Ballistic Missions to Comet Encke in 1980 -A New Phase of Solar System Exploration

Total Page:16

File Type:pdf, Size:1020Kb

Ballistic Missions to Comet Encke in 1980 -A New Phase of Solar System Exploration View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Embry-Riddle Aeronautical University 1974 (11th) Vol.1 Technology Today for The Space Congress® Proceedings Tomorrow Apr 1st, 8:00 AM Ballistic Missions To Comet Encke In 1980 -A New Phase Of Solar System Exploration William J. Bursnall Staff Engineer, Martin Marietta Corporation, Denver, Colorado Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Bursnall, William J., "Ballistic Missions To Comet Encke In 1980 -A New Phase Of Solar System Exploration" (1974). The Space Congress® Proceedings. 1. https://commons.erau.edu/space-congress-proceedings/proceedings-1974-11th-v1/session-4/1 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. BALLISTIC MISSIONS TO COMET ENCKE IN 1980 - A NEW PHASE OF SOLAR SYSTEM EXPLORATION -* William J. Bursnall Staff Engineer Martin Marietta Corporation Denver, Colorado ABSTRACT A prime mission candidate for initiating explo­ Space-flight missions to Comet Encke have been the ration of both a comet and asteroids with unmanned subject of a number of NASA-sponsored studies over spacecraft is available during the 1980 apparition the past several years (see Bibliography in of the short-period Comet Encke. Direct investi­ reference 1). In these studies, a variety of gation of such bodies is expected to provide the mission options and spacecraft configurations have best insight into conditions existing during the been presented and analyzed. The purpose of this early periods of solar system evolution. paper is to summarize the results of a recent study performed by the Martin Marietta Corporation's A discussion is presented on low-cost ballistic Denver Division for the NASA/Ames Research mission options to Comet Encke. Particular Center^'. This study was undertaken to determine emphasis is given to the results of a recently- the feasibility and desirability of using current- completed study of ballistically-launched, spin- technology, light-weight, spin-stabilized space­ stabilized spacecraft for 1980 missions to Comet craft for ballistic flyby missions to Comet Encke Encke and the asteroids Geographos and Toro. during the 1980 apparition. Characteristics and utilization of a small, separable probe to enhance comet science return are As a basis for the definition of scientific also described. In conclusion, it is shown that objectives and measurements, the physical charac­ the Encke ballistic flyby can provide the necessary teristics of Comet Encke will be summarized first, technical foundation to support the planning of and a typical instrument complement will be more advanced Encke follow-on missions as well as described. The spectrum of mission options for the challenging flyby of Comet Halley in 1986. Encke encounters in 1980 will be reviewed with emphasis on pre-perihelion, short-flight-time ballistic opportunities. Also included are options INTRODUCTION for subsequent flyby of the asteroids Geographos and Toro after Encke encounter. The variations of The exploration of Earth's neighboring planets with comet encounter conditions affecting scientific unmanned spacecraft is systematically building a accomplishment will be discussed in relation to the fund of knowledge on the characteristics of Mars, selected mission. The design features of a typical Venus, Jupiter, and, most recently, Mercury. By Atlas/Centaur-class spacecraft are described, and the end of the present decade, it is projected that the utilization of a separable probe to enhance U.S. spacecraft will also be enroute to Saturn and comet science is also discussed. The impacts of Uranus. The scientific results of the Pioneer and combined Encke/asteroid encounters on spacecraft Mariner programs have been impressive and, in some design and mission are then evaluated. In con­ cases, very surprising, but they are still snap­ clusion, key technical issues are discussed to show shots of bodies as they have evolved since their the direct relationship of the 1980 Encke flyby formation. During their evolution, they have mission to the successful accomplishment of follow- experienced many catastrophic and metamorphic on exploration of Encke and to flyby of comet changes as a result of the actions of gravity, Halley in 1986. volcanism, solar activity, and other dynamic events. As a result of such changes, however, planets offer limited data on solar system origins and formative COMET ENCKE CHARACTERISTICS processes. Potential sources of additional infor­ mation on the early stages of solar system In 1819, Johann. Franz Encke, then at the observa­ development are the comets and asteroids which are tory at Seeburg, Switzerland, proved that the considered to be very close to the state in which apparently different comets observed in 1786, 1795, they were formed. The short-period Comet Encke, in and 1818 were actually the same comet that now particular, is currently the primary NASA candidate bears his name. Based on Encke's calculated for initiating small-body exploration. epheraeris, the comet was successfully acquired at its apparition in 1822. Since 1818, Comet Encke * Based on a research report prepared for the Ames has been observed at each apparition with the Research Center, NASA under Contract NAS2-7564. exception of 1944. At its brightest, Encke's comet 4-1 is ordinarily slightly fainter than the naked-eye Recent observations of comets in ultraviolet by the limit. The 3,3-year orbital period of this well Orbiting Astronomical Observatory (OAQ) spacecraft observed comet still remains the shortest known for show a half intensity Lyman-alpha halo out to about any comet. This frequent accessibility offers the oae million kilometers. opportunity for an orderly program of progressive exploration,, The solar wind interacts with the coma to produce a tail downstream and the upstream phenomena shown in Whipple"', in a recent periodical article,, gives Figure 1, The solar wind is decelerated, either an excellent summary of comet characteristics and gradually or suddenly, a turbulent, transition discusses the uncertainties as well as the facts region follows, and then there is a flow around the that have evolved over the many years of comet coma. A type of contact surface exists and observations. For the purposes of this paper, only separates the solar wind and cometary plasma,, but a 'brief discussion, of comet physics will be given its maintenance and processes are not clearly known. to establish the basis for defining science The solar wind may, in addition, contribute to instrument and mission-design requirements. In the dissociation and ionization of neutral parent following discussion, the three basic structural molecules. Ionized constituents of the coma are parts of a comet (nucleus, coma, and tail) will be swept into the tail. Observations have shown, that described, and the quantitative parameters for Eneke Encke exhibits a Type I tail of ionized plasma but will be summarized. has no significant Type II dust tail. This is con­ sistent with its aging and earlier depletion by In general, the existance of a cometary nucleus is mass losses. The maintenance of the tail and its 'based on circumstantial evidence. More direct observed fine structure may involve electrodynamic evidence, however, was obtained by Dr. Elizabeth processes not clearly understood. Roemer in photographs of Comet Encke near aphelion £n 1972^', In these observations, Encke appeared Table I is a summary of the primary physical as a "stellar object" with a magnitude of about properties of Comet Encke. A more detailed 20*5* In accord with Whipple's model of an icy- discussion of these properties, their derivation, conglomerate (or "dirty snowball") nucleus, it is and associated references may be found, in reference inferred that such a central body exists to provide 2. the source for gases and dust found in the coma and tail. The nucleus contains complex parent molecules such as H20, NH3, CH^, and C02 in the form of com­ COMET SCIENCE OBJECTIVES AMD INSTRUMENTATION plex ices. As the comet approaches the Sun, these ices sublimate at temperatures of a few hundred In spite of the long history of comet observations, degrees Kelvin, and! provide "daughter" molecules many of the basic physical properties and processes 'lib, ich are s een in c one t s pec t r um me a s ur erne nt s. Also can only be inferred, fr om gr ound - b a s e d. s t ud i e s , interspersed in the nucleus ices is meteoric materi­ Direct measurements in the comet environment will al which is the source of dust in the comet. It is be required to understand more completely their estimated that Encke's nucleus is about 3.2 km in o r ig i n a nd e vo 1 u t i o n. In a c c or d a. :nc e w 1, th t he w id e " diameter,,, range of observables and energy processes possible at the comet, considerable breadth in scientific The coma is the "atmosphere" of the comet and is a objectives is required on initial flyby missions in near-spherical region around the nucleus in which p r 1 e p a r a t i on f or 1 a t, e 1 r, mor e a, mb i, t i ous f 1 i gh t s * ioniza t ion , pho t o-d i s s oc ia t ion, and other proc esses Since the first flyby of a comet is in every sense occur i n the ma ter 'ia, 1 ema na t ing f r om the nu cl eu s . an exploratory venture,, there is no strong The coma diameter 'varies with the solar distance of rationale that special emphasis be given, to only the comet* At 1 AU, Encke*s mean diameter is about one s c ie nt i fie d is c ip 1, ine , The sc ience o'b j ec t ive s , 1,05 km and decreases to about 40,000 km, at 0.5 AU.
Recommended publications
  • ABCD the 4Th Quarter 2013 Catalog
    ABCD springer.com The 4th quarter 2013 catalog Medicine springer.com Dentistry 2 T. Eliades, University of Zurich, Zurich, Switzerland; G. Eliades, Dentistry University of Athens, Athens, Greece (Eds.) Medicine Plastics in Dentistry and K. Rötzscher (Ed.) Estrogenicity J. Sadek, Dalhousie University, Halifax, Canada Forensic and Legal Dentistry A Guide to Safe Practice A Clinician’s Guide to ADHD This book provides a timely and comprehensive This book both explains in detail diverse aspects of review of our current knowledge of BPA release from The Clinician’s Guide to ADHD combines the use- the law as it relates to dentistry and examines key dental polymers and the potential endocrinologi- ful diagnostic and treatment approaches advocated issues in forensic odontostomatology. A central aim cal consequences. After a review of the history and in different guidelines with insights from other is to enable the dentist to achieve a realistic assess- evolution of the issue within the broader biomedical sources, including recent literature reviews and web ment of the legal situation and to reduce uncer- context, the estrogenicity of BPA is explained. The resources. The aim is to provide clinicians with clear, tainties and liability risk. To this end, experts from basic chemistry of the polymers used in dentistry is concise, and reliable advice on how to approach this across the world discuss the dental law in their own then presented in a simplified and clinically relevant complex disorder. The guidelines referred to in com- countries, covering both civil and criminal law and manner. Key chapters in the book carefully evaluate piling the book derive from authoritative sources in highlighting key aspects such as patient rights, insur- the release of BPA from polycarbonate products and different regions of the world, including the United ance, and compensation.
    [Show full text]
  • The Comet's Tale, and Therefore the Object As a Whole Would the Section Director Nick James Highlighted Have a Low Surface Brightness
    1 Diebold Schilling, Disaster in connection with two comets sighted in 1456, Lucerne Chronicle, 1513 (Wikimedia Commons) THE COMET’S TALE Comet Section – British Astronomical Association Journal – Number 38 2019 June britastro.org/comet Evolution of the comet C/2016 R2 (PANSTARRS) along a total of ten days on January 2018. Composition of pictures taken with a zoom lens from Teide Observatory in Canary Islands. J.J Chambó Bris 2 Table of Contents Contents Author Page 1 Director’s Welcome Nick James 3 Section Director 2 Melvyn Taylor’s Alex Pratt 6 Observations of Comet C/1995 01 (Hale-Bopp) 3 The Enigma of Neil Norman 9 Comet Encke 4 Setting up the David Swan 14 C*Hyperstar for Imaging Comets 5 Comet Software Owen Brazell 19 6 Pro-Am José Joaquín Chambó Bris 25 Astrophotography of Comets 7 Elizabeth Roemer: A Denis Buczynski 28 Consummate Comet Section Secretary Observer 8 Historical Cometary Amar A Sharma 37 Observations in India: Part 2 – Mughal Empire 16th and 17th Century 9 Dr Reginald Denis Buczynski 42 Waterfield and His Section Secretary Medals 10 Contacts 45 Picture Gallery Please note that copyright 46 of all images belongs with the Observer 3 1 From the Director – Nick James I hope you enjoy reading this issue of the We have had a couple of relatively bright Comet’s Tale. Many thanks to Janice but diffuse comets through the winter and McClean for editing this issue and to Denis there are plenty of images of Buczynski for soliciting contributions. 46P/Wirtanen and C/2018 Y1 (Iwamoto) Thanks also to the section committee for in our archive.
    [Show full text]
  • How We Found About COMETS
    How we found about COMETS Isaac Asimov Isaac Asimov is a master storyteller, one of the world’s greatest writers of science fiction. He is also a noted expert on the history of scientific development, with a gift for explaining the wonders of science to non- experts, both young and old. These stories are science-facts, but just as readable as science fiction.Before we found out about comets, the superstitious thought they were signs of bad times ahead. The ancient Greeks called comets “aster kometes” meaning hairy stars. Even to the modern day astronomer, these nomads of the solar system remain a puzzle. Isaac Asimov makes a difficult subject understandable and enjoyable to read. 1. The hairy stars Human beings have been watching the sky at night for many thousands of years because it is so beautiful. For one thing, there are thousands of stars scattered over the sky, some brighter than others. These stars make a pattern that is the same night after night and that slowly turns in a smooth and regular way. There is the Moon, which does not seem a mere dot of light like the stars, but a larger body. Sometimes it is a perfect circle of light but at other times it is a different shape—a half circle or a curved crescent. It moves against the stars from night to night. One midnight, it could be near a particular star, and the next midnight, quite far away from that star. There are also visible 5 star-like objects that are brighter than the stars.
    [Show full text]
  • Small Bodies of the Solar System Don Yeomans
    news and views teakre Small bodies of the Solar System Don Yeomans ,-.......-..-.- "_.."..._..".."....".._..I........... ".........._ "_.""".." ".......... " "............_..._.." ....".."-..- ..-.... "....""... Discoveries of comets that behave like asteroids and asteroids that behave like comets are making us reassess our view of Earth's smallest neighbours. cientists have a strong urge to place Mother Nature's objects into neat Sboxes. For most of the past halfcentury, the comets and asteroids of the Solar System did seem to belong in two separate popula- tions -each within their own box. The rules werethatcomets,withawiderangeoforbits, were solid, dirty iceballs originating in the so-called Oort cloud at theedge of the Solar System. Asteroids were definedas bitsofrock anfimed mostly to a region between Mars and Jupiter and travelling roughly in the same plane and inthe same direction as the planets about theSun (Fig. 1).Fromtjme to Lime over the past 50 years, objects were bund that did not really belong in either )OX, but they were onlyconsidered as occa- iional exceptions to the rules. Within the Figure 1 The usual view of corneta and utcroida. The inna Soh System cuntlinr the Sun and the ,ast few years, however,Mother Nature has four terreatrid planar:Mercury, Venu%Euth and Ma.fie lump of mdc that make up thenuin ticked over the boxes entirely, spilling the asteroid bdt between him and Jupiterorbit the Sun in the meplane andthe medirection PJ the :ontents and demanding thatscientists rec- planets. Most tometa have highly dlipticnl orbits, whichmeans they spend most of their timein the )gnizE crossover objects - asteroids that outer reache of the Solar System with only briefpasages dose to the Sun.
    [Show full text]
  • Initial Characterization of Interstellar Comet 2I/Borisov
    Initial characterization of interstellar comet 2I/Borisov Piotr Guzik1*, Michał Drahus1*, Krzysztof Rusek2, Wacław Waniak1, Giacomo Cannizzaro3,4, Inés Pastor-Marazuela5,6 1 Astronomical Observatory, Jagiellonian University, Kraków, Poland 2 AGH University of Science and Technology, Kraków, Poland 3 SRON, Netherlands Institute for Space Research, Utrecht, the Netherlands 4 Department of Astrophysics/IMAPP, Radboud University, Nijmegen, the Netherlands 5 Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam, the Netherlands 6 ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo, the Netherlands * These authors contributed equally to this work; email: [email protected], [email protected] Interstellar comets penetrating through the Solar System had been anticipated for decades1,2. The discovery of asteroidal-looking ‘Oumuamua3,4 was thus a huge surprise and a puzzle. Furthermore, the physical properties of the ‘first scout’ turned out to be impossible to reconcile with Solar System objects4–6, challenging our view of interstellar minor bodies7,8. Here, we report the identification and early characterization of a new interstellar object, which has an evidently cometary appearance. The body was discovered by Gennady Borisov on 30 August 2019 UT and subsequently identified as hyperbolic by our data mining code in publicly available astrometric data. The initial orbital solution implies a very high hyperbolic excess speed of ~32 km s−1, consistent with ‘Oumuamua9 and theoretical predictions2,7. Images taken on 10 and 13 September 2019 UT with the William Herschel Telescope and Gemini North Telescope show an extended coma and a faint, broad tail. We measure a slightly reddish colour with a g′–r′ colour index of 0.66 ± 0.01 mag, compatible with Solar System comets.
    [Show full text]
  • The April 2017
    The Volume 126 No. 4 April 2017 Bullen Monthly newsleer of the Astronomical Society of South Australia Inc In this issue: ♦ Vera Rubin - the “mother” of dark maer dies ♦ Astronomical discoveries during ASSA’s second decade ♦ Trappist-1 - 7 Earth-sized planets orbit this dim star ♦ Observing Copeland’s Septet in Leo ♦ Registered by Australia Post Visit us on the web: Bullen of the ASSA Inc 1 April 2017 Print Post Approved PP 100000605 www.assa.org.au In this issue: ASSA Acvies 3-4 Details of general meengs, viewing nights etc History of Astronomy 5-6 ASTRONOMICAL SOCIETY of Astronomical discoveries in ASSA’s second decade SOUTH AUSTRALIA Inc Saying Goodbye 7-8 GPO Box 199, Adelaide SA 5001 Vera Rubin, mother of dark maer dies The Society (ASSA) can be contacted by post to the Astro News 9-10 address above, or by e-mail to [email protected]. Latest astronomical discoveries and reports Membership of the Society is open to all, with the only prerequisite being an interest in Astronomy. The Sky this month 11-14 Solar System, Comets, Variable Stars, Deep Sky Membership fees are: Full Member $75 ASSA Contact Informaon 15 Concessional Member $60 Subscribe e-Bullen only; discount $20 Members’ Image Gallery 16 Concession informaon and membership brochures can A gallery of members’ astrophotos be obtained from the ASSA web site at: hp://www.assa.org.au or by contacng The Secretary (see contacts page). Member Submissions Sister Society relaonships with: Submissions for inclusion in The Bullen are welcome Orange County Astronomers from all members; submissions may be held over for later edions.
    [Show full text]
  • The Comet's Tale
    THE COMET’S TALE Journal of the Comet Section of the British Astronomical Association Number 33, 2014 January Not the Comet of the Century 2013 R1 (Lovejoy) imaged by Damian Peach on 2013 December 24 using 106mm F5. STL-11k. LRGB. L: 7x2mins. RGB: 1x2mins. Today’s images of bright binocular comets rival drawings of Great Comets of the nineteenth century. Rather predictably the expected comet of the century Contents failed to materialise, however several of the other comets mentioned in the last issue, together with the Comet Section contacts 2 additional surprise shown above, put on good From the Director 2 appearances. 2011 L4 (PanSTARRS), 2012 F6 From the Secretary 3 (Lemmon), 2012 S1 (ISON) and 2013 R1 (Lovejoy) all Tales from the past 5 th became brighter than 6 magnitude and 2P/Encke, 2012 RAS meeting report 6 K5 (LINEAR), 2012 L2 (LINEAR), 2012 T5 (Bressi), Comet Section meeting report 9 2012 V2 (LINEAR), 2012 X1 (LINEAR), and 2013 V3 SPA meeting - Rob McNaught 13 (Nevski) were all binocular objects. Whether 2014 will Professional tales 14 bring such riches remains to be seen, but three comets The Legacy of Comet Hunters 16 are predicted to come within binocular range and we Project Alcock update 21 can hope for some new discoveries. We should get Review of observations 23 some spectacular close-up images of 67P/Churyumov- Prospects for 2014 44 Gerasimenko from the Rosetta spacecraft. BAA COMET SECTION NEWSLETTER 2 THE COMET’S TALE Comet Section contacts Director: Jonathan Shanklin, 11 City Road, CAMBRIDGE. CB1 1DP England. Phone: (+44) (0)1223 571250 (H) or (+44) (0)1223 221482 (W) Fax: (+44) (0)1223 221279 (W) E-Mail: [email protected] or [email protected] WWW page : http://www.ast.cam.ac.uk/~jds/ Assistant Director (Observations): Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire.
    [Show full text]
  • Comets-Meteor Copy
    • Comet – km-sized bodies with volatiles & refractories Definitions • Asteroid – small planetary bodies orbiting the Comets & Primitive Bodies sun (mostly refractory) • Meteoroid – small (<< km) extra-terrestrial body orbiting the sun Karen J. Meech, Astronomer • Meteor – meteoroid passing through Earth atm Institute for Astronomy • Meteorite/Fall – meteoroid which hits the ground • Fireball – very bright meteor • Find – meteorite found on ground, not associated with a fall • Parent body – comet or asteroid-like body in which the meteoroid formed Comets Inspire Terror Historical Highlights 1066 Halley Wm conqueror 1456 Halley Excommunicated 1531 Halley Observed by Kepler 1744 De Cheseaux 6 tails 1858 Donati Most beautiful 1811 Flaugergeus comet wine Dutch Woodcut (1668) – “Destruction by 4th century comet” 1861 Tebbutt Naked eye, aurorae 1901 Great S Daytime visibility ! Sudden appearance in sky ! Only a few bright naked-eye comets / century ! Tail physically large " millions of km ! Early composition: toxic chemicals Comet of 1577 McNaught 2007 Recent Historical Comet Halley Great Comets Ikeya-Seki, 1957 Hale Bopp 1995 Hayakutake, 1996 Top: Middle / Bottom: • Babylon 164 BC • Giotto Fresco 1301 • 1145 • Chinese 1378 (Halley - periodic) • Korea - 1222 at • 1531 - Peter Apian tail orientation Chomsongdae Obsty • 1759 - Korean observations Comet Halleys Perception: Science & Fear 1680 Alarm 1910 Alarm Historical The Modern Comet Understanding • Nucleus • Solid body, few km radius • H2O ice + dust + other volatiles: CO, CO2 + ! Tycho Brahe
    [Show full text]
  • King David's Altar in Jerusalem Dated by the Bright Appearance of Comet
    Annals of Archaeology Volume 1, Issue 1, 2018, PP 30-37 King David’s Altar in Jerusalem Dated by the Bright Appearance of Comet Encke in 964 BC Göran Henriksson Department of Physics and Astronomy, Uppsala University, Box 516, SE 751 20 Uppsala, Sweden *Corresponding Author: Göran Henriksson, Department of Physics and Astronomy, Uppsala University, Box 516, SE 751 20 Uppsala, [email protected] ABSTRACT At the time corresponding to our end of May and beginning of June in 964 BC a bright comet with a very long tail dominated the night sky of the northern hemisphere. It was Comet Encke that was very bright during the Bronze Age, but today it is scarcely visible to the naked eye. It first appeared as a small comet close to the zenith, but for every night it became greater and brighter and moved slowly to the north with its tail pointing southwards. In the first week of June the tail was stretched out across the whole sky and at midnight it was visible close to the meridian. In this paper the author wishes to test the hypothesis that this appearance of Comet Encke corresponds to the motion in the sky above Jerusalem of “the sword of the Angel of the Lord”, mentioned in 1 Chronicles, in the Old Testament. Encke was first circumpolar and finally set at the northern horizon on 8 June in 964 BC at 22. This happened according to the historical chronology between 965 and 960 BC. The calculations of the orbit of Comet Encke have been performed by a computer program developed by the author.
    [Show full text]
  • Smart Meters
    From: David W. Greenberg ~ Sent: Wednesday, September 07, 2011 5:02 PM To: Babicz, Walter Cc: David W. Greenberg Subject: Smart Meters Mayor and Council City of Prince George 1100 Patricia Boulevard Prince George, BC V2L 3V9 To the Mayor and City Council, I was in attendance at City Council when the matter of Smart Meters was discussed and I was disappointed that the few councillors who spoke about the matter were somewhat dismissive of the concerns about the forced installation of these devices. For example, it was said that the arguments that BC Hydro makes regarding the health hazards were more convincing than the arguments presented by people with fears that the meters might be dangerous. It was pointed out that people are often exposed to other potential carcinogens such as caffein in coffee. However, what was missed was the fact that people are free to choose whether or not they drink coffee or use cell phone or expose themselves to other potential hazards; they are not free to choose the type of electric meter that is installed at their homes. I urge Prince George City Council to protect the citizens of this community from the forced installation of smart meters for the following reasons: 1. Health. The meters may or may not be a danger; at this point we just do not know. Why take the risk until the matter is researched further? 2. Privacy. The meters clearly present an opportunity for the invasion of privacy. At this point we only have the word ofB.C. Hydro that they do not intend to use the technology available to them to use power consumption information for purposes other than billing.
    [Show full text]
  • Ice & Stone 2020
    Ice & Stone 2020 WEEK 17: APRIL 19-25, 2020 Presented by The Earthrise Institute # 17 Authored by Alan Hale This week in history APRIL 19 20 21 22 23 24 25 APRIL 20, 1910: Comet 1P/Halley passes through perihelion at a heliocentric distance of 0.587 AU. Halley’s 1910 return, which is described in a previous “Special Topics” presentation, was quite favorable, with a close approach to Earth (0.15 AU) and the exhibiting of the longest cometary tail ever recorded. APRIL 20, 2025: NASA’s Lucy mission is scheduled to pass by the main belt asteroid (52246) Donaldjohanson. Lucy is discussed in a previous “Special Topics” presentation. APRIL 19 20 21 22 23 24 25 APRIL 21, 2024: Comet 12P/Pons-Brooks is predicted to pass through perihelion at a heliocentric distance of 0.781 AU. This comet, with a discussion of its viewing prospects for 2024, is a previous “Comet of the Week.” APRIL 19 20 21 22 23 24 25 APRIL 22, 2020: The annual Lyrid meteor shower should be at its peak. Normally this shower is fairly weak, with a peak rate of not much more than 10 meteors per hour, but has been known to exhibit significantly stronger activity on occasion. The moon is at its “new” phase on April 23 this year and thus the viewing circumstances are very good. COVER IMAGE CREDIT: Front and back cover: This artist’s conception shows how families of asteroids are created. Over the history of our solar system, catastrophic collisions between asteroids located in the belt between Mars and Jupiter have formed families of objects on similar orbits around the sun.
    [Show full text]
  • Interstellar Interlopers Two Recently Sighted Space Rocks That Came from Beyond the Solar System Have Puzzled Astronomers
    A S T R O N O MY InterstellarInterstellar Interlopers Two recently sighted space rocks that came from beyond the solar system have puzzled astronomers 42 Scientific American, October 2020 © 2020 Scientific American 1I/‘OUMUAMUA, the frst interstellar object ever observed in the solar system, passed close to Earth in 2017. InterstellarInterlopers Interlopers Two recently sighted space rocks that came from beyond the solar system have puzzled astronomers By David Jewitt and Amaya Moro-Martín Illustrations by Ron Miller October 2020, ScientificAmerican.com 43 © 2020 Scientific American David Jewitt is an astronomer at the University of California, Los Angeles, where he studies the primitive bodies of the solar system and beyond. Amaya Moro-Martín is an astronomer at the Space Telescope Science Institute in Baltimore. She investigates planetary systems and extrasolar comets. ATE IN THE EVENING OF OCTOBER 24, 2017, AN E-MAIL ARRIVED CONTAINING tantalizing news of the heavens. Astronomer Davide Farnocchia of NASA’s Jet Propulsion Laboratory was writing to one of us (Jewitt) about a new object in the sky with a very strange trajectory. Discovered six days earli- er by University of Hawaii astronomer Robert Weryk, the object, initially dubbed P10Ee5V, was traveling so fast that the sun could not keep it in orbit. Instead of its predicted path being a closed ellipse, its orbit was open, indicating that it would never return. “We still need more data,” Farnocchia wrote, “but the orbit appears to be hyperbolic.” Within a few hours, Jewitt wrote to Jane Luu, a long-time collaborator with Norwegian connections, about observing the new object with the Nordic Optical Telescope in LSpain.
    [Show full text]