The Open Mouth Theorem in Higher Dimensions ∗ Mowaffaq Hajja , Mostafa Hayajneh
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theorems and Postulates
Theorems and Postulates JJJG Given AB and a number r between 0 and 180, there Postulate 1-A is exactly one JrayJJG with endpoint A , extending on Protractor Postulate either side of AB , such that the measure of the angle formed is r . ∠A is a right angle if mA∠ is 90. Definition of Right, Acute ∠A is an acute angle if mA∠ is less than 90. and Obtuse Angles ∠A is an obtuse angle if mA∠ is greater than 90 and less than 180. Postulate 1-B If R is in the interior of ∠PQS , then mPQRmRQSmPQS∠ +∠ =∠ . Angle Addition If mP∠+∠=∠QRmRQSmPQS, then R is in the interior of ∠PQS. Vertical angles are congruent. The sum of the measures of the angles in a linear pair is 180˚. The sum of the measures of complementary angles is 90˚. Two points on a line can be paired with real numbers so that, given Postulate 2-A any two points R and S on the line, R corresponds to zero, and S Ruler corresponds to a positive number. Point R could be paired with 0, and S could be paired with 10. R S -2 -1 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 9 10 Postulate 2-B If N is between M and P, then MN + NP = MP. Segment Addition Conversely, if MN + NP = MP, then N is between M and P. Theorem 2-A In a right triangle, the sum of the squares of the measures Pythagorean of the legs equals the square of the measure of the Theorem hypotenuse. -
A One-Page Primer the Centers and Circles of a Triangle
1 The Triangle: A One-Page Primer (Date: March 15, 2004 ) An angle is formed by two intersecting lines. A right angle has 90◦. An angle that is less (greater) than a right angle is called acute (obtuse). Two angles whose sum is 90◦ (180◦) are called complementary (supplementary). Two intersecting perpendicular lines form right angles. The angle bisectors are given by the locus of points equidistant from its two lines. The internal and external angle bisectors are perpendicular to each other. The vertically opposite angles formed by the intersection of two lines are equal. In triangle ABC, the angles are denoted A, B, C; the sides are denoted a = BC, b = AC, c = AB; the semi- 1 ◦ perimeter (s) is 2 the perimeter (a + b + c). A + B + C = 180 . Similar figures are equiangular and their corresponding components are proportional. Two triangles are similar if they share two equal angles. Euclid's VI.19, 2 ∆ABC a the areas of similar triangles are proportional to the second power of their corresponding sides ( ∆A0B0C0 = a02 ). An acute triangle has three acute angles. An obtuse triangle has one obtuse angle. A scalene triangle has all its sides unequal. An isosceles triangle has two equal sides. I.5 (pons asinorum): The angles at the base of an isosceles triangle are equal. An equilateral triangle has all its sides congruent. A right triangle has one right angle (at C). The hypotenuse of a right triangle is the side opposite the 90◦ angle and the catheti are its other legs. In a opp adj opp adj hyp hyp right triangle, sin = , cos = , tan = , cot = , sec = , csc = . -
Read Book Advanced Euclidean Geometry Ebook
ADVANCED EUCLIDEAN GEOMETRY PDF, EPUB, EBOOK Roger A. Johnson | 336 pages | 30 Nov 2007 | Dover Publications Inc. | 9780486462370 | English | New York, United States Advanced Euclidean Geometry PDF Book As P approaches nearer to A , r passes through all values from one to zero; as P passes through A , and moves toward B, r becomes zero and then passes through all negative values, becoming —1 at the mid-point of AB. Uh-oh, it looks like your Internet Explorer is out of date. In Elements Angle bisector theorem Exterior angle theorem Euclidean algorithm Euclid's theorem Geometric mean theorem Greek geometric algebra Hinge theorem Inscribed angle theorem Intercept theorem Pons asinorum Pythagorean theorem Thales's theorem Theorem of the gnomon. It might also be so named because of the geometrical figure's resemblance to a steep bridge that only a sure-footed donkey could cross. Calculus Real analysis Complex analysis Differential equations Functional analysis Harmonic analysis. This article needs attention from an expert in mathematics. Facebook Twitter. On any line there is one and only one point at infinity. This may be formulated and proved algebraically:. When we have occasion to deal with a geometric quantity that may be regarded as measurable in either of two directions, it is often convenient to regard measurements in one of these directions as positive, the other as negative. Logical questions thus become completely independent of empirical or psychological questions For example, proposition I. This volume serves as an extension of high school-level studies of geometry and algebra, and He was formerly professor of mathematics education and dean of the School of Education at The City College of the City University of New York, where he spent the previous 40 years. -
The Stoics and the Practical: a Roman Reply to Aristotle
DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2013 The Stoics and the practical: a Roman reply to Aristotle Robin Weiss DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Weiss, Robin, "The Stoics and the practical: a Roman reply to Aristotle" (2013). College of Liberal Arts & Social Sciences Theses and Dissertations. 143. https://via.library.depaul.edu/etd/143 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. THE STOICS AND THE PRACTICAL: A ROMAN REPLY TO ARISTOTLE A Thesis Presented in Partial Fulfillment of the Degree of Doctor of Philosophy August, 2013 BY Robin Weiss Department of Philosophy College of Liberal Arts and Social Sciences DePaul University Chicago, IL - TABLE OF CONTENTS - Introduction……………………..............................................................................................................p.i Chapter One: Practical Knowledge and its Others Technê and Natural Philosophy…………………………….....……..……………………………….....p. 1 Virtue and technical expertise conflated – subsequently distinguished in Plato – ethical knowledge contrasted with that of nature in -
Geometry: Neutral MATH 3120, Spring 2016 Many Theorems of Geometry Are True Regardless of Which Parallel Postulate Is Used
Geometry: Neutral MATH 3120, Spring 2016 Many theorems of geometry are true regardless of which parallel postulate is used. A neutral geom- etry is one in which no parallel postulate exists, and the theorems of a netural geometry are true for Euclidean and (most) non-Euclidean geomteries. Spherical geometry is a special case of Non-Euclidean geometries where the great circles on the sphere are lines. This leads to spherical trigonometry where triangles have angle measure sums greater than 180◦. While this is a non-Euclidean geometry, spherical geometry develops along a separate path where the axioms and theorems of neutral geometry do not typically apply. The axioms and theorems of netural geometry apply to Euclidean and hyperbolic geometries. The theorems below can be proven using the SMSG axioms 1 through 15. In the SMSG axiom list, Axiom 16 is the Euclidean parallel postulate. A neutral geometry assumes only the first 15 axioms of the SMSG set. Notes on notation: The SMSG axioms refer to the length or measure of line segments and the measure of angles. Thus, we will use the notation AB to describe a line segment and AB to denote its length −−! −! or measure. We refer to the angle formed by AB and AC as \BAC (with vertex A) and denote its measure as m\BAC. 1 Lines and Angles Definitions: Congruence • Segments and Angles. Two segments (or angles) are congruent if and only if their measures are equal. • Polygons. Two polygons are congruent if and only if there exists a one-to-one correspondence between their vertices such that all their corresponding sides (line sgements) and all their corre- sponding angles are congruent. -
Geometry by Its History
Undergraduate Texts in Mathematics Geometry by Its History Bearbeitet von Alexander Ostermann, Gerhard Wanner 1. Auflage 2012. Buch. xii, 440 S. Hardcover ISBN 978 3 642 29162 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 836 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 2 The Elements of Euclid “At age eleven, I began Euclid, with my brother as my tutor. This was one of the greatest events of my life, as dazzling as first love. I had not imagined that there was anything as delicious in the world.” (B. Russell, quoted from K. Hoechsmann, Editorial, π in the Sky, Issue 9, Dec. 2005. A few paragraphs later K. H. added: An innocent look at a page of contemporary the- orems is no doubt less likely to evoke feelings of “first love”.) “At the age of 16, Abel’s genius suddenly became apparent. Mr. Holmbo¨e, then professor in his school, gave him private lessons. Having quickly absorbed the Elements, he went through the In- troductio and the Institutiones calculi differentialis and integralis of Euler. From here on, he progressed alone.” (Obituary for Abel by Crelle, J. Reine Angew. Math. 4 (1829) p. 402; transl. from the French) “The year 1868 must be characterised as [Sophus Lie’s] break- through year. -
Euclid Transcript
Euclid Transcript Date: Wednesday, 16 January 2002 - 12:00AM Location: Barnard's Inn Hall Euclid Professor Robin Wilson In this sequence of lectures I want to look at three great mathematicians that may or may not be familiar to you. We all know the story of Isaac Newton and the apple, but why was it so important? What was his major work (the Principia Mathematica) about, what difficulties did it raise, and how were they resolved? Was Newton really the first to discover the calculus, and what else did he do? That is next time a fortnight today and in the third lecture I will be talking about Leonhard Euler, the most prolific mathematician of all time. Well-known to mathematicians, yet largely unknown to anyone else even though he is the mathematical equivalent of the Enlightenment composer Haydn. Today, in the immortal words of Casablanca, here's looking at Euclid author of the Elements, the best-selling mathematics book of all time, having been used for more than 2000 years indeed, it is quite possibly the most printed book ever, apart than the Bible. Who was Euclid, and why did his writings have such influence? What does the Elements contain, and why did one feature of it cause so much difficulty over the years? Much has been written about the Elements. As the philosopher Immanuel Kant observed: There is no book in metaphysics such as we have in mathematics. If you want to know what mathematics is, just look at Euclid's Elements. The Victorian mathematician Augustus De Morgan, of whom I told you last October, said: The thirteen books of Euclid must have been a tremendous advance, probably even greater than that contained in the Principia of Newton. -
High-Dimensional Menger-Type Curvatures-Part I: Geometric
High-Dimensional Menger-Type Curvatures - Part I: Geometric Multipoles and Multiscale Inequalities ∗ Gilad Lermany and J. Tyler Whitehousez June 6, 2021 Abstract We define discrete and continuous Menger-type curvatures. The discrete curvature scales the volume of a (d + 1)-simplex in a real separable Hilbert space H, whereas the continuous curvature integrates the square of the discrete one according to products of a given measure (or its restriction to balls). The essence of this paper is to establish an upper bound on the contin- uous Menger-type curvature of an Ahlfors regular measure µ on H in terms of the Jones-type flatness of µ (which adds up scaled errors of approximations of µ by d-planes at different scales and locations). As a consequence of this result we obtain that uniformly rectifiable measures satisfy a Carleson-type estimate in terms of the Menger-type curvature. Our strategy combines discrete and integral multiscale inequalities for the polar sine with the \geometric multipoles" construction, which is a multiway analog of the well-known method of fast multipoles. AMS Subject Classification (2000): 49Q15, 42C99, 60D05 1 Introduction We introduce Menger-type curvatures of measures and show that they satisfy a Carleson-type esti- mate when the underlying measures are uniformly rectifiable in the sense of David and Semmes [2, 3]. The main development of the paper (implying this Carleson-type estimate) is a careful bound on the Menger-type curvature of an Ahlfors regular measure in terms of the sizes of least squares approximations of that measure at different scales and locations. -
Lecture 18: Side-Angle-Side
Lecture 18: Side-Angle-Side 18.1 Congruence Notation: Given 4ABC, we will write ∠A for ∠BAC, ∠B for ∠ABC, and ∠C for ∠BCA if the meaning is clear from the context. Definition In a protractor geometry, we write 4ABC ' 4DEF if AB ' DE, BC ' EF , CA ' F D, and ∠A ' ∠D, ∠B ' ∠E, ∠C ' ∠F. Definition In a protractor geometry, if 4ABC ' 4DEF , 4ACB ' 4DEF , 4BAC ' 4DEF , 4BCA ' 4DEF , 4CAB ' 4DEF , or 4CBA ' 4DEF , we say 4ABC and 4DEF are congruent Example In the Taxicab Plane, let A = (0, 0), B = (−1, 1), C = (1, 1), D = (5, 0), E = (5, 2), and F = (7, 0). Then AB = 2 = DE, AC = 2 = DF, m(∠A) = 90 = m(∠D), m(∠B) = 45 = m(∠E), and m(∠C) = 45 = m(∠F ), and so AB ' DE, AC ' DF , ∠A ' ∠D, ∠B ' ∠E, and ∠C ' ∠F . However, BC = 2 6= 4 = EF. Thus BC and EF are not congruent, and so 4ABC and 4DEF are not congruent. 18.2 Side-angle-side Definition A protractor geometry satisfies the Side-Angle-Side Axiom (SAS) if, given 4ABC and 4DEF , AB ' DE, ∠B ' ∠E, and BC ' EF imply 4ABC ' 4DEF . Definition We call a protractor geometry satisfying the Side-Angle-Side Axiom a neutral geometry, also called an absolute geometry. 18-1 Lecture 18: Side-Angle-Side 18-2 Example We will show that the Euclidean Plane is a neutral geometry. First recall the Law of Cosines: Given any triangle 4ABC in the Euclidean Plane, 2 2 2 AC = AB + BC − 2(AB)(BC) cos(mE(∠B)). -
The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every
1 The Postulates of Neutral Geometry Axiom 1 (The Set Postulate). Every line is a set of points, and the collection of all points forms a set P called the plane. Axiom 2 (The Existence Postulate). There exist at least two distinct points. Axiom 3 (The Incidence Postulate). For every pair of distinct points P and Q, there exists exactly one line ` such that both P and Q lie on `. Axiom 4 (The Distance Postulate). For every pair of points P and Q, the distance from P to Q, denoted by P Q, is a nonnegative real number determined uniquely by P and Q. Axiom 5 (The Ruler Postulate). For every line `, there is a bijective function f : ` R with the property that for any two points P, Q `, we have → ∈ P Q = f(Q) f(P ) . | − | Any function with these properties is called a coordinate function for `. Axiom 6 (The Plane Separation Postulate). If ` is a line, the sides of ` are two disjoint, nonempty sets of points whose union is the set of all points not on `. If P and Q are distinct points not on `, then both of the following equivalent conditions are satisfied: (i) P and Q are on the same side of ` if and only if P Q ` = ∅. ∩ (ii) P and Q are on opposite sides of ` if and only if P Q ` = ∅. ∩ 6 Axiom 7 (The Angle Measure Postulate). For every angle ∠ABC, the measure of ∠ABC, denoted by µ∠ABC, isa real number strictly between 0 and 180, determined uniquely by ∠ABC. Axiom 8 (The Protractor Postulate). -
CAIU Geometry - Relationships with Triangles
CK-12 FOUNDATION CAIU Geometry - Relationships with Triangles Cifarelli Jordan Shatto CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning, powered through the FlexBook Platform™. Copyright © 2011 CK-12 Foundation, www.ck12.org Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Un- ported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Specific details can be found at http://www.ck12.org/terms. Printed: May 26, 2011 Authors Victor Cifarelli, Lori Jordan, Brandie Shatto Contributor Brandie Shatto i www.ck12.org Contents 1 Relationships with Triangles 1 1.1 Perpendicular Bisectors in Triangles ............................... 1 1.2 Angle Bisectors in Triangles .................................... 10 1.3 Medians and Altitudes in Triangles ................................ 18 1.4 Inequalities in Triangles ...................................... 26 1.5 Extension: Indirect Proof ..................................... 36 1.6 Chapter 5 Review ......................................... 38 2 Perpendicular Bisectors in Triangles 40 2.1 Perpendicular Bisectors in Triangles ............................... 40 3 Angle Bisectors in Triangles 49 3.1 Angle Bisectors in Triangles ................................... -
Spectral Curvature Clustering (SCC)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Int J Comput Vis (2009) 81: 317–330 DOI 10.1007/s11263-008-0178-9 Spectral Curvature Clustering (SCC) Guangliang Chen · Gilad Lerman Received: 15 November 2007 / Accepted: 12 September 2008 / Published online: 10 December 2008 © The Author(s) 2008. This article is published with open access at Springerlink.com Abstract This paper presents novel techniques for im- 1 Introduction proving the performance of a multi-way spectral cluster- ing framework (Govindu in Proceedings of the 2005 IEEE We address the problem of hybrid linear modeling. Roughly Computer Society Conference on Computer Vision and Pat- speaking, we assume a data set that can be well approxi- tern Recognition (CVPR’05), vol. 1, pp. 1150–1157, 2005; mated by a mixture of affine subspaces, or equivalently, flats, Chen and Lerman, 2007, preprint in the supplementary web- and wish to estimate the parameters of each of the flats as well as the membership of the given data points associated page) for segmenting affine subspaces. Specifically, it sug- with them. More precise formulations of this problem ap- gests an iterative sampling procedure to improve the uni- pear in Ma et al. (2008) and Chen and Lerman (2007). form sampling strategy, an automatic scheme of inferring There are many algorithms that can be applied to this the tuning parameter from the data, a precise initialization problem. Some of them emphasize modeling of the under- procedure for K-means, as well as a simple strategy for iso- lying flats and then use the models to infer the clusters (see lating outliers.