Distribution of Radioactive Heat Sources and Thermal History of the Moon M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Warren and Taylor-2014-In Tog-The Moon-'Author's Personal Copy'.Pdf
This article was originally published in Treatise on Geochemistry, Second Edition published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non- commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial Warren P.H., and Taylor G.J. (2014) The Moon. In: Holland H.D. and Turekian K.K. (eds.) Treatise on Geochemistry, Second Edition, vol. 2, pp. 213-250. Oxford: Elsevier. © 2014 Elsevier Ltd. All rights reserved. Author's personal copy 2.9 The Moon PH Warren, University of California, Los Angeles, CA, USA GJ Taylor, University of Hawai‘i, Honolulu, HI, USA ã 2014 Elsevier Ltd. All rights reserved. This article is a revision of the previous edition article by P. H. Warren, volume 1, pp. 559–599, © 2003, Elsevier Ltd. 2.9.1 Introduction: The Lunar Context 213 2.9.2 The Lunar Geochemical Database 214 2.9.2.1 Artificially Acquired Samples 214 2.9.2.2 Lunar Meteorites 214 2.9.2.3 Remote-Sensing Data 215 2.9.3 Mare Volcanism -
Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon
minerals Article Rare Earth Elements in Planetary Crusts: Insights from Chemically Evolved Igneous Suites on Earth and the Moon Claire L. McLeod 1,* and Barry J. Shaulis 2 1 Department of Geology and Environmental Earth Sciences, 203 Shideler Hall, Miami University, Oxford, OH 45056, USA 2 Department of Geosciences, Trace Element and Radiogenic Isotope Lab (TRaIL), University of Arkansas, Fayetteville, AR 72701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-513-529-9662 Received: 5 July 2018; Accepted: 8 October 2018; Published: 16 October 2018 Abstract: The abundance of the rare earth elements (REEs) in Earth’s crust has become the intense focus of study in recent years due to the increasing societal demand for REEs, their increasing utilization in modern-day technology, and the geopolitics associated with their global distribution. Within the context of chemically evolved igneous suites, 122 REE deposits have been identified as being associated with intrusive dike, granitic pegmatites, carbonatites, and alkaline igneous rocks, including A-type granites and undersaturated rocks. These REE resource minerals are not unlimited and with a 5–10% growth in global demand for REEs per annum, consideration of other potential REE sources and their geological and chemical associations is warranted. The Earth’s moon is a planetary object that underwent silicate-metal differentiation early during its history. Following ~99% solidification of a primordial lunar magma ocean, residual liquids were enriched in potassium, REE, and phosphorus (KREEP). While this reservoir has not been directly sampled, its chemical signature has been identified in several lunar lithologies and the Procellarum KREEP Terrane (PKT) on the lunar nearside has an estimated volume of KREEP-rich lithologies at depth of 2.2 × 108 km3. -
A Zircon U-Pb Study of the Evolution of Lunar KREEP
A zircon U-Pb study of the evolution of lunar KREEP By A.A. Nemchin, R.T. Pidgeon, M.J. Whitehouse, J.P. Vaughan and C. Meyer Abstract SIMS U-Pb analyses show that zircons from breccias from Apollo 14 and Apollo 17 have essentially identical age distributions in the range 4350 to 4200 Ma but, whereas Apollo 14 zircons additionally show ages from 4200 to 3900 Ma, the Apollo 17 samples have no zircons with ages <4200 Ma. The zircon results also show an uneven distribution with distinct peaks of magmatic activity. In explaining these observations we propose that periodic episodes of KREEP magmatism were generated from a primary reservoir of KREEP magma, which contracted over time towards the centre of Procellarum KREEP terrane. Introduction One of the most enigmatic features of the geology of the Moon is the presence of high concentrations of large ion lithophile elements in clasts from breccias from non mare regions. This material, referred to as KREEP (1) from its high levels of K, REE and P, also contains relatively high concentrations of other incompatible elements including Th, U and Zr. Fragments of rocks with KREEP trace element signatures have been identified in samples from all Apollo landing sites (2). The presence of phosphate minerals, such as apatite and merrillite (3); zirconium minerals, such as zircon (4), zirconolite (5) and badelleyite (6), and rare earth minerals such as yttrobetafite (7), are direct expressions of the presence of KREEP. Dickinson and Hess (8) concluded that about 9000 ppm of Zr in basaltic melt is required to saturate it with zircon at about 1100oC (the saturation concentration increases exponentially with increasing temperature). -
Assessment of Spectral Properties of Apollo 12 Landing Site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2
Assessment of spectral properties of Apollo 12 landing site Yann Chemin1, Ian Crawford2, Peter Grindrod2, and Louise Alexander2 1Student, Birkbeck Colllege, University of London 2Birkbeck Colllege, University of London Corresponding author: Yann Chemin1 Email address: [email protected] ABSTRACT The geology and mineralogy of the Apollo 12 landing site has been the subject of recent studies that this research attempts to complement from a remote sensing point of view using the Moon Mineralogy Mapper (M3) sensor data, onboard the Chandrayaan-1 lunar orbiter. It is a higher spatial-spectral resolution sensor than the Clementine UVVis sensor and gives the opportunity to study the lunar surface with a comparatively more detailed spectral resolution. We used ISIS and GRASS GIS to study the M3 data. The M3 signatures are showing a monotonic featureless increment, with very low reflectance, suggesting a mature regolith. The regolith maturity is splitting the landing site in a younger Northwest and older Southeast. The mineral identification using the lunar sample spectra from within the Relab database found some similarity to a basaltic rock/glass mix. The spectrum features of clinopyroxene have been found in the Copernican rays and at the landing site. Lateral mixing increases FeO content away from the central part of the ray. The presence of clinopyroxene in the pigeonite basalt in the stratigraphy of the landing site brings forth some complexity in differentiating the Copernican ray’s clinopyroxene from the local source, as the spectra are twins but for their vertical shift in reflectance, reducing away from the central part of the ray. Spatial variations in mineralogy were not found mostly because of the pixel size compared to the landing site area. -
Science Concept 5: Lunar Volcanism Provides a Window Into the Thermal and Compositional Evolution of the Moon
Science Concept 5: Lunar Volcanism Provides a Window into the Thermal and Compositional Evolution of the Moon Science Concept 5: Lunar volcanism provides a window into the thermal and compositional evolution of the Moon Science Goals: a. Determine the origin and variability of lunar basalts. b. Determine the age of the youngest and oldest mare basalts. c. Determine the compositional range and extent of lunar pyroclastic deposits. d. Determine the flux of lunar volcanism and its evolution through space and time. INTRODUCTION Features of Lunar Volcanism The most prominent volcanic features on the lunar surface are the low albedo mare regions, which cover approximately 17% of the lunar surface (Fig. 5.1). Mare regions are generally considered to be made up of flood basalts, which are the product of highly voluminous basaltic volcanism. On the Moon, such flood basalts typically fill topographically-low impact basins up to 2000 m below the global mean elevation (Wilhelms, 1987). The mare regions are asymmetrically distributed on the lunar surface and cover about 33% of the nearside and only ~3% of the far-side (Wilhelms, 1987). Other volcanic surface features include pyroclastic deposits, domes, and rilles. These features occur on a much smaller scale than the mare flood basalts, but are no less important in understanding lunar volcanism and the internal evolution of the Moon. Table 5.1 outlines different types of volcanic features and their interpreted formational processes. TABLE 5.1 Lunar Volcanic Features Volcanic Feature Interpreted Process -
Workshop on Moon in Transition: Apollo 14, Kreep, and Evolved Lunar Rocks
WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS (NASA-CR-I"'-- N90-I_02o rRAN31TION: APJLLN l_p KRFEP, ANu _VOLVFD LUNAR ROCKS (Lunar and Pl_net3ry !nst.) I_7 p C_CL O3B Unclas G3/91 0253133 LPI Technical Report Number 89-03 UNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON, TEXAS 77058-4399 7 WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS Edited by G. J. Taylor and P. H. Warren Sponsored by Lunar and Planetary Institute NASA Johnson Space Center November 14-16, 1988 Houston, Texas Lunar and Planetary Institute 330 ?_NASA Road 1 Houston, Texas 77058-4399 LPI Technical Report Number 89-03 Compiled in 1989 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4066 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for Library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Taylor G. J. and Warren PI H., eds. (1989) Workshop on Moon in Transition: Apo{l_ 14 KREEP, and Evolved Lunar Rocks. [PI Tech. Rpt. 89-03. Lunar and Planetary Institute, Houston. 156 pp. Papers in this report may be cited as: Author A. A. (1989) Title of paper. In W_nkshop on Moon in Transition: Ap_llo 14, KREEP, and Evolved Lunar Rocks (G. J. Taylor and P. H. Warren, eds.), pp. xx-yy. LPI Tech. Rpt. -
Complex Explosive Volcanic Activity on the Moon Within Oppenheimer Crater
Icarus 273 (2016) 296–314 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Complex explosive volcanic activity on the Moon within Oppenheimer crater ∗ Kristen A. Bennett a, ,BrionyH.N. Horgan b, Lisa R. Gaddis c, Benjamin T. Greenhagen d, Carlton C. Allen e,PaulO. Hayne f, James F. Bell III a, David A. Paige g a School of Earth and Space Exploration, Arizona State University. ISTB4 Room 795, 781 Terrace Mall, Tempe AZ 85287, United States b Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States c Astrogeology Science Center, U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, AZ 86001, United States d Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723, United States e NASA Johnson Space Center, Emeritus, 2101 NASA Road 1, Houston, TX 77058, United States f NASA Jet Propulsion Laboratory, 4800 Oak Grove Dr, Pasadena, CA 91109, United States g Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles E Young Dr E, Los Angeles, CA 90095, United States a r t i c l e i n f o a b s t r a c t Article history: Oppenheimer crater is a floor-fractured crater located within the South Pole–Aitken basin on the Moon, Received 27 July 2015 and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized Revised 10 December 2015 pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian Accepted 3 February 2016 eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining Available online 10 February 2016 inferred to form larger regional deposits. -
GRAIL-Identified Gravity Anomalies In
Solar System Exploration Division, GSFC Code 690 GRAIL-identified gravity anomalies in Oceanus Procellarum: Insight into subsurface impact and volcanic/magmatic structures on the Moon Ariel N. Deutsch1, Gregory A. Neumann2, James W. Head1 1Department of Earth, Environmental and Planetary Sciences, Brown University, 2NASA Goddard Space Flight Center Introduction: Lunar gravity anomalies. Positive Bouguer gravity anomalies. • Four distinctive positive Bouguer gravity anomalies are • Previous work has suggested that these four positive gravity anomalies may be due to: -Subsurface volcanic sills [2]. • New, higher-resolution GRAIL data [3] allow for the re- analysis of these anomalies. • Understanding the subsurface density structures that contribute to these anomalies is important in order to discuss regional impact and volcanic histories, and the evolution of the lunar crust in Oceanus Procellarum. Objectives. 1. Constrain subsurface structures that contribute to the . four positive Bouguer gravity anomalies. 2. Discuss the hidden impact and volcanic histories of . the Moon. Methods. Results: Filled and buried impact craters. RESULTS: MANTLE UPWELLING • Six geologic end-member scenarios are explored to 20 200 1. Filled and Buried Impact 2. Southern Aristarchus Plateau analyze the four observed gravitational anomalies. 15 Model 3 10 GRAIL 100 • Impact crater parameters [e.g., 4] are estimated to C Gravity 5 B from uplift Gravity from A 0 0 km -3 km km ρ = 3150 kg m -5 mGal mGal • Analyses of the generation, ascent, and eruption of -3 mGal ρ = 2800 kg m crater -10 Surface topography -100 -3 of subsurface magmatic structures and also the . -15 ∆ρ = 600 kg m Highland crust -20 -200 Mantle interpretation of surface volcanic features. -
Water on the Moon, III. Volatiles & Activity
Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere). -
Lunar and Planetary Science XXXII (2001) 1815.Pdf
Lunar and Planetary Science XXXII (2001) 1815.pdf NEW AGE DETERMINATIONS OF LUNAR MARE BASALTS IN MARE COGNITUM, MARE NUBIUM, OCEANUS PROCELLARUM, AND OTHER NEARSIDE MARE H. Hiesinger1, J. W. Head III1, U. Wolf2, G. Neukum2 1 Department of Geological Sciences, Brown University, Providence, RI 02912, [email protected] 2 DLR-Inst. of Planetary Exploration, Rutherfordstr. 2, 12489 Berlin/Germany Introduction see a second small peak in volcanic activity at ~2-2.2 Lunar mare basalts cover about 17% of the lunar b.y. surface [1]. A significant portion of lunar mare basalts are exposed within Oceanus Procellarum for which Oceanus Procellarum, Mare Cognitum, Mare Nubium absolute radiometric age data are still lacking. Here we (Binned Ages of Mare Basalts) present age data that are based on remote sensing 20 techniques, that is, crater counts. We performed new crater size-frequency distribution measurements for spectrally homogeneous basalt units in Mare Cogni- 15 tum, Mare Nubium, and Oceanus Procellarum. The investigated area was previously mapped by Whitford- Stark and Head [2] who, based on morphology and 10 spectral characteristics, defined 21 distinctive basalt Frequency types in this part of the lunar nearside. Based on a high-resolution Clementine color ratio composite (e.g., 5 750-400/750+400 ratio as red, 750/990 ratio as green, and 400/750 ratio as blue), we remapped the distribu- 0 tion of distinctive basalts and found that their map well 1.1 1.5 2 2.5 3 3.5 4 discriminates the major basalt types. However, based Age [b.y.; bins of 100 m.y.] on the new high-resolution color data several of their units can be further subdivided into spectrally different Fig. -
Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples. -
Project Xpedition Is the Product of Purdue University‟S Aeronautical and Astronautical Engineering Department Senior Spacecraft Design Class in the Spring of 2009
92 Project Xpedition Purdue University AAE 450 Spacecraft Design Spring 2009 Contents 1 – FOREWORD ........................................................................................................................................... 5 2 – INTRODUCTION ................................................................................................................................... 7 2.1 – BACKGROUND .................................................................................................................................... 7 2.2 – WHAT‟S IN THIS REPORT? .................................................................................................................. 9 2.3 – ACKNOWLEDGEMENTS .....................................................................................................................10 2.4 – ACRONYM LIST .................................................................................................................................12 3 – PROJECT OVERVIEW ....................................................................................................................... 14 3.1 – DESIGN REQUIREMENTS ...................................................................................................................14 3.2 – INTERPRETATION OF DESIGN REQUIREMENTS ...................................................................................18 3.3 – DESIGN PROCESS ..............................................................................................................................19 3.4 – RISK