Fire and Mowing Have Effects on the Density of Asteraceae and Fabaceae

Total Page:16

File Type:pdf, Size:1020Kb

Fire and Mowing Have Effects on the Density of Asteraceae and Fabaceae Tillers 2000, 2, 39-45 Fire and mowing have effects on the density of Asteraceae and Fabaceae DAN CARTER, DAN LESH, and ANN MOGUSH Biology Department, Grinnell College, PO Box 09-04, Grinnell, IA 50112 Abstract Burning and mowing are two common prairie restoration/reconstruction tools. Both are important in determining the prairie’s composition of forbs. We investigated effects on Asteraceae and Fabaceae, the two most common forb families on the tallgrass prairie. We measured the density of both families and species belonging to these families on plots where mowing and burning were treatments. Burning led to a significant increase in the density of Fabaceae but not Asteraceae. Mowing had a significant effect on Amorpha canescens and Solidago sp. The effects of these treatments indicate that they influence the presence of the two largest forb families on tallgrass prairie in Central Iowa. favoring Fabaceae species capable of fixing Introduction their own nitrogen. Asteraceae may be hindered by fire. Fire removes deep litter, Forbs comprise the majority of species in and dominant C4 grasses have been shown the tallgrass community, despite being to increase after deep litter removal infrequent in comparison to dominant C4 (Hulbert 1969). Competition with grasses (Howe 1999). Asteraceae and grasses may be to the detriment of Fabaceae are two of the most common Asteraceae, especially since many forb families in the tallgrass prairie region. Asteraceae species bloom concurrently Species belonging to Asteraceae tend to with the main thrust of grass growth. have daisy-like flowers and bloom from Therefore, fire is capable of altering the summer into fall. Many species belonging balance between forbs and grasses on the to Fabaceae can fix nitrogen and have prairie. compound leaves. Most bloom from Grazing is another factor that can spring into summer. To manage the affect the prairie community. Bison and prairie ecosystem, it is necessary to other large grazers roamed the prairie prior examine the factors that influence the to European settlement. Large generalist presence of major forb families and their grazers tend to increase diversity by representative species. Fire and grazing reducing dominant vegetation (Howe are management tools and forms of 1999). Mowing is an appropriate disturbance that effect the composition of substitution because it is the ultimate forbs on prairie. generalist, cropping a given area equally. Fire is an environmental factor Therefore, grazing (mowing) is likely to that has a profound effect on the prairie favor forb species because it levels the ecosystem (Whelan 1995). Before playing field between the forbs and the European settlement, fires ignited by dominant grasses. lightning and set by Native Americans Kucera and Koelling (1964) periodically swept across the prairie. Fire showed that annual spring burn may favor Fabaceae on the prairie. significantly reduced Asteraceae at a Frequent burning may result in chronic tallgrass prairie site in Missouri. Because nitrogen deficiency (Collins 1992), of this and what we know about fire’s © 2000 Grinnell College 40 D. CARTER et al. effects on nitrogen budgets, we expected all combinations of treatments in the that annual fire treatment alone would Mow/Burn experiment. lead to a decrease in Asteraceae density and no change or increase in Fabaceae density. Because grazing (in our Results experiment, mowing) reduces C4 dominance, we expected grazing to lead to Effects of fire on Asteraceae: a general increase in the density of forb We found that burning did not species. significantly influence the density of the family Asteraceae in the prairie (t=-0.14, df=18, p=0.89). Mean Asteraceae density Methods was 4% lower on burned than unburned plots, but is not significant (Fig. 1). To investigate the effects of annual Burned plots had a higher mean burning and mowing on the density of density of Solidago sp. than unburned Fabaceae and Asteraceae species, we plots, but the difference was not collected data from Conard significant (t=.52, df=16, p=0.61, Fig 2). Environmental Research Center on the Unburned plots had a higher following dates: October 4, 9, 11, 23, 25, mean density of Ratibida pinnata than and 30 2000. We collected data from burned plots, and burning did twenty plots in the burn experiment, ten significantly influence its density (t=-2.38, each on burn and no burn plots. The df=18, p=0.02, Fig 3). burn experiment had been burned every spring since 1997. We also collected data Effects of fire on Fabaceae: from twenty plots on the mow/burn The family Fabaceae was more experiment, five replicates each of burn/no abundant on burned than unburned plots mow, burn/mow, no burn/mow, and no (t=2.73, df=17, p=0.01, Fig. 4). burn/no mow (see Appendix A). Each Mean Lespedeza capitata density plot measures ten meters by ten meters, was significantly higher on burned than and ten-meter strips of uncontrolled unburned plots(t=2.52, df=18, p=0.02, prairie separate each plot from the next. Fig 5). To increase our sample size in the Mean Baptisia leucantha density mow/burn component of our experiment, was significantly higher on burned than we included data from the ten unburned unburned plots (t=2.63, df=16, p=0.02, plots and ten burned plots in the burn Fig. 6). experiment. In each replicate we randomly laid Combined effects of Mow and Burn on a ten meter transect and counted the total Asteraceae and Fabaceae number of stems of each forb family and Mowing, burning, and the species within half a meter of the transect. combined effects of mowing and burning We calculated the density of, total had no significant effect on the density of Asteraceae, individual Asteraceae species, Asteraceae or Fabaceae in the two-factor Fabaceae, and individual Fabaceae species experiment (Table 1). However, mean in each sample. We ran t-tests on Solidago sp. and Amorpha canescens density Microsoft Excel to compare density were significantly reduced by mowing and between burned and unburned samples in not burning or the combination of the burn experiment. We ran an ANOVA burning and mowing (Table 1). on Minitab to compare density between © 2000 Grinnell College, Tillers, 2, 39-45 PLANT FAMILY RESPONSES TO MANAGEMENT 41 Figure 1. Mean Density(stems/ Figure 2.Density Denisty(stems/m2) Asteraceae on Burned vs. Unbu Goldenrod sp. on Burned vs. Unb Plots at CERA (+/- S.E.) Plots at CERA (+/- S.E.) 10 5 8 4 6 3 Mean 4 Mean 2 Asteraceae 2 1 Goldenrod sp. Density(stems/m2) of 0 0 Density(stems/m2) of Burn No Burn Burn No Burn Treatment Treatment Figure 3. Density(stems/m2) of pinnata on Burned vs. Unburned at CERA (+/- S.E.) 3 2.5 2 1.5 Mean 1 0.5 Ratibida pinnata 0 Density(stems/m2) of Burn No Burn Treatment Figure 4. Density (stems/m2) Fabaceae on Burned vs. Unburned at CERA (+/- S.E.) 6 4 2 Fabaceae (stems/m2) of Mean Density 0 Burn No Burn Treatment © 2000 Grinnell College, Tillers, 2, 39-45 42 D. CARTER et al. Figure 5. Density (stems/ LespedezaLespedeza capitata capitata on Burne Unburned Plots at CERA (+/- 15 10 5 Mean Density (stems/m2) of 0 Lespedeza capitata burn no burn Treatmen Figure 6. Density (stems/m BaptisiaBaptisia leucantha leucantha on Burne Unburned Plots at CERA (+/- 0.8 0.6 0.4 0.2 Baptisia leucantha 0 Mean Density (stems/m2) of Burn No Burn Treatment Table 1. Analysis of Variance, using Adjusted SS for Tests Burn Mow Burn and Mow F-value P-value F-value P-value F-value P-value Asteraceae 0.32 0.575 1.31 0.26 0.05 0.832 Solidago sp. 0.07 0.797 4.56 0.04 0 0.992 Fabaceae 2.4 0.13 1.35 0.253 1.32 0.258 Amorpha canescens 0.17 0.681 4.62 0.038 0.79 0.381 F-value is the ratio of variation among groups to the variation within groups. © 2000 Grinnell College, Tillers, 2, 39-45 PLANT FAMILY RESPONSES TO MANAGEMENT 43 Discussion Since our study site was burned during the spring before the growing season, The Burn Experiment Hartnett’s effect may have been offset for Our data indicate that the yearly spring Asteraceae and Solidago sp. burning regime at CERA prairie has a The ability of Fabaceae to fix significant impact on Fabaceae but not nitrogen and their time of growth and Asteraceae. Our results showed that reproduction gives them an advantage Fabaceae was more abundant in burned after a fire. Our data for Asteraceae, the than unburned plots, so were Baptisia largest family on the prairie, shows that, in leucantha and Lespedeza capitata, two general, spring burning does not have a Fabaceae species. Kucera and Koelling significant effect on the prairie. We (1964) found that Fabaceae abundance encourage further study of summer and was not affected by fire but they cited the fall burn treatments and study of less findings of Whelan (1954) that fire has frequent burns, because plants would be been shown to increase Fabaceae. Fire impacted at different points in their decreases the soil nutrient content growth cycle, and effects on soil nutrients (Hartnett, 1991). Since most Fabaceae with less frequent burns may be different. species host nitrogen-fixing bacteria, it makes sense that Fabaceae would have an The Mow/Burn Experiment advantage after fire. Other factors are The only significant difference in likely important in determining Fabaceae Asteraceae density in any treatment was a density. At our site, the prairie is burned decrease in goldenrod sp. in response to every spring before the growing season. the single factor of mowing, and the only This should benefit Fabaceae plants difference in Fabaceae density was because they generally grow and flower Amorpha canescens in response to mowing.
Recommended publications
  • Family Fabaceae
    CATNIP classes, Acme Botanical Services 2013 Fabaceae (Pea Family, Bean Family, Legume Family) The third largest family of angiosperms (behind the aster family (Asteraceae) and the orchid family (Orchidaceae), the Fabaceae includes somewhere between 16.000 and 20,000 species. It rivals the grass family (Poaceae) in terms of economic importance. The Fabaceae includes plants of all growth forms, from trees and shrubs down to annual and perennial herbs. Members are easy to recognize on the basis of the foliage, which involves compound leaves of various kinds; the flowers, which are of three types (see subfamilies below); and the fruit, which is a single-chambered dry pod. Three subfamilies are recognized. All three are well represented in the Capital area. Mimosoideae. In this subfamily, the leaves are twice-pinnately compound. The flowers are tightly packed into heads or spikes. The flowers are regular (radially symmetrical), but the perianth (corolla and calyx) is so tiny as to be scarcely noticeable. The stamens are the conspicuous part of the flower, usually numerous and 10 times or more as long as the corolla. In many species, such as Nuttall’s sensitive- briar (Mimosa nuttallii, right), the flower heads resemble pink pom-poms. Caesalpinoideae. Plants of this group have even-pinnate or odd-pinnate leaves. The flowers have a conspicuous corolla with 5 separate petals. The stamens are separate and visible (i.e., not concealed by the corolla. Most of the species in our area have yellow petals. Roemer’s two-leaf senna (Senna roemeriana, right) is typical. Papilionideae. This is the largest subfamily in our area, and the one with the bilaterally symmetrical two-lipped flowers that come to mind any time the pea family is mentioned.
    [Show full text]
  • Invasive Asteraceae Copy.Indd
    Family Asteraceae Family: Asteraceae Spotted Knapweed Centaurea biebersteinii DC. Synonyms Acosta maculosa auct. non Holub, Centaurea maculosa auct. non Lam. Related Species Russian Knapweed Acroptilon repens (L.) DC. Description Spotted knapweed is a biennial to short-lived perennial plant. Seedling cotyledons are ovate, with the first leaves lance-shaped, undivided, and hairless. (Young seedlings can appear grass-like.) Stems grow 1 to 4 feet tall, and are many-branched, with a single flower at the end of each branch. Rosette leaves are indented or divided Old XID Services photo by Richard about half-way to the midrib. Stem leaves are alternate, pinnately divided, Spotted knapweed flower. and get increasingly smaller toward the tip of each branch. Flower heads are urn-shaped, up to 1 inch wide, and composed of pink, purple, or sometimes white disk flowers. A key characteristic of spotted knap- weed is the dark comb-like fringe on the tips of the bracts, found just below the flower petals. These dark-tipped bracts give this plant its “spotted” appearance. Russian knapweed is a creeping perennial plant that is extensively branched, with solitary urn-shaped pink or purple flower heads at the end of each branch. Similar in appearance to spotted knapweed, Russian knapweed can be distinguished by its slightly smaller flower heads, flower head bracts covered in light hairs, with papery tips, and scaly dark brown or black rhizomes, which have a burnt appearance. Family: Asteraceae Spotted Knapweed Leaves and stems of both spotted and Russian knapweeds are covered in fine hairs, giving the plants a grayish cast.
    [Show full text]
  • Plant Taxonomy Table
    COMMON AND LATIN NAMES OF IMPORTANT PLANT TAXA LATIN NAME* COMMON NAME Abies Fir Acer Maple Acer negundo Box elder Aesculus Buckeye; Horse Chestnut Alnus Alder Ambrosia Ragweed Apiaceae [Umbelliferae] Carrot or parsley family Artemisia Sagebrush; sage; wormwood Asteraceae [Compositae] Aster or Sunflower Family Betula Birch Boraginaceae Borage family Brassicaceae [Cruciferae} Mustard family Caryophyllaceae Pinks Castanea Chestnut Compositae (Asteraceae) Aster or Sunflower family Cornus Dogwood Corylus Filbert; hazelnut Cruciferae (Brassicaceae) Mustard family Cupressaceae Junipers, cypresses, "cedars", others Cyperaceae Sedge family Ericaceae Heath family Fabaceae [Leguminosae] Pea family Fagus Beech Fraxinus Ash Gramineae (Poaceae) Grass family Juglans Walnut; butternut Labiatae (Lamiaceae) Mint family Larix Larch; tamarack Leguminosae (Fabaceae) Pea family Liliaceae Lily family Liriodendron Tulip tree or yellow poplar Nuphar Water lily Onagraceae Evening primrose family Papaveraceae Poppy family Picea Spruce Pinus Pine Plantago Plantain Poaceae [Gramineae] Grass family Polemonium Jacob's ladder Polygonaceae Buckwheat family Populus Poplar; cottonwood; aspen Potamogeton Pondweed Primulaceae Primrose family Quercus Oak Ranunculaceae Buttercup family Rosaceae Rose family Rhus sumac, incl. poison ivy, etc. Salix Willow Saxifragaceae Saxifrage family Scrophulariaceae Snapdragon family Sparganium Bur reed Thalictrum Meadow rue Tilia Linden or basswood Tsuga Hemlock Typha Cattail Ulmus Elm Umbelliferae (Apiaceae) Carrot or parsley family * Names of genera are always italicized; family names are given in Roman characters. All proper plant family name ends in -aceae; family names above that don't have this ending are old names, and the proper modern name is included in parentheses. .
    [Show full text]
  • Amorpha Canescens Pursh Leadplant
    leadplant, Page 1 Amorpha canescens Pursh leadplant State Distribution Best Survey Period Photo by Susan R. Crispin Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Status: State special concern the Mississippi valley through Arkansas to Texas and in the western Great Plains from Montana south Global and state rank: G5/S3 through Wyoming and Colorado to New Mexico. It is considered rare in Arkansas and Wyoming and is known Other common names: lead-plant, downy indigobush only from historical records in Montana and Ontario (NatureServe 2006). Family: Fabaceae (pea family); also known as the Leguminosae. State distribution: Of Michigan’s more than 50 occurrences of this prairie species, the vast majority of Synonym: Amorpha brachycarpa E.J. Palmer sites are concentrated in southwest Lower Michigan, with Kalamazoo, St. Joseph, and Cass counties alone Taxonomy: The Fabaceae is divided into three well accounting for more than 40 of these records. Single known and distinct subfamilies, the Mimosoideae, outlying occurrences have been documented in the Caesalpinioideae, and Papilionoideae, which are last two decades from prairie remnants in Oakland and frequently recognized at the rank of family (the Livingston counties in southeast Michigan. Mimosaceae, Caesalpiniaceae, and Papilionaceae or Fabaceae, respectively). Of the three subfamilies, Recognition: Leadplant is an erect, simple to sparsely Amorpha is placed within the Papilionoideae (Voss branching shrub ranging up to ca. 1 m in height, 1985). Sparsely hairy plants of leadplant with greener characterized by its pale to grayish color derived from leaves have been segregated variously as A. canescens a close pubescence of whitish hairs that cover the plant var.
    [Show full text]
  • Vegetative Growth and Organogenesis 555
    Vegetative Growth 19 and Organogenesis lthough embryogenesis and seedling establishment play criti- A cal roles in establishing the basic polarity and growth axes of the plant, many other aspects of plant form reflect developmental processes that occur after seedling establishment. For most plants, shoot architecture depends critically on the regulated production of determinate lateral organs, such as leaves, as well as the regulated formation and outgrowth of indeterminate branch systems. Root systems, though typically hidden from view, have comparable levels of complexity that result from the regulated formation and out- growth of indeterminate lateral roots (see Chapter 18). In addition, secondary growth is the defining feature of the vegetative growth of woody perennials, providing the structural support that enables trees to attain great heights. In this chapter we will consider the molecular mechanisms that underpin these growth patterns. Like embryogenesis, vegetative organogenesis and secondary growth rely on local differences in the interactions and regulatory feedback among hormones, which trigger complex programs of gene expres- sion that drive specific aspects of organ development. Leaf Development Morphologically, the leaf is the most variable of all the plant organs. The collective term for any type of leaf on a plant, including struc- tures that evolved from leaves, is phyllome. Phyllomes include the photosynthetic foliage leaves (what we usually mean by “leaves”), protective bud scales, bracts (leaves associated with inflorescences, or flowers), and floral organs. In angiosperms, the main part of the foliage leaf is expanded into a flattened structure, the blade, or lamina. The appearance of a flat lamina in seed plants in the middle to late Devonian was a key event in leaf evolution.
    [Show full text]
  • Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
    Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S.
    [Show full text]
  • Flowers of Asteraceae
    Flowers of Asteraceae The 'flower' that you see is actually a head composed of many small florets. The head (capitulum) is an inflorescence and a number of capitula are often aggregated together to form a secondary inflorescence or synflorescence. The capitulum is surrounded on the outside by one or several layers of involucral bracts resembling the calyx of other flowers. These bracts are mostly green (herbaceous) but can also be brightly coloured like in everlastings (Helichrysum spp.) or can have a thin, dry, membranous texture (scarious). The involucral bracts are mostly free and arranged in one to many rows, overlapping like the tiles of a roof (imbricate). When in one row, they are often fused to different degrees. The florets in a head consist of one, two or rarely three out of six different kinds of florets. (1) The most obvious florets are the outer row of ray florets, resembling the petals of other flowering plants. The ray florets consist of laterally fused, elongated petals with three or four small upper lobes or teeth and are usually brightly coloured: yellow, blue, purple, pink, red or white and sometimes a combination of these colours. The ray florets are either female, which means they have a pistil, or they are neutral meaning that no sex organs are present or, if present, they are sterile. (2) A slight variation of these are the bilabiate ray florets. In these ray florets the outer, laterally fused petals are also elongated, but have three small upper lobes or teeth and smaller, laterally fused inner elongated petals with two upper lobes or teeth, almost like the flowers of the sage family (Lamiaceae).
    [Show full text]
  • PHASEOLUS LESSON ONE PHASEOLUS and the FABACEAE INTRODUCTION to the FABACEAE
    1 PHASEOLUS LESSON ONE PHASEOLUS and the FABACEAE In this lesson we will begin our study of the GENUS Phaseolus, a member of the Fabaceae family. The Fabaceae are also known as the Legume Family. We will learn about this family, the Fabaceae and some of the other LEGUMES. When we study about the GENUS and family a plant belongs to, we are studying its TAXONOMY. For this lesson to be complete you must: ___________ do everything in bold print; ___________ answer the questions at the end of the lesson; ___________ complete the world map at the end of the lesson; ___________ complete the table at the end of the lesson; ___________ learn to identify the different members of the Fabaceae (use the study materials at www.geauga4h.org); and ___________ complete one of the projects at the end of the lesson. Parts of the lesson are in underlined and/or in a different print. Younger members can ignore these parts. WORDS PRINTED IN ALL CAPITAL LETTERS may be new vocabulary words. For help, see the glossary at the end of the lesson. INTRODUCTION TO THE FABACEAE The genus Phaseolus is part of the Fabaceae, or the Pea or Legume Family. This family is also known as the Leguminosae. TAXONOMISTS have different opinions on naming the family and how to treat the family. Members of the Fabaceae are HERBS, SHRUBS and TREES. Most of the members have alternate compound leaves. The FRUIT is usually a LEGUME, also called a pod. Members of the Fabaceae are often called LEGUMES. Legume crops like chickpeas, dry beans, dry peas, faba beans, lentils and lupine commonly have root nodules inhabited by beneficial bacteria called rhizobia.
    [Show full text]
  • The Usefulness of Edible and Medicinal Fabaceae in Argentine and Chilean Patagonia: Environmental Availability and Other Sources of Supply
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2012, Article ID 901918, 12 pages doi:10.1155/2012/901918 Research Article The Usefulness of Edible and Medicinal Fabaceae in Argentine and Chilean Patagonia: Environmental Availability and Other Sources of Supply Soledad Molares and Ana Ladio INIBIOMA, Universidad Nacional del Comahue-CONICET, Quintral 1250, Bariloche, R´ıo Negro 8400, Argentina Correspondence should be addressed to Ana Ladio, [email protected] Received 12 July 2011; Accepted 12 September 2011 Academic Editor: Maria Franco Trindade Medeiros Copyright © 2012 S. Molares and A. Ladio. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Fabaceae is of great ethnobotanical importance in indigenous and urban communities throughout the world. This work presents a revision of the use of Fabaceae as a food and/or medicinal resource in Argentine-Chilean Patagonia. It is based on a bibliographical analysis of 27 ethnobotanical sources and catalogues of regional flora. Approximately 234 wild species grow in Patagonia, mainly (60%) in arid environments, whilst the remainder belong to Sub-Antarctic forest. It was found that 12.8% (30 species), mainly woody, conspicuous plants, are collected for food or medicines. Most of the species used grow in arid environments. Cultivation and purchase/barter enrich the Fabaceae offer, bringing it up to a total of 63 species. The richness of native and exotic species, and the existence of multiple strategies for obtaining these plants, indicates hybridization of knowledge and practices.
    [Show full text]
  • Native Planting List.Csv
    Morrison County Native Shoreland Vegetation* last updated 5/28/2020 *Based on MN DNR native plant encyclopedia LIFE FORM NAME SCIENTIFIC NAME HABITAT EXPOSURE HEIGHT (ft) FLOWER COLOR BLOOM TIME Ferns and Wildflowers Black-eyed Susan Rudbeckia hirta var. pulcherrima upland moist, upland dry full , partial 1.0 - 3.0 Yellow July-August Ferns and Wildflowers Blue Vervain Verbena hastata transitional, upland moist full 2.0 - 5.0 Blue July-Sept Ferns and Wildflowers Bottle Gentian Gentiana andrewsii transitional, upland moist full , partial 1.0 - 2.0 Blue August-Oct Ferns and Wildflowers Broad-leaved Arrowhead Sagittaria latifolia aquatic, transitional full , partial 2.0 - 3.5 White July-August Ferns and Wildflowers Clasping Dogbane Apocynum sibiricum upland moist full 1.0 - 4.0 White May-Sept Ferns and Wildflowers Columbine Aquilegia canadensis upland moist, upland dry full , partial , shade 2.0 - 3.0 Red and yellow May-July Ferns and Wildflowers Common Boneset Eupatorium perfoliatum transitional, upland moist full , partial 2.0 - 4.0 White July-Oct Ferns and Wildflowers Common Marsh Marigold Caltha palustris transitional full , partial , shade 0.5 - 2.0 Yellow-orange April-June Ferns and Wildflowers Giant Goldenrod Solidago gigantea transitional, upland moist full , partial 2.0 - 5.0 Yellow August-Sept Ferns and Wildflowers Golden Alexanders Zizia aurea transitional, upland moist full , partial 1.0 - 3.0 Yellow May-June Ferns and Wildflowers Great Blazing Star Liatris pycnostachya var. pycnostachya transitional, upland moist full , partial 2.0 - 5.0 Rose; lavender July-August Ferns and Wildflowers Long-headed Thimbleweed Anemone cylindrica upland moist, upland dry full 1.0 - 2.0 White June-July Ferns and Wildflowers New England Aster Symphyotrichum novae-angliae transitional, upland moist full , partial 3.0 - 5.0 Violet; blue; pink August-Oct Ferns and Wildflowers Northern Blue Flag Iris versicolor transitional full , partial 1.5 - 3.5 Blue-violet June-July Ferns and Wildflowers Purple Prairie Clover Dalea purpurea var.
    [Show full text]
  • Asteraceae – Aster Family
    ASTERACEAE – ASTER FAMILY Plant: herbs (annual or perennial), some shrubs, rarely vines or trees. Stem: Root: Often with tubers, rhizomes, stolons, or fleshy roots Leaves: mostly simple, some compound, alternate or opposite, rarely whorled. Flowers: flower head supported by an involucre (whorl of green bracts); each head composed of small flowers (composite) of flat ray-like (ligulate) flowers on the outside (ray flowers) and central tube-like flowers (disk flowers) – some species may have only one or the other. Calyx absent or modified into hairs, bristles, scales or a crown (pappus); 5 stamens (syngenesious -united by anthers); 5 united petals (sympetalous), receptacle may also have hairs or bristles. Both pappus and receptacle hairs/bristles may be used in ID. Fruit: achene (small, one-seeded, inferior ovule, 2 carpels, hard shell fruit) often with persisting crowned pappus which helps with seed dispersal. Other: Very large group, 1-2,000 genera, 20,000+ species. Dicotyledons Group WARNING – family descriptions are only a layman’s guide and should not be used as definitive ASTERACEAE – ASTER FAMILY Tall Blacktip Ragwort; Senecio atratus Greene Arrowleaf Ragwort; Senecio triangularis Hook. Common Groundsel [Old-Man-In-The-Spring]; Senecio vulgaris L. (Introduced) Starry Rosinweed; Silphium asteriscus L. [Wholeleaf] Rosinweed; Silphium integrifolium Michx. Compass Plant; Silphium laciniatum L. Cup Plant [Indian Cup]; Silphium perfoliatum L. Prairie-Dock [Prairie Rosenweed]; Silphium terebinthinaceum Jacq. var. terebinthinaceum Yellow-Flowered [Hairy; Large-Flowered] Leafcup; Smallanthus uvedalius (L.) Mack. ex Small Atlantic Goldenrod; Solidago arguta Aiton Blue-Stemmed [Wreath] Goldenrod; Solidago caesia L. Canadal [Tall] Goldenrod; Solidago canadensis L. and Solidago altissima L.
    [Show full text]
  • Vascular Plants of Williamson County Lupinus Texensis − TEXAS BLUEBONNET, TEXAS LUPINE [Fabaceae]
    Vascular Plants of Williamson County Lupinus texensis − TEXAS BLUEBONNET, TEXAS LUPINE [Fabaceae] Lupinus texensis Hooker, TEXAS BLUEBONNET, TEXAS LUPINE. Annual, taprooted, rosetted, 1(−several)-stemmed at base, with ascending branches from principal shoot, erect, in range to 40 cm tall; shoots with basal leaves and cauline leaves, foliage some velveteen, having short to long soft hairs, lacking glandular hairs. Stems: broadly ridged with 2 lines 180° apart, to 5 mm diameter, ridge descending from each leaf, tough, green, with upward- curved long and short hairs (not truly strigose). Leaves: helically alternate, palmately 1- compound with 5−6 leaflets, long-petiolate, with stipules; stipules 2, attached to base of petiole, ascending to suberect, narrowly triangular-linear to linear, 7−11(−15) × 0.5−1.2 mm, 1-veined off-center, villous with hairs to 2 mm long especially at tip; petiole lacking pulvinus at base, shallowly channeled to midpoint and cylindric above midpoint, to 85 mm long, with upward-arched long and short hairs; petiolules = pulvinus, to 1.2 mm long, light green, hairy; blades of leaflets subequal, oblanceolate to obovate, 25−35 × 3.5−13 mm, ± folded upward from midrib, tapered at base, entire, obtuse to rounded at tip, pinnately veined but only midrib distinct, upper surface glabrous to sparsely pilose, lower surface villous with upward-pointing hairs to 1.2 mm long. Inflorescence: raceme, terminal on primary shoots, to 250 mm long, 20+-flowered, flowers alternate, bracteate, short- tomentose; peduncle erect, cylindric, 15−45 mm long increasing 2× in fruit, hollow; rachis slightly angled with projecting bractlet bases; bractlet subtending pedicel, cupped-ovate to cupped-lanceolate to cupped-ovate, 2.5−4 mm long, somewhat papery, green (colorless), soft-hairy on lower surface, abscising from persistent base, base becoming part of swollen pedicel in developing fruit; pedicel initially spreading in fruit ascending, cylindric, 4.5−7.5 mm long increasing 2× in fruit, short-tomentose to tomentose.
    [Show full text]