Genome‑Wide Rnai Screen Identify Melanoma‑Associated Antigen Mageb3 Involved in X Chromosome Inactivation

Total Page:16

File Type:pdf, Size:1020Kb

Genome‑Wide Rnai Screen Identify Melanoma‑Associated Antigen Mageb3 Involved in X Chromosome Inactivation This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Genome‑wide RNAi screen identify melanoma‑associated antigen Mageb3 involved in X chromosome inactivation Li, Wei; Hong, Ru; Lai, Lan‑Tian; Dong, Qiman; Ni, Peiling; Chelliah, Rosi; Huq, Mehnaz; Siti Nadirah Ismail; Chandola, Udita; Ang, Zhiwei; Lin, Bingqing; Chen, Xin; Chen, Lingyi; Zhang, Li‑Feng 2018 Li, W., Hong, R., Lai, L.‑T., Dong, Q., Ni, P., Chelliah, R., . Zhang, L.‑F. (2018). Genome‑wide RNAi screen identify melanoma‑associated antigen Mageb3 involved in X chromosome inactivation. Journal of Molecular Biology, 430(17), 2734‑2746. doi:10.1016/j.jmb.2018.05.031 https://hdl.handle.net/10356/139663 https://doi.org/10.1016/j.jmb.2018.05.031 © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY‑NC‑ND license (http://creativecommons.org/licenses/by‑nc‑nd/4.0/). Downloaded on 01 Oct 2021 00:29:58 SGT Article Genome-Wide RNAi Screen Identify Melanoma-Associated Antigen Mageb3 Involved in X Chromosome Inactivation Wei Li 1,†, Ru Hong 1,†, Lan-Tian Lai 1, Qiman Dong 3, Peiling Ni 3, Rosi Chelliah 1, Mehnaz Huq 1, Siti Nadirah Binte Ismail 1, Udita Chandola 1, Zhiwei Ang 1, Bingqing Lin 1, Xin Chen 2, Lingyi Chen 3 and Li-Feng Zhang 1 1 - School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 2 - State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Tianjin Key Laboratory of Protein Sciences and College of Life Sciences, Nankai University, Tianjin 300071, China 3 - Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 Correspondence to Lingyi Chen and Li-Feng Zhang: [email protected]; [email protected] https://doi.org/10.1016/j.jmb.2018.05.031 Edited by M Yaniv Abstract Xist (inactivated X chromosome specific transcript) is a prototype long noncoding RNA in charge of epigenetic silencing of one X chromosome in each female cell in mammals. In a genetic screen, we identify Mageb3 and its homologs Mageb1 and Mageb2 as genes functionally required for Xist-mediated gene silencing. Mageb1–3 are previously uncharacterized genes belonging to the MAGE (melanoma-associated antigen) gene family. Mageb1–3 are expressed in undifferentiated ES cells and early stages of in vitro differentiation, a critical time window of X chromosome inactivation. Mageb3 showed both cytoplasmic and nuclear localization without enrichment on the inactive X (Xi). Mageb3 interacted with Polycomb group ring finger 3 (Pcgf3), a RING finger protein involved in recruiting Polycomb activities onto Xi. Mageb3 overexpression stabilized Pcgf3 protein. Mageb1–3 gene knockout affected H3K27me3 enrichment and the spreading of gene silencing along Xi. These data suggested that Mageb3 might regulate the recruitment of the Polycomb complex onto Xi and subsequent H3K27me3 modification through Pcgf3. Moreover, the nucleolar enrichment of Mageb3 was diminished when nuclear matrix factor hnRNP U is overexpressed, implying the interaction between Mageb3 and nuclear matrix, which is another possible mechanism for Mageb3 to regulate X chromosome inactivation. © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Introduction However, acting as a recruiter, Xist must work together with other factors to achieve XCI. Currently, a few Xist (inactivated X chromosome specific transcript) epigenetic modifications along the inactive X chromo- RNA is a well-known long noncoding RNA (lncRNA) some (Xi) are known to be associated with Xist, involved in X chromosome inactivation (XCI), a dosage including histone modification such as H3K27me3 compensation mechanism of mammals, whereby one and histone variant such as macroH2A. However, X chromosome in each female cell is epigenetically genetic studies show that none of them are essential for silenced to balance the X-linked gene dosage between XCI [2].WhenXist is conditionally deleted from somatic males and females [1]. At the onset of XCI (~E5.5 cells in which XCI has been fully established, all the mouse embryos), the X-linked Xist gene becomes known Xist-associated epigenetic modifications are allele specifically expressed from one X and the RNA removed together with Xist, but XCI remains largely transcripts coat chromosome territory in cis recruiting intact [2]. These results indicate the existence of other epigenetic factors to establish the chromosome- unknown epigenetic factors or mechanisms, which wide gene silencing [1]. Xist expression triggers XCI. are recruited or established by Xist RNA during early 0022-2836/© 2018 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). J Mol Biol (2018) 430, 2734–2746 Mageb3 is involved in X chromosome inactivation 2735 embryonic development and functionally essential for common backbone sequence of the lentiviral vector to XCI. Intensive effort of isolating Xist-binding proteins amplify the shRNA sequences. Each PCR product was identified Spen [3–5], which brings histone deacetylase sequenced independently. Thirteen candidate genes activity onto the Xi. Experimental evidence shows Spen werecommonlyfoundinall6PCRsamples(Fig. 1f) is required in XCI during in vitro differentiation of including tumor suppressor P53, which is consistent embryonic stem cells (ES cells) [4–7]. However, Spen with the design of the genetic screen. One hundred is not specifically expressed in early embryonic tissues thirty-four shRNAs can be commonly found in all three [8]. The essential role of Spen in XCI is not fully rounds of genetic screen (Supplementary Table 1). supported by the mutant phenotype of Spen knockout Unfortunately, we did not identify any known XCI factor mouse embryos [8]. in the screening results, which may relate with the quality of individual shRNAs in the library or the sensitivity of cells to the dosage change of an individual Results gene (shRNAs are not able to completely knockout a gene). From these data and three rounds of pilot screen To search for novel genes involved in XCI, we carried (data not shown), we selected, validated using the cell out a genetic screen using a genome-wide short hairpin survival assay and ruled out 52 individual shRNAs RNA (shRNA) library. A male ES cell line with an (Supplementary Table 2). Furthermore, we validated inducible Xist transgene (iXist) was established for the using the cell survival assay and ruled out 6 candidate genetic screen. iXist was established from Ainv15 cells, genes using the CRISPR/Cas9 approach (Supplemen- a male mouse ES cell line carrying an engineered tary Table 3, Supplementary Fig. 2). From the 13 cassette upstream of the X-linked hypoxanthine candidate genes, which were commonly found in all 6 guanine phosphoribosyl transferase (Hprt) gene PCR samples (Fig. 1f), Mageb3 was successfully (Fig. 1a). Through Cre-mediated gene targeting, a validated as a gene functionally important for XCI full-length Xist transgene including its polyA signal was (Figs. 1fand2). inserted downstream of the tetracycline response To validate Mageb3, we knocked out the gene in iXist element of Ainv15 cells, restoring the neomycin (iXist-KO1) using CRISPR/Cas9 with a nucleotide oligo resistance (Fig. 1a). Moreover, a red fluorescent protein as the repair template. The mutated Mageb3 allele (tdTomato) was included as a reporter gene (Fig. 1a). contains a premature stop codon 3 bp downstream of Both neomycin resistance and tdTmomato could be the gene's start codon (Fig. 2a). A HindIII restriction site used as reporters to indicate status of XCI. The cell was created for the genotyping purpose (Fig. 2a). line's genotype was confirmed by polymerase chain Moreover, a reading-frame shift was left in the rest of reaction (PCR; Supplementary Fig. 1a) and DNA thecodingregion(Fig. 2a). The Mageb3 (−/−) fluorescence in situ hybridization (FISH) (Fig. 1b). Its genotype of iXist-KO1 cells was confirmed by HindIII karyotype was confirmed as 40XY (Supplementary digestion and DNA sequencing (Supplementary Fig. 1c). Induced Xist RNA transcripts coated (Fig. 1c) Fig. 3). Mageb3 is highly homologous with two other thesingleXchromosomeinthe male cells and silenced genes (Mageb1 and Mageb2) in the gene family its genes (Supplementary Fig. 1b) causing cell growth (Supplementary Fig. 5). In the mouse genome, retardation and cell death (Fig. 1d). Although induced Mageb1 and Mageb2 are X-linked genes encoding Xist expression resulted in XCI in both undifferentiated identical proteins [9] (Supplementary Fig. 5) and and differentiating cells, the killing effect of induced XCI Mageb3 is located on chromosome 2 (Fig. 2b). The is significantly stronger in differentiating cells in the sequence of the shRNA clone (TRCN0000112714) presence of geneticin (G418) (Supplementary Fig. 1b). cannot distinguish the three genes, although the target We established a protocol (Fig. 1e) whereby more than oftheshRNAcloneislistedasMageb3 in the shRNA 99% of the iXist cells were killed by induced XCI in the library design. In this study, for genotyping PCR and presence of G418 (Fig. 1d) and applied this protocol to allele-specific reverse transcription PCR (RT-PCR), three independent rounds of genetic screen using a allele-specific primers could only be designed to pooled lentiviral shRNA library. The genomic DNA distinguish Mageb3 from Mageb1 and Mageb2. We isolated from the surviving cells of each round of screen coin the term Mageb1–3 referring to all three genes and was subjected to PCR reactions in duplicate using the the term “Mageb1&2” to discuss the experimental Fig. 1. The genetic screen. (a) iXist, the transgenic male mouse ES cell line engineered for the genetic screen. (b) DNA FISH on a metaphase chromosome spread of an iXist cell. DNA was stained by DAPI (blue). Chromosome X was detected by a Cy3-labeled chromosome paint (red).
Recommended publications
  • Network Assessment of Demethylation Treatment in Melanoma: Differential Transcriptome-Methylome and Antigen Profile Signatures
    RESEARCH ARTICLE Network assessment of demethylation treatment in melanoma: Differential transcriptome-methylome and antigen profile signatures Zhijie Jiang1☯, Caterina Cinti2☯, Monia Taranta2, Elisabetta Mattioli3,4, Elisa Schena3,5, Sakshi Singh2, Rimpi Khurana1, Giovanna Lattanzi3,4, Nicholas F. Tsinoremas1,6, 1 Enrico CapobiancoID * a1111111111 1 Center for Computational Science, University of Miami, Miami, FL, United States of America, 2 Institute of Clinical Physiology, CNR, Siena, Italy, 3 CNR Institute of Molecular Genetics, Bologna, Italy, 4 IRCCS Rizzoli a1111111111 Orthopedic Institute, Bologna, Italy, 5 Endocrinology Unit, Department of Medical & Surgical Sciences, Alma a1111111111 Mater Studiorum University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy, 6 Department of a1111111111 Medicine, University of Miami, Miami, FL, United States of America a1111111111 ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Abstract Citation: Jiang Z, Cinti C, Taranta M, Mattioli E, Schena E, Singh S, et al. (2018) Network assessment of demethylation treatment in Background melanoma: Differential transcriptome-methylome and antigen profile signatures. PLoS ONE 13(11): In melanoma, like in other cancers, both genetic alterations and epigenetic underlie the met- e0206686. https://doi.org/10.1371/journal. astatic process. These effects are usually measured by changes in both methylome and pone.0206686 transcriptome profiles, whose cross-correlation remains uncertain. We aimed to assess at Editor: Roger Chammas, Universidade de Sao systems scale the significance of epigenetic treatment in melanoma cells with different met- Paulo, BRAZIL astatic potential. Received: June 20, 2018 Accepted: October 17, 2018 Methods and findings Published: November 28, 2018 Treatment by DAC demethylation with 5-Aza-2'-deoxycytidine of two melanoma cell lines Copyright: © 2018 Jiang et al.
    [Show full text]
  • 1 a Search for Novel Cancer/Testis Antigens in Lung Cancer Identifies
    Author Manuscript Published OnlineFirst on June 26, 2014; DOI: 10.1158/0008-5472.CAN-13-3725 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. A search for novel cancer/testis antigens in lung cancer identifies VCX/Y genes expanding the repertoire of potential immunotherapeutic targets Ayumu Taguchi1*, Allen D. Taylor2, Jaime Rodriguez1, Müge Çeliktaş3, Hui Liu1, Xiaotu Ma4, Qing Zhang2, Chee-Hong Wong2, Alice Chin2, Luc Girard5,6, Carmen Behrens7, Wan L. Lam8, Stephen Lam8, John D. Minna5,6,9, Ignacio I. Wistuba1, Adi F. Gazdar5,10, and Samir M. Hanash3 1Departments of Translational Molecular Pathology, 3Clinical Cancer Prevention, and 7Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA 2Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N., Seattle, WA 98109, USA 4Department of Molecular and Cell Biology, Center for Systems Biology, The University of Texas Southwestern Medical Center at Dallas, 800 W. Campbell Road, Dallas, TX 75080, USA 5Hamon Center for Therapeutic Oncology Research and Departments of 6Pharmacology, 9Internal Medicine, and 10Pathology, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390, USA 8Department of Integrative Oncology, British Columbia Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V521L3, Canada Corresponding Author: *Correspondence should be addressed to Ayumu Taguchi, Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; email: [email protected]; fax: 713-563-5746; phone: 713-563-8069. 1 Downloaded from cancerres.aacrjournals.org on September 24, 2021.
    [Show full text]
  • MAGEB2 (NM 002364) Human Tagged ORF Clone – RG205338
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG205338 MAGEB2 (NM_002364) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: MAGEB2 (NM_002364) Human Tagged ORF Clone Tag: TurboGFP Symbol: MAGEB2 Synonyms: CT3.2; DAM6; MAGE-XP-2 Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RG205338 representing NM_002364 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGCCTCGTGGTCAGAAGAGTAAGCTCCGTGCCCGTGAGAAACGCCGCAAGGCCCGAGATGAGACCCGGG GTCTCAATGTTCCTCAGGTCACTGAAGCAGAGGAAGAAGAGGCCCCCTGCTGTTCCTCTTCTGTTTCTGG GGGTGCTGCTTCAAGCTCTCCTGCTGCTGGCATTCCCCAGAAGCCTCAGAGAGCCCCAACCACTGCCGCT GCTGCAGCTGCGGGTGTTTCATCCACAAAATCTAAAAAAGGTGCCAAGAGCCACCAAGGTGAGAAAAATG CAAGTTCCTCCCAGGCCTCAACATCTACTAAGAGCCCAAGCGAAGATCCTCTAACCAGGAAGTCAGGGTC GTTGGTGCAGTTCCTGTTGTACAAGTATAAAATAAAAAAGTCCGTTACAAAGGGAGAAATGCTGAAAATT GTTGGCAAAAGGTTCAGGGAGCACTTCCCTGAGATCCTCAAGAAAGCCTCTGAGGGCCTCAGTGTTGTCT TTGGCCTTGAGCTGAATAAAGTCAACCCCAACGGCCACACTTACACCTTCATCGACAAGGTAGACCTCAC TGATGAGGAATCCCTGCTCAGTTCCTGGGACTTTCCCAGGAGAAAGCTTCTGATGCCTCTCCTGGGTGTG ATCTTCTTAAATGGCAACTCAGCTACTGAGGAAGAGATCTGGGAATTCCTGAATATGTTGGGAGTCTATG ATGGAGAGGAGCACTCAGTCTTTGGGGAACCCTGGAAGCTCATCACCAAAGATCTGGTGCAGGAAAAATA TCTGGAGTACAAGCAGGTGCCCAGCAGTGATCCCCCACGCTTTCAATTCCTGTGGGGTCCGAGAGCCTAT GCTGAAACCAGCAAGATGAAAGTCCTGGAGTTTTTGGCCAAGGTAAATGGTACCACCCCCTGTGCCTTCC
    [Show full text]
  • THAT ARE NOT ALLOKULUNUTTUUS009816094B2 (12 ) United States Patent ( 10) Patent No
    THAT ARE NOT ALLOKULUNUTTUUS009816094B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,816 , 094 B2 Lee et al. (45 ) Date of Patent: * Nov . 14 , 2017 ( 54 ) POLYCOMB- ASSOCIATED NON -CODING ( 2013 .01 ) ; C12Q 2600 / 136 (2013 . 01 ) ; C12Q RNAS 2600/ 158 ( 2013 . 01 ) ; C12Q 2600 /178 (2013 .01 ) (71 ) Applicant : The General Hospital Corporation , ( 58 ) Field of Classification Search Boston , MA (US ) None See application file for complete search history. (72 ) Inventors : Jeannie T . Lee , Cambridge, MA (US ) ; Jing Zhao , San Diego , CA (US ) ; (56 ) References Cited Kavitha Sarma, Waltham , MA (US ) ; Mark Borowsky , Needham , MA (US ) ; U . S . PATENT DOCUMENTS Toshiro Kendrick Ohsumi, Cambridge , 5 ,491 , 133 A 2 / 1996 Walder et al. MA (US ) 5 , 576 , 208 A 11 / 1996 Monia et al. 5 ,623 , 065 A 4 / 1997 Cook et al . ( 73 ) Assignee : The General Hospital Corporation , 5 ,652 , 355 A 7 / 1997 Metelev et al. 5 ,661 , 134 A 8 / 1997 Cook et al. Boston , MA (US ) 5 ,914 , 396 A 6 / 1999 Cook et al . 5 ,919 ,619 A 7 / 1999 Tullis ( * ) Notice : Subject to any disclaimer , the term of this 5 , 965 , 722 A 10 / 1999 Ecker et al. patent is extended or adjusted under 35 5 , 976 ,879 A 11/ 1999 Kole et al. U . S . C . 154 (b ) by 0 days. 6 ,015 , 710 A 1 / 2000 Shay et al . 6 ,040 , 142 A 3 / 2000 Melki et al. This patent is subject to a terminal dis 6 ,046 , 307 A 4 / 2000 Shay et al . claimer . 6 ,080 , 577 A 6 / 2000 Melki et al .
    [Show full text]
  • MAGE Proteins and the Regulation of E2F Pathway
    Central JSM Clinical Oncology and Research Case Report *Corresponding author Martin Monte, Departamento de Química Bi¬ológica, Facultad de Ciencias Exac¬tas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, MAGE Proteins and the C1428EHA Ciudad de Buenos Aires, Argentina, Tel: 541145763300; Email: Regulation of E2F Pathway Submitted: 04 April 2017 Accepted: 06 April 2017 1,2 1,2 Ladelfa M Fatima and Monte Martin * Published: 08 April 2017 1 Departamento de Química Biológica, Universidad de Buenos Aires, Argentina Copyright 2CONICET – Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad © 2017 Martin et al. de Ciencias Exactas y Naturales (IQUIBICEN), Argentina OPEN ACCESS Abstract Keywords Melanoma Antigens Genes (MAGE) constitutes a mutagenic family divided in two • MAGE subfamilies, MAGE-I and MAGE-II, according to its tissue pattern expression. While • Transcription factors MAGE-I in adult humans are only expressed in testis and tumors tissues, those belonging • E2F1 to MAGE-II subfamily are ubiquitously expressed. During the last decade, functional characterization of MAGE proteins points to a role in transcription regulation. E2F1 is a member of the E2F family and is among the transcription factors reported to be modulated by MAGE proteins. In this article we will focus on reported cases of E2F1 modulation by members of MAGE-I and MAGE-II subfamilies and the resulting biological consequences observed in normal and tumor cells. ABBREVIATIONS MAGE: Melanoma Antigens Genes; CDKs: Cyclin/Cyclin- proteins were, at the beginning, mainly studied as possible Dependent Kinases; AR: Androgen Receptor; E1A: Human antigens for cancer vaccines or as diagnostic and prognostic Adenoviral Early Region Protein E1A; HDM2: Human Double markers of cancer [4-6].
    [Show full text]
  • Ing1 Functions in DNA Demethylation by Directing Gadd45a to H3k4me3
    Downloaded from genesdev.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Ing1 functions in DNA demethylation by directing Gadd45a to H3K4me3 Andrea Scha¨fer,1,3 Emil Karaulanov,1 Ulrike Stapf,1 Gabi Do¨ derlein,2 and Christof Niehrs1,2,3 1Institute of Molecular Biology, 55128 Mainz, Germany; 2Division of Molecular Embryology, DKFZ-ZMBH Alliance, German Cancer Research Center, 69120 Heidelberg, Germany Active DNA demethylation regulates epigenetic gene activation in numerous processes, but how the target site specificity of DNA demethylation is determined and what factors are involved are still poorly understood. Here we show that the tumor suppressor inhibitor of growth protein 1 (Ing1) is required for targeting active DNA demethylation. Ing1 functions by recruiting the regulator of DNA demethylation growth arrest and DNA damage protein 45a (Gadd45a) to histone H3 trimethylated at Lys 4 (H3K4me3). We show that reduced H3K4 methylation impairs recruitment of Gadd45a/Ing1 and gene-specific DNA demethylation. Our results indicate that histone methylation directs DNA demethylation. [Keywords: p33Ing1b; Gadd45a; Ing1; DNA demethylation; H3K4me3; chromatin] Supplemental material is available for this article. Received January 9, 2012; revised version accepted December 26, 2012. DNA methylation at 5-methylcytosine (5mC) of CpGs 1994). Gadd45 proteins are multifunctional and regulate is a common epigenetic mark in metazoa, which plays a range of cellular processes, including DNA repair, pro- important roles in regulating gene expression, genomic liferation, apoptosis, and differentiation (Fornace et al. imprinting, X-chromosome inactivation, genomic insta- 1988; Kastan et al. 1992; Smith et al. 1996; Carrier et al. bility, embryonic development, and cancer (Costello and 1999; Harkin et al.
    [Show full text]
  • Characterization of X-Linked SNP Genotypic Variation in Globally Distributed Human Populations Genome Biology 2010, 11:R10
    Casto et al. Genome Biology 2010, 11:R10 http://genomebiology.com/2010/11/1/R10 RESEARCH Open Access CharacterizationResearch of X-Linked SNP genotypic variation in globally distributed human populations Amanda M Casto*1, Jun Z Li2, Devin Absher3, Richard Myers3, Sohini Ramachandran4 and Marcus W Feldman5 HumanAnhumanulation analysis structurepopulationsX-linked of X-linked variationand provides de geneticmographic insights variation patterns. into in pop- Abstract Background: The transmission pattern of the human X chromosome reduces its population size relative to the autosomes, subjects it to disproportionate influence by female demography, and leaves X-linked mutations exposed to selection in males. As a result, the analysis of X-linked genomic variation can provide insights into the influence of demography and selection on the human genome. Here we characterize the genomic variation represented by 16,297 X-linked SNPs genotyped in the CEPH human genome diversity project samples. Results: We found that X chromosomes tend to be more differentiated between human populations than autosomes, with several notable exceptions. Comparisons between genetically distant populations also showed an excess of X- linked SNPs with large allele frequency differences. Combining information about these SNPs with results from tests designed to detect selective sweeps, we identified two regions that were clear outliers from the rest of the X chromosome for haplotype structure and allele frequency distribution. We were also able to more precisely define the geographical extent of some previously described X-linked selective sweeps. Conclusions: The relationship between male and female demographic histories is likely to be complex as evidence supporting different conclusions can be found in the same dataset.
    [Show full text]
  • MAGE-A Inhibit Apoptosis and Promote Proliferation in Multiple Myeloma Through Regulation of BIM and P21cip1
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 7), pp: 727-739 Research Paper MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21Cip1 Anna Huo-Chang Mei1, Kaity Tung1, Jessie Han1, Deepak Perumal1, Alessandro Laganà2,3, Jonathan Keats4, Daniel Auclair5, Ajai Chari1, Sundar Jagannath1, Samir Parekh1 and Hearn Jay Cho1,5 1Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA 2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA 3Institute for Next Generation Healthcare, Icahn School of Medicine at Mt. Sinai, New York, NY, USA 4Translational Genomics Research Institute, Phoenix, AZ, USA 5The Multiple Myeloma Research Foundation, Norwalk, CT, USA Correspondence to: Hearn Jay Cho, email: [email protected] Keywords: MAGE-A3; multiple myeloma; apoptosis; cell cycle regulation; DNA repair Received: July 18, 2019 Accepted: January 29, 2020 Published: February 18, 2020 Copyright: Mei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The type I Melanoma Antigen Gene (MAGE) A3 is a functional target associated with survival and proliferation in multiple myeloma (MM). To investigate the mechanisms of these oncogenic functions, we performed gene expression profiling (GEP) of p53 wild- type human myeloma cell lines (HMCL) after MAGE-A knockdown, which identified a set of 201 differentially expressed genes (DEG) associated with apoptosis, DNA repair, and cell cycle regulation.
    [Show full text]
  • An Integrated Genome-Wide Approach to Discover Tumor- Specific Antigens As Potential Immunologic and Clinical Targets in Cancer
    Published OnlineFirst November 7, 2012; DOI: 10.1158/0008-5472.CAN-12-1656 Cancer Integrated Systems and Technologies Research An Integrated Genome-Wide Approach to Discover Tumor- Specific Antigens as Potential Immunologic and Clinical Targets in Cancer Qing-Wen Xu1, Wei Zhao1, Yue Wang8,9, Maureen A. Sartor11, Dong-Mei Han2, Jixin Deng10, Rakesh Ponnala8,9, Jiang-Ying Yang3, Qing-Yun Zhang3, Guo-Qing Liao4, Yi-Mei Qu4,LuLi5, Fang-Fang Liu6, Hong-Mei Zhao7, Yan-Hui Yin1, Wei-Feng Chen1,†, Yu Zhang1, and Xiao-Song Wang8,9 Abstract Tumor-specific antigens (TSA) are central elements in the immune control of cancers. To systematically explore the TSA genome, we developed a computational technology called heterogeneous expression profile analysis (HEPA), which can identify genes relatively uniquely expressed in cancer cells in contrast to normal somatic tissues. Rating human genes by their HEPA score enriched for clinically useful TSA genes, nominating candidate targets whose tumor-specific expression was verified by reverse transcription PCR (RT-PCR). Coupled with HEPA, we designed a novel assay termed protein A/G–based reverse serological evaluation (PARSE) for quick detection of serum autoantibodies against an array of putative TSA genes. Remarkably, highly tumor-specific autoantibody responses against seven candidate targets were detected in 4% to 11% of patients, resulting in distinctive autoantibody signatures in lung and stomach cancers. Interrogation of a larger cohort of 149 patients and 123 healthy individuals validated the predictive value of the autoantibody signature for lung cancer. Together, our results establish an integrated technology to uncover a cancer-specific antigen genome offering a reservoir of novel immunologic and clinical targets.
    [Show full text]
  • A Comprehensive Analysis of the MAGE Family As Prognostic and Diagnostic Markers for Hepatocellular Carcinoma
    A Comprehensive Analysis of the MAGE Family as Prognostic and Diagnostic Markers for Hepatocellular Carcinoma Rong Li Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong province engineering laboratory for transplantation medicine, Third Aliated Hospital of Sun Yat-sen University Jiao Gong Department of Laboratory Medicine, Third Aliated Hospital of Sun Yat-sen University Cuicui Xiao Department of Anesthesiology, Cell-Gene therapy Translational Medicine Research Center, Third Aliated Hospital of Sun Yat-sen University Shuguang Zhu Department of Hepatic Surgery and Liver Transplantation Center, The Third Aliated Hospital of Sun Yat-sen University Zhongying Hu Guangdong provincial Key Laboratory of Liver Disease Research, Third Aliated Hospital of Sun Yat- sen University Jinliang Liang Guangdong Provincial Key Laboratory of Liver Disease Research, Third Aliated Hospital of Sun Yat- sen University Xuejiao Li Guangdong Provincial Key Laboratory of Liver Disease Research, Third Aliated Hospital of Sun Yat- sen University Xijing Yan Department of Hepatic Surgery and Liver Transplantation Center, Third Aliated Hospital of Sun Yat-sen University Xijian Zhang Department of Hepatic Surgery and Liver Transplantation Center, Third Aliated Hospital of Sun Yat-sen University Danyang Li Department of Infectious Diseases, Third Aliated Hospital of Sun Yat-sen University Wei Liu Guangdong Provincial Key Laboratory of Liver Disease Research, Guangdong province engineering laboratory for transplantation medicine, Third Aliated Hospital
    [Show full text]
  • Accurate Mutation Annotation and Functional Prediction Enhance the Applicability of -Omics Data in Precision Medicine
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 5-2016 Accurate mutation annotation and functional prediction enhance the applicability of -omics data in precision medicine Tenghui Chen Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, Genomics Commons, and the Medicine and Health Sciences Commons Recommended Citation Chen, Tenghui, "Accurate mutation annotation and functional prediction enhance the applicability of -omics data in precision medicine" (2016). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 666. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/666 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. ACCURATE MUTATION ANNOTATION AND FUNCTIONAL PREDICTION
    [Show full text]
  • STARR-Seq Enterprise
    RESEARCH HIGHLIGHTS FOCUS ON EPIGENETIC DYNAMICS Window of opportunity STARR-seq enterprise The transcription factor hunch- Transcriptional enhancers are key determinants of cellular differentiation back (Hb) specifies early-born- and development, but the fact that they function in a position-­independent neuron identity within embryonic and cell type–specific manner often complicates their identification. Now, neural progenitor (neuroblast) lin- Stark and colleagues describe a reporter-based strategy that takes full eages in Drosophila ­melanogaster. advantage of the position-independent nature of enhancer function to Transcription of the hb gene is generate a quantitative genomic map of enhancer activity in Drosophila active only during the first two cells. In their STARR-seq (self-transcribing active regulatory region neuroblast cell divisions. Yet, sequencing) approach, candidate sequences are cloned downstream of neuroblasts maintain the ­capacity a minimal promoter, such that enhancers will stimulate their own tran- to induce early-born, so-called U1 and U2 neurons in the presence scription. Enhancer strength is thus reflected by the relative abundance of of ­ectopic Hb for another three divisions, after which they no longer enhancer transcripts. STARR-seq analysis of a fly genomic DNA library respond to Hb. Doe and colleagues have investigated the un­ derlying assayed in S2 cells identified ~5,500 enriched sequences exhibiting a range mechanism that defines this competence window. They showed by of enhancer strengths. Validation of representative subsets with luciferase immuno-DNA FISH that the hb genomic locus relocates from the nuclear reporters confirmed the predicted strong and weak enhancer activity of interior to the nuclear periphery in a near-synchronous ­manner in the the STARR-seq isolates, which mapped to both intronic and intergenic entire ­neuroblast population, concurrently with the end of the compe- regions.
    [Show full text]