottom" or simply "b" (June p22). Although still on the neutral kaon beat, DAFNE offers attractive new experimental possibilities. Kaons pro duced via electron-positron annihilation are pure and uncontaminated by background, and having two kaons produced coherently opens up a new sector of preci sion kaon interferometry.The data are eagerly awaited. Strange decay At first sight the fact that the phi prefers to decay into pairs of kaons seems strange. The phi (1020 MeV) is only slightly heavier than a pair of neutral kaons (498 MeV each), and kinematically this decay is very constrained.