Download This Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download This Article in PDF Format A&A 568, A46 (2014) Astronomy DOI: 10.1051/0004-6361/201424283 & c ESO 2014 Astrophysics Tracing a high redshift cosmic web with quasar systems, Maret Einasto1, Erik Tago1, Heidi Lietzen1,2,3, Changbom Park4, Pekka Heinämäki5, Enn Saar1,6, Hyunmi Song4, Lauri Juhan Liivamägi1,7, and Jaan Einasto1,6,8 1 Tartu Observatory, 61602 Tõravere, Estonia e-mail: [email protected] 2 Instituto de Astrof˜isica de Canarias, 38205 La Laguna, Tenerife, Spain 3 Universidad de La Laguna, Dept. Astrofísica, 38206 La Laguna, Tenerife, Spain 4 School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dong-Dae-Mun-Gu, 130-722 Seoul, Korea 5 Tuorla Observatory, University of Turku, Väisäläntie 20, Piikkiö, Finland 6 Estonian Academy of Sciences, 10130 Tallinn, Estonia 7 Institute of Physics, Tartu University, Tähe 4, 51010 Tartu, Estonia 8 ICRANet, Piazza della Repubblica 10, 65122 Pescara, Italy Received 27 May 2014 / Accepted 20 June 2014 ABSTRACT Context. To understand the formation, evolution, and present-day properties of the cosmic web we need to study it at low and high redshifts. Aims. We trace the cosmic web at redshifts that range from 1.0 ≤ z ≤ 1.8 by using the quasar (QSO) data from the SDSS DR7 QSO catalogue. Methods. We apply a friend-of-friend algorithm to the quasar and random catalogues to determine systems at a series of linking length and analyse richness and sizes of these systems. Results. At the linking lengths l ≤ 30 h−1 Mpc, the number of quasar systems is larger than the number of systems detected in random catalogues, and the systems themselves have smaller diameters than random systems. The diameters of quasar systems are comparable to the sizes of poor galaxy superclusters in the local Universe. The richest quasar systems have four members. The mean space density of quasar systems, ≈10−7 (h−1 Mpc)−3, is close to the mean space density of local rich superclusters. At intermediate linking lengths (40 ≤ l ≤ 70 h−1 Mpc), the richness and length of quasar systems are similar to those derived from random catalogues. Quasar system diameters are similar to the sizes of rich superclusters and supercluster chains in the local Universe. The percolating system, which penetrate the whole sample volume appears in a quasar sample at a smaller linking length than in random samples (85 h−1 Mpc). At the linking length 70 h−1 Mpc, the richest systems of quasars have diameters exceeding 500 h−1 Mpc. Quasar luminosities in systems are not correlated with the system richness. Conclusions. Quasar system catalogues in our web pages and at the Strasbourg Astronomical Data Center (CDS) serve as a database for searching superclusters of galaxies and for tracing the cosmic web at high redshifts. Key words. large-scale structure of Universe – quasars: general 1. Introduction us to describe the cosmic web in our neighbourhood in detail. One source of information about the cosmic structures at high The contemporary cosmological paradigm tells us that the struc- redshifts is the distribution of quasars. Quasars lie at centres of ture in the Universe, the cosmic web formed and evolved from massive galaxies (Hutchings et al. 2002; Kotilainen et al. 2009; tiny density perturbations in the very early Universe by hi- Padmanabhan et al. 2009; Letawe et al. 2010; Kotilainen et al. erarchical growth, is driven by gravity (see, e.g., Loeb 2008; 2013; Falomo et al. 2013; Floyd et al. 2013; Falomo et al. 2014; van de Weygaert & Schaap 2009, and references therein). Karhunen et al. 2014, and references therein), which typically lie Groups and clusters of galaxies and their filaments are formed by in small groups and poor clusters of galaxies (Wold et al. 2000; −1 density perturbations on a scale up to 32 h Mpc. Superclusters Soechting et al. 2002; Söchting et al. 2004; Coldwell & Lambas of galaxies, the largest density enhancements in the local cosmic 2006; Hutchings et al. 2009; Trainor & Steidel 2012; Ueda et al. −1 web, are formed by larger-scale perturbations up to 100 h Mpc. 2013). Nearby quasars are typically located in a relatively low- Still, larger scale density perturbations modulate the richness of density, large-scale environment near superclusters of galaxies galaxy systems (Einasto et al. 2011a; Suhhonenko et al. 2011). (Coldwell & Lambas 2006; Lietzen et al. 2009, 2011). To understand how the cosmic web is formed and evolved, it Galaxy luminosities, morphological types, colours, star for- is of paramount importance to describe and quantify it at low and mation rates, and other properties are closely related to their en- high redshifts. Large galaxy redshift surveys like SDSS enable vironment at small and large scales (Einasto et al. 1974; Dressler 1980; Einasto & Einasto 1987; Mo et al. 1992; Park et al. 2007; Appendix A is available in electronic form at Park & Choi 2009; Skibba 2009; Tempel et al. 2011; Lietzen http://www.aanda.org et al. 2012; Einasto et al. 2014). The studies of the quasar envi- The catalogues are only available at the CDS via anonymous ftp to ronment in the cosmic web helps us to understand the relation cdsarc.u-strasbg.fr (130.79.128.5)orvia between the galaxy and quasar evolution and to test the evolu- http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/568/A46 tionary schemes of different type of objects. Article published by EDP Sciences A46, page 1 of 10 A&A 568, A46 (2014) Already decades ago, several studies described large systems in quasar distribution (Webster 1982; Clowes & Campusano 1.4e-06 1991; Komberg et al. 1996; Williger et al. 2002; Clowes et al. 2012, 2013, and references therein), which are known as large 1.2e-06 quasar groups (LQGs). Miller et al. (2004) found significant 1.0e-06 −1 ) 3 200 h Mpc size over- and underdensities in the density field h -3 determined by quasars from the 2dF QSO Redshift survey. 8.0e-07 Komberg et al. (1996) showed that LQGs may trace distant galaxy superclusters. The large-scale distribution of quasar sys- n (Mpc 6.0e-07 tems gives us information about the cosmic web at high redshifts which are not yet covered by large and wide galaxy surveys. 4.0e-07 The goal of this study is to analyse the distribution of quasars 2.0e-07 at redshifts in the range of 1.0 ≤ z ≤ 1.8. We choose this red- shift range as we are interested in the study of the cosmic web at 2200 2400 2600 2800 3000 3200 3400 3600 high redshifts. This redshift range was also used by Clowes et al. D (Mpc/h) (2012, 2013); with this choice, we can compare LQGs found Fig. 1. Quasar number density versus distance. Dotted lines show the in these studies and our systems. We shall use the Schneider 98% central confidence limits. et al. (2010) catalogue of quasars based on the Sloan Digital Sky Survey Data Release 7 (SDSS DR7). We analyse clustering and η, and redshift limits as quasar samples. The number of properties of quasars with the friend-of-friend (FoF) algorithm, random points in random samples was equal to the number of compare them with random distributions, and determine systems quasars. of quasars at a series of linking lengths. We present catalogues of quasar systems and analyse their properties and large-scale distribution. 3. Method In Sect. 2 we describe the data we used and the method in We employed the FoF clustering analysis method introduced Sect. 3. In Sect. 4, we give the results. We discuss and summarise in cosmology by Zeldovich et al. (1982)andHuchra & Geller the results in Sect. 5. In Appendix A, we present data about the (1982) to determine systems in the quasar catalogue and random richest quasar systems. 1 catalogues. The FoF method is commonly used to detect groups We present the quasar system catalogues . An interactive pdf and clusters in the galaxy distribution (Tucker et al. 2000; Eke file showing the distribution of quasars is also available on our et al. 2004; Tago et al. 2006, 2008; Park et al. 2012; Tempel et al. web pages. 2012, 2014, and references therein) and superclusters of optical We assume the standard cosmological parameters: the −1 −1 and X-ray clusters of galaxies (Einasto et al. 1994, 2001; Chon Hubble parameter H0 = 100 h km s Mpc , the matter den- Ω = . Ω = . et al. 2013). Komberg et al. (1996) applied the FoF method to sity m 0 27, and the dark energy density Λ 0 73. search for rich quasar systems. The FoF method collects objects into systems if they have 2. Data at least one common neighbour closer than a linking length. At small linking lengths where only the closest neighbouring ob- We adopt a catalogue of quasars with a spectrum taken as a jects form systems, most objects in the sample remain single. As normal science spectrum (SCIENCEPRIMARY=1) and a photo- the linking length increases, more and more objects join systems, metric measurement that is designated PRIMARY in the BEST and the number of systems, their richness and size increase. At photometric database. From this catalogue, we select a subsam- a certain linking length, the largest system spans over the whole ple of quasars in the redshift interval 1.0 ≤ z ≤ 1.8andap- sample volume and a percolation occurs. We apply the FoF al- ply an i-magnitude limit i = 19.1. The full quasar catalogue gorithm to quasar and random samples with a series of linking by Schneider et al. (2010) is not homogeneous; Vanden Berk lengths to analyse the properties of systems and their percola- et al.
Recommended publications
  • The Morphology of the X-Ray Afterglows and of the Jetted Gev Emission in Long Grbs
    MNRAS 000,1– ?? (2020) Preprint 17 March 2021 Compiled using MNRAS LATEX style file v3.0 The morphology of the X-ray afterglows and of the jetted GeV emission in long GRBs R. Ruffini,1;2;5;7;14 R. Moradi,1;2;15? J. A. Rueda,1;2;4;8;16 L. Li,1;2;15 N. Sahakyan,1;6 Y.-C. Chen,1;2 Y. Wang,1;2;15 Y. Aimuratov,1;2;9 L. Becerra,1;2;17 C. L. Bianco,1;2;16 C. Cherubini,1;3;11 S. Filippi,1;3;10 M. Karlica,1;2 G. J. Mathews,1;12 M. Muccino,13 G. B. Pisani,1;2 and S. S. Xue1;2 1 ICRANet, Piazza della Repubblica 10, I-65122 Pescara, Italy 2 ICRA, Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy 3 ICRA, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, I-00128 Rome, Italy 4 ICRANet-Ferrara, Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I–44122 Ferrara, Italy 5 ICRANet-Rio, Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290–180 Rio de Janeiro, Brazil 6 ICRANet-Armenia, Marshall Baghramian Avenue 24a, Yerevan 0019, Republic of Armenia 7 Université de Nice Sophia-Antipolis, Grand Château Parc Valrose, Nice, CEDEX 2, France 8 Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, I–44122 Ferrara, Italy 9 Fesenkov Astrophysical Institute, Observatory 23, 050020 Almaty, Kazakhstan 10 Department of Engineering, University Campus Bio-Medico of Rome, Nonlinear Physics and Mathematical Modeling Lab, Via Alvaro del Portillo 21, 00128 Rome, Italy 11 Department of Science and Technology for Humans and the Environment and Nonlinear Physics and Mathematical Modeling Lab, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy 12 Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN, 46556, USA 13 Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, I-00044 Frascati, Italy 14 INAF, Viale del Parco Mellini 84, 00136 Rome, Italy 15 INAF – Osservatorio Astronomico d’Abruzzo,Via M.
    [Show full text]
  • Vatican Observatory N E W S L E T T
    vatican observatory NEWSLETTER Spring 2012 embracing, encouraging and promoting scientific study VOF Honors Benefactors at Circles of Giving Awards Dinner DID YOU KNOW? German Jesuit Christoph Cla- vius’s viewing of the total solar eclipse of 1560 made him de- cide that astronomy would be his life's work? He went on to write numerous textbooks and Rich Friedrich and Peter Moore was the senior mathematician on Fr. DiUlio and Marianne Augustine of the Pacific Western Foundation the commission for the reform of On February 24, 2012, the Vatican Observatory Foundation honored friends and benefactors who have so the calendar in 1582. The Vatican generously supported the work of the Vatican Observatory over time. Each year as donors reach a certain Observatory Foundation rec- lifetime giving level, they achieve a Circle of Giving designation and are recognized and thanked publicly ognizes his contribution to the by the President and Board of Directors as well as their fellow benefactors and friends. Each Circle of Giv- field by welcoming benefactors of ing is named in honor of one of the exceptional individuals connected with astronomy, the Society of Jesus $10,000 to the Christoph Clavius and the Vatican Observatory. At this year’s dinner four honorees were present to receive awards from Circle of Giving. Foundation President Fr. Albert J. DiUlio, S.J., and Board Chairman, Richard J. Friedrich. They included Christoph Clavius Bill Ahmanson of The Ahmanson Foundation; Marianne Augustine; Peter Moore of the Pacific Western Foundation; and Dan Cracchiolo of The Steele Foundation, whose award was accepted by his sister, Rose Collins.
    [Show full text]
  • Icranet Activities with Brazil
    ICRANet activities with Brazil ICRANet-IRAP PhD Fellowships to Brazilian Students pp. 1-17 Part 1 CAPES-ICRANet Program I cycle – 2013-2016 Part 2 p. 19 2. a – IRAP Ph. D. Program pp. 21-27 2. b – Postdoctoral Program in Europe/Asia pp. 29-42 2. c – Postdoctoral Program in Brazil pp. 43-54 2. d – Senior Visitors in Brazil pp. 55-66 2. e – Senior Visitors in Europe/Asia pp. 67-78 0 1. ICRANet-IRAP PhD Fellowships to Brazilian Students index - de Barros, Gustavo 3 - Pereira, Jonas Pedro 7 - Sversut Arsioli, Bruno 11 - Gomes de Oliveira, Fernanda 15 - Maiolino, Tais 17 1 2 de Barros, Gustavo Position: IRAP PhD – Fifth Cycle, 2006-09 Current position: Professor Adjunto Centro Universitário da Zona Oeste – OEZO Publications: -) Patricelli, B.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; de Barros, G.; Izzo, L.; Ruffini, R.; Vereshchagin, G. V.; “Analysis of GRB 080319B and GRB 050904 within the Fireshell Model: Evidence for a Broader Spectral Energy Distribution”; The Astrophysical Journal, 756 (2012), id. 16; DOI: 10.1088/0004- 637X/756/1/16 -) Bianco, C. L.; Amati, L.; Bernardini, M. G.; Caito, L.; De Barros, G.; Izzo, L.; Patricelli, B.; Ruffini, R.; “The class of ``disguised'' short GRBs and its implications for the Amati relation”; Memorie della Società Astronomica Italiana Supplement, 21 (2012), 139. -) Patricelli, B.; Bernardini, M. G.; Bianco, C. L.; Caito, L.; de Barros, G.; Izzo, L.; Ruffini, R.; Vereshchagin, G.; “High Energetic Gamma Ray Bursts and Their Spectral Properties Within the Fireshell Model”; International Journal of Modern Physics: Conference Series, 12 (2012), pp.
    [Show full text]
  • A Proposed Italian Contribution to the Mirax Scientific Payload 51
    IL NUOVO CIMENTO Vol. 34 C, N. 3 Maggio-Giugno 2011 DOI 10.1393/ncc/i2011-10867-0 Colloquia: Scineghe2010 A proposed Italian contribution to the MIRAX Scientific Payload L. Amati(1),M.Feroci(2),F.Frontera(3), C. Labanti(1),A.Vacchi(4), A. Argan(5), R. Campana(2),E.Costa(2), R. Ruffini(6), I. Bombaci(7), E. Del Monte(2), I. Donnarumma(2), A. Drago(3), Y. Evangelista(2), R. Farinelli(3), G. Ghirlanda(8),G.Ghisellini(8),C.Guidorzi(3), F. Fuschino(1), F. Lazzarotto(2), D. Lazzati(9),P.Malcovati(10), M. Marisaldi(1), E. Morelli(1),F.Muleri(2), M. Orlandini(1), L. Pacciani(2), E. Pian(11),M.Rapisarda(2),A.Rubini(2), R. Salvaterra(12), P. Soffitta(2), L. Titarchuk(3),A.Traci(1), A. Rashevsky(4),G.Zampa(4),N.Zampa(4), N. Auricchio(1),A.Basili(1),E.Caroli(1),E.Maiorano(1),N.Masetti(1), L. Nicastro(1), E. Palazzi(1),S.Silvestri(1), J. B. Stephen(1)andJ. Braga(13) (1) INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica - Bologna, Italy (2) INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica - Rome, Italy (3) Universit`a di Ferrara - Ferrara, Italy (4) INFN, Sezione di Trieste - Trieste, Italy (5) INAF, sede centrale - Rome, Italy (6) International Center for Relativistic Astrophysics Network (ICRANet) - Pescara, Italy (7) Universit`adiPisa-Pisa,Italy (8) INAF, Osservatorio Astronomico di Brera - Merate, Italy (9) North Carolina State University - Raleigh, NC, USA (10) Universit`a di Pavia - Pavia, Italy (11) INAF, Osservatorio Astronomico di Trieste - Trieste, Italy (12) Universit`a dell’Insubria - Como, Italy (13) Instituto Nacional de Pesquisas Espaciais (INPE) - Sao Jos`e dos Campos, Brazil (ricevuto il 25 Febbraio 2011) Summary.
    [Show full text]
  • Numerical Methods for Radiative and Ideal Relativistic Hydrodynamics Applied to the Study of Gamma-Ray Bursts
    Numerical methods for radiative and ideal relativistic hydrodynamics applied to the study of gamma-ray bursts Julio David Melon Fuksman Department of Physics University of Rome “La Sapienza” This dissertation is submitted for the degree of Doctor of Philosophy IRAP PhD program Supervisor: Dr. Carlo L. Bianco September 2019 A Julio y Elena Acknowledgements I am obliged to express my gratitude towards a number of people who have helped me in different ways throughout the last three and a half years, making this work possible. First of all, I would like to thank the organizers of the IRAP PhD Program for the financial support throughout the time of my PhD. I also thank my advisor, Carlo L. Bianco, and Professors Jorge A. Rueda and Gregory V. Vereshchagin for their guidance and the many fruitful discussions we had. I thank the entire staff of Sapienza and ICRANet, in particular Cinzia Di Niccolo, Federica Di Berardino, Cristina Adamo, Silvia Latorre, Gabriele A. Brandolini, and Elisabetta Natale, for being so helpful and kind to me ever since my arrival in Pescara. I would like to thank all of the members of the Thesis Comittee and the external evaluators for aiding me in the final stage of my PhD by taking the time to read this thesis and express their judgement. Among the scientists I have met since I arrived in Italy, I must especially mention Andrea Mignone. I am indebted to you for welcoming my interest to work together and consistently trusting it would lead to a good place. Above all, however, I thank you deeply for your support in the last year, and for always finding some time to talk when I needed advice.
    [Show full text]
  • Ccjun12-Cover Vb.Indd
    CERN Courier June 2012 Faces & Places I NDUSTRY CERN supports new centre for business incubation in the UK To bridge the gap between basic science and industry, CERN and the Science and Technology Facilities Council (STFC) have launched a new business-incubation centre in the UK. The centre will support businesses and entrepreneurs to take innovative technologies related to high-energy physics from technical concept to market reality. The centre, at STFC’s Daresbury Science and Innovation Campus, follows the success of a business-incubation centre at the STFC’s Harwell campus, which has run for 10 years with the support of the European Space Agency (ESA). The ESA Business Incubation Centre (ESA BIC) supports entrepreneurs and hi-tech start-up companies to translate space technologies, applications and services into viable nonspace-related business ideas. The CERN-STFC BIC will nurture innovative ideas based on technologies developed at CERN, with a direct contribution from CERN in terms of expertise. The centre is managed by STFC Innovations Limited, the technology-transfer office of STFC, which will provide John Womersley, CEO of STFC, left, and Steve Myers, CERN’s director of accelerators and successful applicants with entrepreneurial technology, at the launch of the CERN-STFC Business Incubation Centre on the Daresbury support, including a dedicated business Science and Innovation Campus. (Image credit: STFC.) champion to help with business planning, accompanied technical visits to CERN as business expertise from STFC and CERN. total funding of up to £40,000 per company, well as access to scientific, technical and The selected projects will also receive a provided by STFC.
    [Show full text]
  • On the Occasion of the 14Th Marcel Grossmann Meeting
    ICRANet on the occasion of the 14 th Marcel Grossmann Meeting – MGXIV in celebration of the International Year of Light 2015 the 100 th anniversary of the Einstein’s equations the golden jubilee of Relativistic Astrophysics The ICRANet Seats The University of Rome “La Sapienza” where the Physics Department hosts the ICRANet ICRANet Headquarters in Pescara (Italy). seat in Rome (Italy). ICRANet seat in Nice (France). National Academy of Sciences of Armenia, which hosts the ICRANet seat in Yerevan (Armenia). (Above:) CBPF, which hosts the ICRANet seat in Rio de Janeiro. (Below:) The planned seat at Cassino da Urca (Brazil). II This brochure reviews some background facts concerning the founding of ICRANet and its current structures and then turns to the 2015 celebrations of the Year of Light and the ICRANet initiated International Relativistic Astrophysics Ph.D. program (the IRAP-PhD). It then addresses the birth of relativistic astrophysics following the first fifty years of the existence of general relativity plagued mainly by the absence of observational or experimental activity. Four events marked the onset of relativistic astrophysics: the discovery by Schmidt of the first quasar in 1962, of Scorpius X1 by Riccardo Giacconi in 1963, of the cosmic background radiation by Penzias and Wilson in 1964, and of pulsars by Jocelyn-Bell and Antony Hewish in 1967. These events led to a systematic development of the understanding of the four pillars of relativistic astrophysics: supernovae where observations of the CRAB Nebula are still relevant today, white dwarfs and neutron stars, black holes and their first identification in Nature in Cygnus X1 found by Riccardo Giacconi with the UHURU satellite based on the conceptual background developed by our group in Princeton, and finally the discovery of gamma ray bursts as the largest energy source delivered in the shortest time of any astrophysical phenomenon.
    [Show full text]
  • Rueda Hernández, Jorge Armando
    Rueda Hernández, Jorge Armando Position: Faculty Professor at ICRANet Member of ICRANet Faculty IRAP PhD Faculty Period covered: 2011-Present I Scientific Work I perform research in the following topics: • Nuclear and atomic astrophysics. • Physics and astrophysics of white dwarfs and neutron stars. • Radiation mechanisms of white dwarfs and neutron stars. • Gamma-ray busts theory. • Accretion disks, hypercritical accretion processes. • Neutrino emission from astrophysical sources. • Gravitational waves. • Exact solutions of the Einstein and Einstein-Maxwell equations in astrophysics. • Critical electromagnetic fields and non-linear electrodynamics effects in astrophysics. • Distribution of dark matter in galaxies and cosmological implications. II Conferences and educational activities II a Conferences and Other External Scientific Work In the year 2017 I presented lectures/talks in the following conferences/meetings/workshops: • “Fifth Bego Rencontre”, IRAP Ph.D. Erasmus Mundus School, 15-19 May 2017, Nice (France). • “The 2017 Annual meeting of the Division of Gravitation and Relativistic Astrophysics of the Chinese Physical Society”,25-30 June 2017, Chengdu (China). • “The Fifth Galileo-Xu Guangqi Meeting”,25-30 June 2017, Chengdu (China). • “XIII International Conference on Gravitation, Astrophysics and Cosmology”, 3-7 July 2017, Seoul (South Korea). • “15th Italian-Korean Symposium on Relativistic Astrophysics”, 3-7 July 2017, Seoul (South Korea). • “Vida después de la muerte: Estrellas de neutrones y las explosiones más potentes del Universo”, Invited Talk for the High School Instituto Antonino Nariño, 12 Septemer 2017, Barrancabermeja (Colombia) • “9th European Summer School on Experimental Nuclear Astrophysics”, 17-24 September 2017, Santa Tecla (Italy). • “La notte europea dei ricercatori”, 29 September 2017, Pescara (Italy). • “Theseus Workshop”, 5-6 October 2017, Naples (Italy).
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • Arxiv:2007.04414V1 [Astro-Ph.CO] 8 Jul 2020 Bution of Matter on Large Scales Is Inferred from Tion)
    Key words: large scale structure of universe | galaxies: distances and redshifts Draft version July 10, 2020 Typeset using LATEX preprint2 style in AASTeX62 Cosmicflows-3: The South Pole Wall Daniel Pomarede,` 1 R. Brent Tully,2 Romain Graziani,3 Hel´ ene` M. Courtois,4 Yehuda Hoffman,5 and Jer´ emy´ Lezmy4 1Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France 2Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 3Laboratoire de Physique de Clermont, Universit Clermont Auvergne, Aubire, France 4University of Lyon, UCB Lyon 1, CNRS/IN2P3, IUF, IP2I Lyon, France 5Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel ABSTRACT Velocity and density field reconstructions of the volume of the universe within 0:05c derived from the Cosmicflows-3 catalog of galaxy distances has revealed the presence of a filamentary structure extending across ∼ 0:11c. The structure, at a characteristic redshift of 12,000 km s−1, has a density peak coincident with the celestial South Pole. This structure, the largest contiguous feature in the local volume and comparable to the Sloan Great Wall at half the distance, is given the name the South Pole Wall. 1. INTRODUCTION ble of measurements: to a first approximation The South Pole Wall rivals the Sloan Great Vpec = Vobs − H0d. Although uncertainties with Wall in extent, at a distance a factor two individual galaxies are large, the analysis bene- closer. The iconic structures that have trans- fits from the long range correlated nature of the formed our understanding of large scale struc- cosmic flow, allowing the reconstruction of the ture have come from the observed distribution 3D velocity field from noisy, finite and incom- of galaxies assembled from redshift surveys: the plete data (Zaroubi et al.
    [Show full text]
  • Map of the Huge-LQG Noted by Black Circles, Adjacent to the ClowesCampusan O LQG in Red Crosses
    Huge-LQG From Wikipedia, the free encyclopedia Map of Huge-LQG Quasar 3C 273 Above: Map of the Huge-LQG noted by black circles, adjacent to the ClowesCampusan o LQG in red crosses. Map is by Roger Clowes of University of Central Lancashire . Bottom: Image of the bright quasar 3C 273. Each black circle and red cross on the map is a quasar similar to this one. The Huge Large Quasar Group, (Huge-LQG, also called U1.27) is a possible structu re or pseudo-structure of 73 quasars, referred to as a large quasar group, that measures about 4 billion light-years across. At its discovery, it was identified as the largest and the most massive known structure in the observable universe, [1][2][3] though it has been superseded by the Hercules-Corona Borealis Great Wa ll at 10 billion light-years. There are also issues about its structure (see Dis pute section below). Contents 1 Discovery 2 Characteristics 3 Cosmological principle 4 Dispute 5 See also 6 References 7 Further reading 8 External links Discovery[edit] Roger G. Clowes, together with colleagues from the University of Central Lancash ire in Preston, United Kingdom, has reported on January 11, 2013 a grouping of q uasars within the vicinity of the constellation Leo. They used data from the DR7 QSO catalogue of the comprehensive Sloan Digital Sky Survey, a major multi-imagi ng and spectroscopic redshift survey of the sky. They reported that the grouping was, as they announced, the largest known structure in the observable universe. The structure was initially discovered in November 2012 and took two months of verification before its announcement.
    [Show full text]
  • Consistent Young Earth Relativistic Cosmology
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 14-35 Article 23 2018 Consistent Young Earth Relativistic Cosmology Phillip W. Dennis Unaffiliated Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings Part of the Cosmology, Relativity, and Gravity Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Dennis, P.W. 2018. Consistent young earth relativistic cosmology. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 14–35. Pittsburgh, Pennsylvania: Creation Science Fellowship. Dennis, P.W. 2018. Consistent young earth relativistic cosmology. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 14–35. Pittsburgh, Pennsylvania: Creation Science Fellowship. CONSISTENT YOUNG EARTH RELATIVISTIC COSMOLOGY Phillip W. Dennis, 1655 Campbell Avenue,
    [Show full text]