Tilt Signals at Mount Melbourne, Antarctica: Evidence of a Shallow Volcanic Source Salvatore Gambino, Marco Aloisi, Giuseppe Falzone & Angelo Ferro

Total Page:16

File Type:pdf, Size:1020Kb

Tilt Signals at Mount Melbourne, Antarctica: Evidence of a Shallow Volcanic Source Salvatore Gambino, Marco Aloisi, Giuseppe Falzone & Angelo Ferro RESEARCH/REVIEW ARTICLE Tilt signals at Mount Melbourne, Antarctica: evidence of a shallow volcanic source Salvatore Gambino, Marco Aloisi, Giuseppe Falzone & Angelo Ferro Catania Department, National Institute of Geophysics and Volcanology, Piazza Roma 2, IT-95123 Catania, Italy Keywords Abstract Tilt monitoring; volcanic dynamics; 8 8 physics volcanology; ground deformation; Mount Melbourne (74 21? S, 164 43? E) is a quiescent volcano located in Victoria Land. northern Victoria Land, Antarctica. Tilt signals have been recorded on Mount Melbourne since early 1989 by a permanent shallow borehole tiltmeter Correspondence network comprising five stations. An overall picture of tilt, air and permafrost Salvatore Gambino, Catania Department, temperatures over 15 years of continuous recording data is reported. We National Institute of Geophysics and focused our observations on long-term tilt trends that at the end of 1997 Volcanology, Piazza Roma 2, IT-95123 showed coherent changes at the three highest altitude stations, suggesting the Catania, Italy. E-mail: salvatore.gambino@ presence of a ground deformation source whose effects are restricted to the ingv.it summit area of Mount Melbourne. We inverted these data using a finite spherical body source, thereby obtaining a shallow deflation volume source located under the summit area. The ground deformation observed corroborates the hypothesis that the volcanic edifice of Mount Melbourne is active and should be monitored multidisciplinarily. To access the supplementary material for this article, please see the supplementary files under Article Tools, online. Ground deformation studies of volcanoes are fundamen- (Dzurisin 1992, 2003; Ferro et al. 2011). These changes tal for forecasting eruptions and better understanding range from slow (monthsÁyears) to fast (minutesÁdays), magmatic processes (Dzurisin 2003). Spatial and tempo- highlighting different processes occurring at volcanoes ral (short- and long-term) patterns of ground deforma- (Gambino et al. 2014). In particular, slow variations tion are detected by using different techniques such indicate the inflation/deflation of the edifice caused by InSAR, GPS, tiltmeters, strainmeters, EDM and levelling volume changes in magma reservoirs (e.g., de Zeeuw-van and results are usually related to changes in the volume Dalfsen et al. 2005) or movements of geothermal fluids and location of magma. Especially at volcanoes with (e.g., Nakaboh et al. 2003). Tilt measurements have steam vents, ground deformation can also originate from revealed, in different monitored volcanic areas, middle movements of geothermal fluids, where the fluid dy- and long-term ground deformation related to edifice namic may be caused by heating of the geothermal inflation/deflation, such as at Piton de la Fournaise reservoir (e.g., Nakaboh et al. 2003; Battaglia et al. 2006). (Fontaine et al. 2014), Mount Etna (Bonaccorso et al. The frequent occurrence of long-term ground deforma- 2004), Stromboli (Bonaccorso et al. 2008; Bonaccorso tion (monthsÁyears), in open and closed volcanic systems, et al. 2009), Vulcano (Gambino et al. 2007) and Vesuvius has recently been shown using satellite techniques (e.g., (Ricco et al. 2013). Chaussard et al. 2013; Henderson & Pritchard 2013), Located in northern Victoria Land, Mount Melbourne levelling (e.g., Murase et al. 2014), EDM (Battaglia et al. (2732 m a.s.l.) is a large stratovolcano (Fig. 1a) belonging 2006) and, more rarely, tilt (Bonaccorso et al. 2015). to the McMurdo Volcanic Group (Kyle 1989) and is one of Shallow borehole tiltmeters are used to monitor the the closed conduit volcanoes in Antarctica with the po- ground deformation of volcanoes throughout the world tential for large-scale explosive eruptions. Physical volca- since they are able to measure precise tilt variations nological studies aimed at studying Mount Melbourne’s Polar Research 2016. # 2016 S. Gambino et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 1 International License (http://creativecommons.org/licenses/by-nc/4.0/), permitting all non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. Citation: Polar Research 2016, 35, 28269, http://dx.doi.org/10.3402/polar.v35.28269 (page number not for citation purpose) Tilt signals at Mount Melbourne S. Gambino et al. Mount Melbourne volcano Abbreviations in this article EDM: electronic distance measurements Mount Melbourne is a volcanic edifice situated between GA: genetic algorithm Terra Nova and Wood bays in northern Victoria Land, GPS: global positioning system with a summit caldera of about 1 km in diameter and InSAR: interferometric synthetic aperture radar PS: pattern search characterized by fumarolic activity (Nathan & Schulte VLNDEF: victoria land network for deformation control 1967; Keys et al. 1983; Kyle 1989; Wo¨rner & Viereck 1989). Mount Melbourne is one of the stratovolcanoes in the McMurdo Volcanic Group, which has developed internal dynamics began in 1988 within the framework of along the western margin of the Ross Sea in Victoria the Italian Antarctic Research Programme. A tilt network Land, and parallel to the Transantarctic Mountains (Kyle of five permanent continuously recording stations was 1989). This area (Fig. 1a) was recently affected by installed in 1988Á89 (Figs. 1b, 2) and a seismic network in distensive tectonics on the north-westÁsouth-east struc- 1990 (Bonaccorso et al. 1996; Bonaccorso, Gambino, tural system forming the Rennick Graben to the north Falzone et al. 1997). Gambino & Privitera (1996) identified and on the NNEÁSSE system to the south, evidenced by and characterized local seismicity at Mount Melbourne. the Nansen Graben (Skinner 1983; Carmignani et al. Several seismic analyses, performed on a data set of 17 1989; Lanzafame & Villari 1991). The volcanic field seems micro-earthquakes, suggested these events were either to have formed at the intersection of these systems and ‘‘long-period events’’ (e.g., Chouet 1992), indicating the the development of the volcanic activity is generally active presence of fluids in source processes, or were linked related to the apparent discontinuity of the two structural to fracturing processes in a medium in transition between systems (Lanzafame & Villari 1991). the brittle and plastic states (Gambino & Privitera 1996). Volcanism in the Mount Melbourne area started during On the whole, seismic and tilt data indicate that Mount the upper Pliocene with the formation of the Cape Melbourne is a quiescent volcano with its own slow, but Washington shield volcano. During the lower and middle continual, internal dynamics (Bonaccorso et al. 1995; Pleistocene, volcanism migrated towards the Transantarc- Bonaccorso, Gambino & Privitera 1997). tic Mountains, while in the upper Pleistocene/Holocene Here we report observations and analyses of 15 years of the Mount Melbourne stratovolcano was associated with continuous ground tilt collected at Mount Melbourne the establishment of a crustal magma chamber (Giordano that highlight changes and suggest a possible internal et al. 2012). The volcanic activity at Mount Melbourne is volcanic source. testified by blankets of pyroclastic pumice and scoria fall (a) (b) s C. Adare Tilt station in 600 ta n VL06 GPS benchmark u o Fumaroles M Baker c Rocks ti Admiralty Mts. 00 c r –72° 10 –74°15' a t n Rennick C. Hallet a s n a FAL 800 r G Malta Plateau Edmonson Point T raben Mt. Melbourne FAL1 VIL1 VIL Mt. Overlord Wood Bay –73° 1400 Culman I. Mt. Rittmann Sea Miller Nunatak CONT 680 Northern Victoria Land Ross Willows Nunatak 70° 380 –74°30' –74° C 80° 400 a m Mt. Melbourne Antarctica p 300 b Mt. Nansen e Shield Nunatak l l 400 G west east l a c Graben i e r Terra Nova Bay T –75° o n 273 Nansen Main tectonic lines g Cape Washington 5km u Tectonic lines e 100 km M. Zucchelli Italian Base 165° 170° 164° 165° Fig. 1 Tectonic sketch map of (a) northern Victoria Land (redrawn from Carmignani et al. 1989). (b) Map of the permanent tilt network on Mount Melbourne. 2 Citation: Polar Research 2016, 35, 28269, http://dx.doi.org/10.3402/polar.v35.28269 (page number not for citation purpose) S. Gambino et al. Tilt signals at Mount Melbourne Tilt components direction tangentially (Tilt Y) with respect to the Mount Melbourne summit. In particular, increases in the radial component (+Y + = up) (+X + = up) indicate inflation of the crater area, while positive varia- tions of the tangential component indicate inflation at 908 Data logger counter-clockwise with respect the radial component. The RX - T X Battery boreholes also have two thermocouples (T1, T2) (copperÁ Thermocouple constantan type, 0.18C precision) shaft (mean depths 1.0 and 1.9 m, respectively) and a tilt temperature sensor at the ends of the instrument that records the permafrost temperature. The control data-logger was programmed for 48 data/day sampling (one sample every 30 min) and T 1 includes acquisition of the two tilt components, air (Tbox) and ground temperatures and instrumental control para- meters, such as battery and DC/DC voltage. Each station is Quartz sand equipped with solid state memories which guarantee data acquisition through the winter months, while high capacity batteries power the station. T 2 2.5 metres Data The tilt network data set spans the beginning of 1989 to the end of 2003. Partial interruptions were caused by Tiltmeter body with data-logger auto-protection, which activates under a internal electonics
Recommended publications
  • Region 19 Antarctica Pg.781
    Appendix B – Region 19 Country and regional profiles of volcanic hazard and risk: Antarctica S.K. Brown1, R.S.J. Sparks1, K. Mee2, C. Vye-Brown2, E.Ilyinskaya2, S.F. Jenkins1, S.C. Loughlin2* 1University of Bristol, UK; 2British Geological Survey, UK, * Full contributor list available in Appendix B Full Download This download comprises the profiles for Region 19: Antarctica only. For the full report and all regions see Appendix B Full Download. Page numbers reflect position in the full report. The following countries are profiled here: Region 19 Antarctica Pg.781 Brown, S.K., Sparks, R.S.J., Mee, K., Vye-Brown, C., Ilyinskaya, E., Jenkins, S.F., and Loughlin, S.C. (2015) Country and regional profiles of volcanic hazard and risk. In: S.C. Loughlin, R.S.J. Sparks, S.K. Brown, S.F. Jenkins & C. Vye-Brown (eds) Global Volcanic Hazards and Risk, Cambridge: Cambridge University Press. This profile and the data therein should not be used in place of focussed assessments and information provided by local monitoring and research institutions. Region 19: Antarctica Description Figure 19.1 The distribution of Holocene volcanoes through the Antarctica region. A zone extending 200 km beyond the region’s borders shows other volcanoes whose eruptions may directly affect Antarctica. Thirty-two Holocene volcanoes are located in Antarctica. Half of these volcanoes have no confirmed eruptions recorded during the Holocene, and therefore the activity state is uncertain. A further volcano, Mount Rittmann, is not included in this count as the most recent activity here was dated in the Pleistocene, however this is geothermally active as discussed in Herbold et al.
    [Show full text]
  • Volcanic Activity of Mount Melbourne, Northern Victoria Land
    Volcanic activity of Mount Melbourne, Present-day geothermal activity is restricted to the summit area and consists of warm ground, fumarole ice towers and northern Victoria Land pinnacles, and cave systems in snow and firn. Warm ground temperatures were measured using mercury thermometers, and ice-structure dimensions and positions were noted. The J. R. KEYS table compares maximum ground temperatures and shows that those in January 1983 were virtually identical to those in De- Antarctic Consultant cember 1972. As in 1972, the warmest temperatures in 1983 Wellington, New Zealand were associated with patches of yellow to green moss whose presence is consistent with stable heat flow (Nathan and W. C. MCINTOSH, and P. R. KYLE Schulte 1967). A constant degree of geothermal activity appears to have Department of Geoscience persisted for at least the last. 20 years. Vertical aerial pho- New Mexico Institute of Mining and Technology tographs taken in 1963 show a distribution of ice structures and Socorro, New Mexico 87801 bare ground similar to that of both 1972 and 1983. Comparison of observations made in January 1983 and December 1972 indi- cates that the numbers of ice pinnacles and towers in areas I and Mount Melbourne (2,733 meters, 74° 21 S 164° 42 E) is a 3 are unchanged, but in 1983 area 2 had three or four fewer ice mildly active alkaline volcano 12 kilometers from the coast of structures. In 1983 area 1 had about 100 square meters of snow Wood Bay in northern Victoria Land. It is a predominantly and ice-free ground compared to only 40 square meters in 1972, snow- and ice-covered, low-angled strato volcano composed of whereas area 2 had less bare ground than in 1972.
    [Show full text]
  • Discovery of a Tertiary Granite Pluton, Northern Victoria Land
    Discovery of a Tertiary granite pluton, percent orthoclase, 10 percent albite (0rq iAbi0), that the albite is Ab98 and that the chlorite is iron-rich. Rims of the magnetite are northern Victoria Land 95 percent megnetite, 5 percent ulvospinel (MtqUvsp), but their cores are Mt70Uvsp30, perhaps indicating primary and sec- ondary phases of this mineral. EDMUND STUMP, The original assemblage appears to have contained two feld- JOHN R. HOLLOWAY, spars, plus quartz. The chlorite presumably was biotite. The and allanite apparently has been undisturbed by secondary effects. SCOTT C. BORG The granite has a minimum melt bulk composition with 75 weight percent silica (Si02) and very low magnesium oxide Department of Geology (MgO) and calcium oxide (CaO). It is slightly peraluminous Arizona State University with 0.9 weight percent normative corundum. Tempe, Arizona 85281 The data from the rubidium/strontium (Rb/Sr) analyses are summarized in the table (X = 1.42 x 10 11 for Rb). Although the RICHARD LEE ARMSTRONG Department of Geological Sciences University of British Columbia Vancouver, British Columbia V6T 1W5 Canada Analytical data Initial 87 Rb 87 Sr Sample Sra Rb Age 87S During the 1980-1981 field season our party undertook sys- 86S 86S 865r tematic collection of early-middle Paleozoic granitoids throughout northern Victoria Land (Stump et al. 1982). In the course of a subsequent strontium isotope study, we discovered ETTC 16.2 218 39.1 0.7195 that one intrusion is Tertiary. whole rock This unique pluton is exposed for about 5 kilometers along 9 ± 1 0.7148 the southwestern side of Mariner Glacier, immediately to the ETT 43.4 179 11.93 0.7162 east of the confluence of Meander Glacier (figure), where it chlorite intrudes Bowers Supergroup at a steep angle, showing very little contact effects.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • ASAR Interferometry at Piton De La Fournaise, Preliminary Results
    ASAR Interferometry at Piton de la Fournaise, preliminary results FROGER Jean-Luc1, FUKUSHIMA Yo2, BRIOLE Pierre3, STAUDACHER Thomas4, SOURIOT Thierry2, VILLENEUVE Nicolas5, CHEMINEE Jean-Louis3 1 : Institut de Recherche pour le Développement (IRD) UR31 "Processus et Aléas Volcaniques", LMV, UBP - UMR 6524. 5, rue Kessler, 63 038 Clermont-Ferrand, FRANCE 2 : Laboratoire Magmas et Volcans, Université Blaise Pascal - UMR 6524. 5, rue Kessler, 63 038 Clermont- Ferrand, FRANCE 3: CNRS-UMR 7580, Institut de Physique du Globe de Paris, 4 Place Jussieu, Paris 75005, FRANCE 4: Observatoire Volcanologique du Piton de la Fournaise, Institut de Physique du Globe de Paris, 14 RN3, le 27ème, 97418 La Plaine des Cafres, LA REUNION 5: Université de la Réunion, 15, avenue René Cassin, BP 7151 97715 Saint-Denis, messag cedex 9, LA REUNION Since the detection of surface deformation at Mount Etna, several geodetic studies have been performed on volcanoes with radar interferometric data acquired by the European ERS-1 and ERS-2 satellites, the Japanese JERS-1 satellite and the Canadian RADARSAT-1 satellite. Here we present the preliminary results of an interferometric study of Piton de la Fournaise volcano, Réunion Island, with Synthetic Aperture Radar images acquired by the ASAR- ENVISAT satellite. Launched in March 2002 by the European Space Agency, ENVISAT is an Earth observation dedicated satellite and its payload consists of a set of instruments for measuring the atmosphere and the surface through the atmosphere. One of these instruments is the ASAR radar designed to provide for continuity of the observations started with the SAR on board of the ERS satellites.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Magma Fragmentation and Particle Size Distributions in Low Intensity Mafc Explosions: the July/August 2015 Piton De La Fournaise Eruption Matthew J
    www.nature.com/scientificreports OPEN Magma fragmentation and particle size distributions in low intensity mafc explosions: the July/August 2015 Piton de la Fournaise eruption Matthew J. Edwards1*, Laura Pioli2*, Andrew J. L. Harris3, Lucia Gurioli3 & Simon Thivet3 Understanding magma fragmentation mechanisms in explosive eruptions is a key requirement for volcanic hazard assessment, eruption management and risk mitigation. This paper focuses on a type case small explosivity eruption (July–August 2015 eruption of Piton de la Fournaise). These eruptions, despite being often overlooked, are exceedingly frequent on local-to-global scales and constitute a signifcant hazard in vent-proximal areas, which are often populated by guides, tourists and, indeed, volcanologists due to their accessibility. The explosions presented here are ideal cases for the study of the dynamics of magma fragmentation and how it relates to the size distribution of scoria generated at the vent. We documented these events visually and thermally, and characterised the products through sample-return. This allowed us to describe small-scale gas bursts sending ejecta up to 30 m during intermittent lava fountains. Surface tension instabilities and inertial forces played a major role in fragmentation processes and generated particles with coarse-skewed distributions and median diameters ranging from − 8 to − 10 . However, with time distributions of particles in the most energetic fountains shifted towards more symmetricalϕ shapes as median grains sizes became fner. Analyses of sequences of images demonstrate that the evolution of particle size distributions with time is due to instability of magma droplets and (in-fight) fragmentation. Mafc explosive volcanism is traditionally overlooked with respect to more energetic, higher intensity and destructive silicic volcanism.
    [Show full text]
  • Advisory Committee on Reactor Safeguards (ACRS)
    Federal Register / Vol. 77, No. 95 / Wednesday, May 16, 2012 / Notices 28903 FOR FURTHER INFORMATION CONTACT: Dates Detailed meeting agendas and meeting Polly A. Penhale at the above address or October 1, 2012 to December 30, 2012. transcripts are available on the NRC (703) 292–7420. Web site at http://www.nrc.gov/reading- Nadene G. Kennedy, rm/doc-collections/acrs. Information SUPPLEMENTARY INFORMATION: The Permit Officer, Office of Polar Programs. regarding topics to be discussed, National Science Foundation, as [FR Doc. 2012–11840 Filed 5–15–12; 8:45 am] changes to the agenda, whether the directed by the Antarctic Conservation BILLING CODE 7555–01–P meeting has been canceled or Act of 1978 (Pub. L. 95–541), as rescheduled, and the time allotted to amended by the Antarctic Science, present oral statements can be obtained Tourism and Conservation Act of 1996, from the Web site cited above or by has developed regulations for the NUCLEAR REGULATORY contacting the identified DFO. establishment of a permit system for COMMISSION Moreover, in view of the possibility that various activities in Antarctica and the schedule for ACRS meetings may be designation of certain animals and Advisory Committee on Reactor adjusted by the Chairman as necessary certain geographic areas requiring Safeguards (ACRS) Meeting of the to facilitate the conduct of the meeting, special protection. The regulations ACRS Subcommittee on Fukushima; persons planning to attend should check establish such a permit system to Notice of Meeting with these references if such designate Antarctic Specially Protected The ACRS Subcommittee on rescheduling would result in a major Areas.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • Moult of the Emperor Penguin: Travel, Location, and Habitat Selection
    MARINE ECOLOGY PROGRESS SERIES Vol. 204: 269–277, 2000 Published October 5 Mar Ecol Prog Ser Moult of the emperor penguin: travel, location, and habitat selection G. L. Kooyman1,*, E. C. Hunke2, S. F. Ackley3, R. P. van Dam1, G. Robertson4 1Scholander Hall, 0204, Scripps Institution of Oceanography, La Jolla, California 92093, USA 2MS-B216, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3Cold Regions Research and Engineering Laboratory 72 Lyme Rd., Hanover, New Hampshire 03755, USA 4Australian Antarctic Division, Channel Highway, Kingston 7050, Tasmania, Australia ABSTRACT: All penguins except emperors Aptenodytes forsteri and Adelies Pygoscelis adeliae moult on land, usually near the breeding colonies. These 2 Antarctic species typically moult some- where in the pack-ice. Emperor penguins begin their moult in early summer when the pack-ice cover of the Antarctic Ocean is receding. The origin of the few moulting birds seen by observers on pass- ing ships is unknown, and the locations are often far from any known colonies. We attached satellite transmitters to 12 breeding adult A. forsteri from western Ross Sea colonies before they departed the colony for the last time before moulting. In addition, we surveyed some remote areas of the Weddell Sea north and east of some large colonies that are located along the southern and western borders of this sea. The tracked birds moved at a rate of nearly 50 km d–1 for more than 1000 km over 30 d to reach areas of perennially consistent pack-ice. Almost all birds traveled to the eastern Ross Sea and western Amundsen Sea.
    [Show full text]
  • Pitons, Cirques and Remparts of Reunion Island
    EUROPE / NORTH AMERICA PITONS, CIRQUES AND REMPARTS OF REUNION ISLAND FRANCE WORLD HERITAGE NOMINATION - IUCN TECHNICAL EVALUATION PITONS, CIRQUES AND REMPARTS OF REUNION ISLAND (FRANCE) - ID Nº 1317 Background note: This nomination was submitted in 2008 for consideration by the World Heritage Committee at its 33rd Session in 2009. Accordingly, IUCN initiated the evaluation of this nomination in 2008/9 and this included the evaluation mission to La Réunion. In March 2009, the decision was taken by the government of France to postpone the assessment of the nomination by UNESCO’s World Heritage Committee until its 34th Session in 2010. This decision was required due to the fact that three nominations from France were proposed for consideration by the 33rd Session of the World Heritage Committee. The State Party of France had been requested by the UNESCO World Heritage Centre to identify two nominations in line with the limits on annual numbers of nominations set in the Operational Guidelines. As the evaluation process was already initiated by IUCN, a dialogue was maintained with the State Party to clarify a number of issues and address recommendations resulting from the evaluation mission, and discussions from the 2008 session of the IUCN/World Heritage Panel. This evaluation report is therefore based on the original nomination plus the additional information provided by the State Party. 1. DOCUMENTATION i) Date nomination received by IUCN: 31st January 2008 ii) Additional information offi cially requested from and provided by the State Party: additional information was requested by IUCN in December 2008. Additional information from the State Party was provided in February 2009 and November 2009.
    [Show full text]
  • The Antarctic Treaty
    Miscellaneous No. 7 (2007) The Antarctic Treaty Measures adopted at the Twenty-ninth Consultative Meeting held at Edinburgh 12 – 23 June 2006 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty July 2007 Cm 7167 £17.00 Miscellaneous No. 7 (2007) The Antarctic Treaty Measures adopted at the Twenty-ninth Consultative Meeting held at Edinburgh 12 – 23 June 2006 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty July 2007 Cm 7167 £17.00 © Crown copyright 2007 The text in this document (excluding the Royal Arms and departmental logos) may be reproduced free of charge in any format or medium providing it is reproduced accurately and not used in a misleading context. The material must be acknowledged as Crown copyright and the title of the document specified. Any enquiries relating to the copyright in this document should be addressed to the Licensing Division, HMSO, St Clements House, 2-16 Colegate, Norwich NR3 1BQ. Fax 01603 723000 or e-mail: [email protected] MEASURES ADOPTED AT THE TWENTY-NINTH CONSULTATIVE MEETING HELD AT EDINBURGH 12 - 23 JUNE 2006 The Measures1 adopted at the Twenty-ninth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e.
    [Show full text]