Magnetic Anisotropy of Polycrystalline High-Temperature Ferromagnetic MARK Mnxsi1-X (X ≈0.5) Alloy films ⁎ A.B

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Anisotropy of Polycrystalline High-Temperature Ferromagnetic MARK Mnxsi1-X (X ≈0.5) Alloy films ⁎ A.B Journal of Magnetism and Magnetic Materials 429 (2017) 305–313 Contents lists available at ScienceDirect Journal of Magnetism and Magnetic Materials journal homepage: www.elsevier.com/locate/jmmm Magnetic anisotropy of polycrystalline high-temperature ferromagnetic MARK MnxSi1-x (x ≈0.5) alloy films ⁎ A.B. Drovosekova, , N.M. Kreinesa, A.O. Savitskya, S.V. Kapelnitskyb,c, V.V. Rylkovb,d, V.V. Tugushevb,e, G.V. Prutskovb, O.A. Novodvorskiif, A.V. Shorokhovaf, Y. Wangg, S. Zhoug a P.L.Kapitza Institute for Physical Problems RAS, Kosygina St. 2, 119334 Moscow, Russia b National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, 123182 Moscow, Russia c Institute of Physics and Technology RAS, Nakhimovsky av. 36, build 1, 117218 Moscow, Russia d Kotel'nikov Institute of Radio Engineering and Electronics RAS, 141190 Fryazino, Moscow Region, Russia e Prokhorov General Physics Institute RAS, Vavilov St. 38, 119991 Moscow, Russia f Institute on Laser and Information Technologies RAS, Svyatoozerskaya St. 1, 140700 Shatura, Moscow Region, Russia g Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany ARTICLE INFO ABSTRACT Keywords: A set of thin film MnxSi1-x alloy samples with different manganese concentration x ≈0.44−0.63 grown by the fi Magnetic MnxSi1-x alloy lms pulsed laser deposition (PLD) method onto the Al2O3 (0001) substrate was investigated in the temperature Magnetic anisotropy range 4–300 K using ferromagnetic resonance (FMR) measurements in the wide range of frequencies Ferromagnetic resonance ( f =7−60GHz) and magnetic fields (H =0−30kOe). For samples with x ≈0.52−0.55, FMR data show clear evidence of ferromagnetism with high Curie temperatures TC ∼ 300 K. These samples demonstrate a complex magnetic anisotropy described phenomenologically as a combination of the essential second order easy plane anisotropy contribution and the additional fourth order uniaxial anisotropy contribution with easy direction normal to the film plane. The observed anisotropy is attributed to a polycrystalline (mosaic) structure of the films caused by the film-substrate lattice mismatch. The existence of extra strains at the crystallite boundaries initiates a random distribution of local in-plane anisotropy axes in the samples. As a result, the symmetry of the net magnetic anisotropy is axial with the symmetry axis normal to the film plane. The principal features of the observed anisotropy are explained qualitatively within the proposed microscopic model. 1. Introduction materials in spintronic applications. At the same time, the fabrication of well-reproducible homogeneous magnetic alloys with high Mn Development of Si based magnetic semiconductor materials for content x ≈0.35 is difficult because of the variety of stable phases of spintronic applications attracts a lot of attention, since these materials high MnSiy silicides (not less than five) with the close content of can be easily incorporated into the existing microelectronic technology components (y = 1.72 − 1.75) [6,7]. [1]. In particular, Si-Mn alloys demonstrating unusual magnetic and In contrast, nonstoichiometric MnxSi1-x alloys with high Mn transport properties [2–8] have especial interest to engineer non- content (x ≈0.5, i.e. close to stoichiometric MnSi) are not inclined to conventional integrated-circuit elements. a phase segregation and formation of isolated magnetic precipitates, so However, there exist significant technological and fundamental they seem more promising for spintronic applications than dilute obstacles to adapt Si-Mn based elements to the needs of spintronic. MnxSi1-x alloys. Recently we have found that in thin films of such At relatively low Mn content in MnxSi1-x alloys (x = 0.05 − 0.1), the concentrated alloys, the Curie temperature TC increases by more than ferromagnetism (FM) at above room temperature has been revealed. an order of magnitude as compared with bulk MnSi (TC ≈30K) [6]. But these alloys turn out to be strongly inhomogeneous materials due Comparative studies of anomalous Hall effect and transverse Kerr to their phase segregation, leading to formation of isolated magnetic effect showed that the ferromagnetic transition in MnxSi1-x MnSi1.7 precipitate nanoparticles with the Mn content x ≈0.35 in Si (x ≈ 0.52 − 0.55) alloys occurring at T ∼ 300 K, has a global nature ff matrix [2]. In such alloys, anomalous Hall e ect testifying the spin and is not associated with the phase segregation [7]. Besides high TC polarization of carriers is absent, that makes impossible to use these values, the films investigated in [6,7] show large values of saturation ⁎ Corresponding author. E-mail address: [email protected] (A.B. Drovosekov). http://dx.doi.org/10.1016/j.jmmm.2017.01.022 Received 22 September 2015; Received in revised form 21 December 2016; Accepted 8 January 2017 Available online 10 January 2017 0304-8853/ © 2017 Elsevier B.V. All rights reserved. A.B. Drovosekov et al. Journal of Magnetism and Magnetic Materials 429 (2017) 305–313 magnetization reaching ≈400 emu/cm3 at low temperatures. The fi observed magnetization value corresponds to ≈1.1μB /Mn, that signi - cantly exceeds the value 0.4μB /Mn typical for bulk MnSi crystal [9]. High temperature FM in MnxSi1-x (x ≈0.5) alloys has been qualitatively interpreted [6,7] in frame of the early proposed model for dilute MnxSi1-x alloys [3], i.e. in terms of complex defects with local magnetic moments embedded into the matrix of itinerant FM. However, many details of FM order in MnxSi1-x(x ≈0.5) alloys are still not completely clear due to insufficient experimental studies. In particular, there are no data on their magnetic anisotropy features. In the present work, thin MnxSi1-x (x ≈ 0.52 − 0.55) films are investigated by the ferromagnetic resonance (FMR) method which is powerful for providing valuable information about magnetic anisotropy peculiarities of thin film magnetic materials, in particular, like dilute magnetic semiconductors (see [10] and references therein). Our studies are largely focused on the position and shape of FMR signal, while the analysis of the refinements of the line width data providing additional information on the magnetic inhomogeneity and relaxation rate of fi Fig. 1. Temperature dependence of the resonance eld HTres( ) at the frequency magnetization is not presented in this work. Besides, to study the 17.4 GHz for samples with different manganese concentration. The dashed line details of crystalline and magnetic microstructures of our films we corresponds to the calculated position of paramagnetic resonance for g-factor g=2.14. perform in this work the atomic force microscopy (AFM) and magnetic The inset demonstrates examples of the experimental resonance spectra at T=77 K. The force microscopy (MFM) investigations. We hope that AFM and MFM field is applied in the film plane. methods allow for additional understanding of the FMR results, since these methods are able to reveal the “local” effects of the crystal and temperature increases, the resonance field also increases and at magnetic texture of the film on the origin of magnetic anisotropy T ∼ 300 K reaches the value corresponding to the paramagnetic established in FMR measurements. resonance situation. The observed absorption lines have the Lorentz- like shape, and the resonance field anisotropy in the film plane is 2. Samples and experimental details absent. The shift of the FMR absorption line revealed in our measurements We studied six samples with manganese content in the range (shown in Fig. 1) clearly indicates the presence of FM moment in x ≈ 0.44 − 0.63. The 70 nm thick film samples were produced by the samples with x ≈ 0.52 − 0.55 at low temperatures, in agreement with Ref. [6]. When the external magnetic field H is applied in the plane of a pulse laser deposition (PLD) method on Al2O3 (0001) substrates at 340 °C. The composition of the films was testified by X-ray photoelec- thin FM film with magnetization M, the FMR frequency f may be tronic spectroscopy (for details see [6]). described by the phenomenological formula (see Appendix A): The structural properties of the samples were studied by X-ray f =(+)γHH KM. diffraction (XRD) analysis using a Rigaku SmartLab diffractometer (1) without monochromators and a diaphragm before the detector. In this Here K is the effective easy plane magnetic anisotropy coefficient; K M 9 case, intensity of the direct beam was as high as 1.5·10 pulses/s. is the effective field of easy plane magnetic anisotropy. This field Additionally, we performed room temperature AFM and MFM inves- describes the effect of two factors on the FMR spectra: 1) the shape tigations in the sample MnxSi1-x (x ≈0.52) having the most pro- magnetic anisotropy depending on the form of the sample and 2) the nounced high-TC FM, using microscope SmartSPM (AIST-NT). crystal structure driven magnetic anisotropy which is due to relativistic FMR spectra of the obtained samples were studied at temperatures interactions between electrons and ions in the sample material. T = 4 − 300 K in the wide range of frequencies ( f =7−60GHz) and Following a simplest model used in Ref. [12] it is easy to obtain: magnetic fields (H =0−30kOe). To detect the resonance absorption 2K signal, magnetic field dependences of the microwave power transmitted K MπM=4 + 1 , (2) through the cavity resonator with the sample inside were measured at M ff constant frequency. Measurements were carried out for di erent where K1 is the phenomenological constant of the second-order easy orientations of the magnetic field with respect to the film plane. plane crystal structure driven magnetic anisotropy. In the absence of K1, Eq. (1) transforms into the well known Kittel formula for the 3. Experimental results and discussion applied field H lying in the film plane [13]. According to Eq.
Recommended publications
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Magnetic Force Microscopy of Superparamagnetic Nanoparticles
    Magnetic Force Microscopy of Superparamagnetic Nanoparticles for Biomedical Applications Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tanya M. Nocera, M.S. Graduate Program in Biomedical Engineering The Ohio State University 2013 Dissertation Committee: Gunjan Agarwal, PhD, Advisor Stephen Lee, PhD Jessica Winter, PhD Anil Pradhan, PhD Copyright by Tanya M. Nocera 2013 Abstract In recent years, both synthetic as well as naturally occurring superparamagnetic nanoparticles (SPNs) have become increasingly important in biomedicine. For instance, iron deposits in many pathological tissues are known to contain an accumulation of the superparamagnetic protein, ferritin. Additionally, man-made SPNs have found biomedical applications ranging from cell-tagging in vitro to contrast agents for in vivo diagnostic imaging. Despite the widespread use and occurrence of SPNs, detection and characterization of their magnetic properties, especially at the single-particle level and/or in biological samples, remains a challenge. Magnetic signals arising from SPNs can be complicated by factors such as spatial distribution, magnetic anisotropy, particle aggregation and magnetic dipolar interaction, thereby confounding their analysis. Techniques that can detect SPNs at the single particle level are therefore highly desirable. The goal of this thesis was to develop an analytical microscopy technique, namely magnetic force microscopy (MFM), to detect and spatially localize synthetic and natural SPNs for biomedical applications. We aimed to (1) increase ii MFM sensitivity to detect SPNs at the single-particle level and (2) quantify and spatially localize iron-ligated proteins (ferritin) in vitro and in biological samples using MFM.
    [Show full text]
  • Two-Dimensional Field-Sensing Map and Magnetic Anisotropy Dispersion
    PHYSICAL REVIEW B 83, 144416 (2011) Two-dimensional field-sensing map and magnetic anisotropy dispersion in magnetic tunnel junction arrays Wenzhe Zhang* and Gang Xiao† Department of Physics, Brown University, Providence, Rhode Island 02912, USA Matthew J. Carter Micro Magnetics, Inc., 617 Airport Road, Fall River, Massachusetts 02720, USA (Received 22 July 2010; revised manuscript received 24 January 2011; published 22 April 2011) Due to the inherent disorder in local structures, anisotropy dispersion exists in almost all systems that consist of multiple magnetic tunnel junctions (MTJs). Aided by micromagnetic simulations based on the Stoner-Wohlfarth (S-W) model, we used a two-dimensional field-sensing map to study the effect of anisotropy dispersion in MTJ arrays. First, we recorded the field sensitivity value of an MTJ array as a function of the easy- and hard-axis bias fields, and then extracted the anisotropy dispersion in the array by comparing the experimental sensitivity map to the simulated map. Through a mean-square-error-based image processing technique, we found the best match for our experimental data, and assigned a pair of dispersion numbers (anisotropy angle and anisotropy constant) to the array. By varying each of the parameters one at a time, we were able to discover the dependence of field sensitivity on magnetoresistance ratio, coercivity, and magnetic anisotropy dispersion. The effects from possible edge domains are also discussed to account for a correction term in our analysis of anisotropy angle distribution using the S-W model. We believe this model is a useful tool for monitoring the formation and evolution of anisotropy dispersion in MTJ systems, and can facilitate better design of MTJ-based devices.
    [Show full text]
  • Tailored Magnetic Properties of Exchange-Spring and Ultra Hard Nanomagnets
    Max-Planck-Institute für Intelligente Systeme Stuttgart Tailored Magnetic Properties of Exchange-Spring and Ultra Hard Nanomagnets Kwanghyo Son Dissertation An der Universität Stuttgart 2017 Tailored Magnetic Properties of Exchange-Spring and Ultra Hard Nanomagnets Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Kwanghyo Son aus Seoul, SüdKorea Hauptberichter: Prof. Dr. Gisela Schütz Mitberichter: Prof. Dr. Sebastian Loth Tag der mündlichen Prüfung: 04. Oktober 2017 Max‐Planck‐Institut für Intelligente Systeme, Stuttgart 2017 II III Contents Contents ..................................................................................................................................... 1 Chapter 1 ................................................................................................................................... 1 General Introduction ......................................................................................................... 1 Structure of the thesis ....................................................................................................... 3 Chapter 2 ................................................................................................................................... 5 Basic of Magnetism .......................................................................................................... 5 2.1 The Origin of Magnetism .......................................................................................
    [Show full text]
  • Understanding the Origin of Magnetocrystalline Anisotropy in Pure and Fe/Si Substituted Smco5
    Understanding the origin of magnetocrystalline anisotropy in pure and Fe/Si substituted SmCo5 *Rajiv K. Chouhan1,2,3, A. K. Pathak3, and D. Paudyal3 1CNR-NANO Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy 2Harish-Chandra Research Institute, HBNI, Jhunsi, Allahabad 211019, India 3The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011–3020, USA We report magnetocrystalline anisotropy of pure and Fe/Si substituted SmCo5. The calculations were performed using the advanced density functional theory (DFT) including onsite electron-electron correlation and spin orbit coupling. Si substitution substantially reduces both uniaxial magnetic anisotropy and magnetic moment. Fe substitution with the selective site, on the other hand, enhances the magnetic moment with limited chemical stability. The magnetic hardness of SmCo5 is governed by Sm 4f localized orbital contributions, which get flatten and split with the substitution of Co (2c) with Si/Fe atoms, except the Fe substitution at 3g site. It is also confirmed that Si substitutions favor the thermodynamic stability on the contrary to diminishing the magnetic and anisotropic effect in SmCo5 at either site. INTRODUCTION Search for high-performance permanent magnets is always being a challenging task for modern technological applications as they are key driving components for propulsion motors, wind turbines and several other direct or indirect market consumer products. Curie temperature Tc, magnetic anisotropy, and saturation magnetization Ms, of the materials, are some basic fundamental properties used to classify the permanent magnets. At Curie temperature a material loses its ferromagnetic properties, hence higher the Tc, better is the magnets to be used under extreme conditions.
    [Show full text]
  • Superparamagnetism and Magnetic Properties of Ni Nanoparticles Embedded in Sio2
    PHYSICAL REVIEW B 66, 104406 ͑2002͒ Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2 F. C. Fonseca, G. F. Goya, and R. F. Jardim* Instituto de Fı´sica, Universidade de Sa˜o Paulo, CP 66318, 05315-970, Sa˜o Paulo, SP, Brazil R. Muccillo Centro Multidisciplinar de Desenvolvimento de Materiais Ceraˆmicos CMDMC, CCTM-Instituto de Pesquisas Energe´ticas e Nucleares, CP 11049, 05422-970, Sa˜o Paulo, SP, Brazil N. L. V. Carren˜o, E. Longo, and E. R. Leite Centro Multidisciplinar de Desenvolvimento de Materiais Ceraˆmicos CMDMC, Departamento de Quı´mica, Universidade Federal de Sa˜o Carlos, CP 676, 13560-905, Sa˜o Carlos, SP, Brazil ͑Received 4 March 2002; published 6 September 2002͒ We have performed a detailed characterization of the magnetic properties of Ni nanoparticles embedded in a SiO2 amorphous matrix. A modified sol-gel method was employed which resulted in Ni particles with ϳ Ϸ average radius 3 nm, as inferred by TEM analysis. Above the blocking temperature TB 20 K for the most diluted sample, magnetization data show the expected scaling of the M/M S vs H/T curves for superparamag- netic particles. The hysteresis loops were found to be symmetric about zero field axis with no shift via Ͻ exchange bias, suggesting that Ni particles are free from an oxide layer. For T TB the magnetic behavior of these Ni nanoparticles is in excellent agreement with the predictions of randomly oriented and noninteracting magnetic particles, as suggested by the temperature dependence of the coercivity field that obeys the relation ϭ Ϫ 1/2 ϳ HC(T) HC0͓1 (T/TB) ͔ below TB with HC0 780 Oe.
    [Show full text]
  • Magnetic Anisotropy and Exchange in (001) Textured Fept-Based Nanostructures
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research: Department of Physics and Astronomy Physics and Astronomy, Department of 12-2013 Magnetic Anisotropy and Exchange in (001) Textured FePt-based Nanostructures Tom George University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicsdiss Part of the Condensed Matter Physics Commons George, Tom, "Magnetic Anisotropy and Exchange in (001) Textured FePt-based Nanostructures" (2013). Theses, Dissertations, and Student Research: Department of Physics and Astronomy. 31. https://digitalcommons.unl.edu/physicsdiss/31 This Article is brought to you for free and open access by the Physics and Astronomy, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research: Department of Physics and Astronomy by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAGNETIC ANISOTROPY AND EXCHANGE IN (001) TEXTURED FePt-BASED NANOSTRUCTURES by Tom Ainsley George A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Physics and Astronomy Under the Supervision of Professor David J. Sellmyer Lincoln, Nebraska December, 2013 MAGNETIC ANISOTROPY AND EXCHANGE IN (001) TEXTURED FePt-BASED NANOSTRUCTURES Tom Ainsley George, Ph.D. University of Nebraska, 2013 Adviser: David J. Sellmyer Hard-magnetic L10 phase FePt has been demonstrated as a promising candidate for future nanomagnetic applications, especially magnetic recording at areal densities approaching 10 Tb/in2. Realization of FePt’s potential in recording media requires control of grain size and intergranular exchange interactions in films with high degrees of L10 order and (001) crystalline texture, including high perpendicular magnetic anisotropy.
    [Show full text]
  • Magnetic Dynamics of Single Domain Ni Nanoparticles
    J. Appl. Phys. 93, 6531 (2003); doi:10.1063/1.1540032 (3 pages) AF-13 Magnetic dynamics of single domain Ni nanoparticles G. F. Goya, F.C. Fonseca, and R. F. Jardim Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo, Brazil R. Muccillo Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, CCTM-Instituto de Pesquisas Energéticas e Nucleares CP 11049, 05422-970, São Paulo, SP, Brazil N. L. V. Carreño, E. Longo, and E.R. Leite Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, Departamento de Química, Universidade Federal de São Carlos CP 676, 13560-905, São Carlos, SP, Brazil The dynamic magnetic properties of Ni nanoparticles diluted in an amorphous SiO2 matrix prepared from a modified sol-ge l me thod have been studied by the frequency f dependence of the ac magnetic susceptibility χ(T). For samples with similar average radii ~ 3-4 nm, an increase of the blocking temperature from TB ~ 20 to ~ 40 K was observed for Ni concentrations of ~ 1.5 and 5 wt.%, respectively, assigned to the effects of dipolar interactions. Both the in-phase χ’(T) and the out-of- phase χ’’(T) maxima follow the predictions of the thermally activated Néel-Arrhenius model. The effective magnetic anisotropy constant Keff inferred from χ’’(T) versus f data for the 1.5 wt.% Ni sample is close to the value of the magnetocrystalline anisotropy of bulk Ni, suggesting that surface effects are negligible in the present samples. In addition, the contribution from dipolar interactions to the total anisotropy energy Ea in specimens with 5 wt.% Ni was found to be comparable to the intrinsic magnetocrystalline anisotropy barrier.
    [Show full text]
  • Discovery of Ferromagnetism with Large Magnetic Anisotropy in Zrmnp and Hfmnp Tej N
    Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP Tej N. Lamichhane,1,2 Valentin Taufour,1,2 Morgan W. Masters,1 David S. Parker,3 Udhara S. Kaluarachchi,1,2 Srinivasa Thimmaiah,2 Sergey L. Bud’ko,1,2 and Paul C. Canfield1,2 1)Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, U.S.A. 2)The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011, USA 3)Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ZrMnP and HfMnP single crystals are grown by a self-flux growth technique and structural as well as tem- perature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 µB/f.u. and 2.1 µB/f.u. respectively at 50 K. The magnetocaloric effect of ZrMnP in term of entropy change (∆S) is estimated to be −6.7 kJm−3K−1 around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼ 4.6T for ZrMnP and ∼ 10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25 percent.
    [Show full text]
  • Magnetic Anisotropy in Molecular Nanomagnets
    Spectroscopic Investigations of Magnetic Anisotropy in Molecular Nanomagnets ECMM workshop on Magnetic Anisotropy Karlsruhe, 11th‐12th October 2013 Prof. Dr. Joris van Slageren Institut für Physikalische Chemie Dr. Shang‐Da Jiang 1. Physikalisches Institut Universität Stuttgart Germany Contents 2 1. Introduction 4. Inelastic Neutron Scattering 1.1 Magnetic Anisotropy 4.1 Theoretical background and Experimental Considerations 1.2 Magnetic Anisotropy in Transition Metal Clusters 4.2 Examples 1.3 Magnetic Anisotropy in f‐Elements 5. Electronic Absorption and Luminescence 2. Single‐crystal SQUID measurements 5.1 Electronic Absorption (f elements) 2.1 Motivation 5.2 Luminescence (f elements) 2.2 Magnetic susceptibility tensor 5.3 Magnetic circular dichroism (transition metal clusters, f elements). 2.3 Determination 3. High‐frequency EPR spectroscopy 3.1 Theoretical background and Experimental Considerations 3.2 Examples 3.3 Frequency Domain EPR Contents Literature 3 A. Abragam/B. Bleany – Electron Paramagnetic Resonance of Transition Ions, 1970 N.M. Atherton – Principles of Electron Spin Resonance, 1993. R. Boča – Theoretical Foundations of Molecular Magnetism, 1999 R. Carlin –Magnetochemistry, 1986 C. Görller‐Wallrand, K. Binnemans in Handbook on the Physics and Chemistry of Rare Earths, Vol. 23, http://dx.doi.org/10.1016/S0168‐1273(96)23006‐5 O. Kahn –Molecular Magnetism, 1993 F.E. Mabbs/D.J. Machin – Magnetism and Transition Metal Complexes, Chapman and Hall, London, 1973 K.R. Lea, M.J.M. Leask, W.P. Wolf, J. Phys. Chem. Solids, 23, 1381 (1962) H. Lueken – Magnetochemie, 1999 H. Lueken – Course of lectures on magnetism of lanthanide ions under varying ligand and magnetic fields, http://obelix.physik.uni‐ bielefeld.de/~schnack/molmag/material/Lueken‐kurslan_report.pdf 2008 D.J.
    [Show full text]
  • Controlling the Magnetic Anisotropy of Van Der Waals Ferromagnet Fe3gete2
    Controlling the magnetic anisotropy of van der Waals ferromagnet Fe3GeTe2 through hole doping Se Young Park1,2,†, Dong Seob Kim3,†, Yu Liu4, Jinwoong Hwang5,6, Younghak Kim7, Wondong Kim8, Jae-Young Kim9, Cedomir Petrovic4, Choongyu Hwang6, Sung-Kwan Mo5, Hyung-jun Kim3, Byoung-Chul Min3, Hyun Cheol Koo3, Joonyeon Chang3, Chaun Jang3,*, Jun Woo Choi3,*, and Hyejin Ryu3,* 1Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea 2Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Korea 3Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea 4Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States 5Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 6Department of Physics, Pusan National University, Busan 46241, Korea 7Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673 Korea 8Quantum Technology Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea 9Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea † These authors contributed equally to this work. 1 *(C.J.) e-mail: [email protected], Tel: +82-2-958-6713. (J. C.) e-mail: [email protected], Tel: +82-2-958-6445. (H.R.) e-mail: [email protected], +82-2-958-5705. Abstract Identifying material parameters affecting properties of ferromagnets is key to optimize materials better suited for spintronics. Magnetic anisotropy is of particular importance in van der Waals magnets, since it not only influences magnetic and spin transport properties, but also is essential to stabilizing magnetic order in the two dimensional limit.
    [Show full text]
  • Magnetic Anisotropy
    5 Magnetic anisotropy Magnetization reversal in thin films and some relevant experimental methods Maciej Urbaniak IFM PAN 2012 Today's plan ● Magnetocrystalline anisotropy ● Shape anisotropy ● Surface anisotropy ● Stress anisotropy Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis – hysteresis of a sphere Fe Co easy axis Ni image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999 Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis – hysteresis of a sphere 1.0 0.5 hard-axis reversal Fe Co s 0.0 easy axis M / M -0.5 -1.0 -10 -5 0 5 10 H[a.u] ●hard-axis reversal is characterized Niby higher field needed to saturate the sample ●the easy-axis reversal is usually characterized by higher hysteresis losses image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999 Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis ●In case of large sphere (containing many atoms) the shape of the sample does not introduce additional anisotropy ●In small clusters the magnetization reversal is complicated by the reduction of symmetry (and the increased relative contribution of surface atoms) In Fe sphere of radius 1μm the surface atoms constitute roughly 0.04% of all atoms Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis ●In case of large sphere (containing many atoms) the shape of the sample does not introduce additional anisotropy ●In small clusters the magnetization reversal is complicated by the reduction of symmetry (and the increased relative contribution of surface atoms) sphere-like – no breaking of crystal symmetry for high r M.
    [Show full text]