Magnetic Force Microscopy of Superparamagnetic Nanoparticles

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Force Microscopy of Superparamagnetic Nanoparticles Magnetic Force Microscopy of Superparamagnetic Nanoparticles for Biomedical Applications Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tanya M. Nocera, M.S. Graduate Program in Biomedical Engineering The Ohio State University 2013 Dissertation Committee: Gunjan Agarwal, PhD, Advisor Stephen Lee, PhD Jessica Winter, PhD Anil Pradhan, PhD Copyright by Tanya M. Nocera 2013 Abstract In recent years, both synthetic as well as naturally occurring superparamagnetic nanoparticles (SPNs) have become increasingly important in biomedicine. For instance, iron deposits in many pathological tissues are known to contain an accumulation of the superparamagnetic protein, ferritin. Additionally, man-made SPNs have found biomedical applications ranging from cell-tagging in vitro to contrast agents for in vivo diagnostic imaging. Despite the widespread use and occurrence of SPNs, detection and characterization of their magnetic properties, especially at the single-particle level and/or in biological samples, remains a challenge. Magnetic signals arising from SPNs can be complicated by factors such as spatial distribution, magnetic anisotropy, particle aggregation and magnetic dipolar interaction, thereby confounding their analysis. Techniques that can detect SPNs at the single particle level are therefore highly desirable. The goal of this thesis was to develop an analytical microscopy technique, namely magnetic force microscopy (MFM), to detect and spatially localize synthetic and natural SPNs for biomedical applications. We aimed to (1) increase ii MFM sensitivity to detect SPNs at the single-particle level and (2) quantify and spatially localize iron-ligated proteins (ferritin) in vitro and in biological samples using MFM. Two approaches were employed to improve MFM sensitivity. First, we showed how exploitation of magnetic anisotropy could produce a higher, more uniform MFM signal from single SPNs. Second, we showed how an increase in probe magnetic moment increased both the magnitude and range up to which the MFM signal could be detected from a single SPN. We further showed how MFM could enable accurate quantitative estimation of ferritin content in ferritin-apoferritin mixtures. Finally, we demonstrated how MFM could be used to detect iron/ferritin in serum and animal tissue with spatial resolution and sensitivity surpassing that obtained using conventional biochemical assays. We envisage these advancements will allow MFM to serve as a novel biosensing technique to spatially localize iron/ferritin in small aliquots of clinical samples (i.e. serum) and in tissue biopsies at the ultra-sensitive and ultra- structural level. We also discuss how future work incorporating our advancements could lead to the development of a novel indirect MFM technique, which could enable high-throughput analysis of SPNs for biomedical applications. iii Dedication To my mother, Joni, who has always encouraged me to follow my heart and reach for my dreams, and to my father, Kevin, who has given me practical guidance and a level head to make those dreams come true. To Jason, for keeping me grounded, for never letting me give up and for “(un)quantifiably” loving me no matter what. To Dr. Doros Petasis, for amplifying my love for science, teaching me to “build character” and giving me confidence to pursue my Ph.D. iv Acknowledgements I would like to thank my advisor, Dr. Gunjan Agarwal, for calling me on April Fool’s Day (and it not be a joke) to give me the opportunity to pursue my doctoral degree. This has been the most incredible and most challenging journey, and my scientific and academic successes would not have been possible without her continuous guidance and encouragement. I would also like to thank the members of my dissertation committee, Dr. Stephen Lee and Dr. Jessica Winter, and my candidacy committee, Dr. Chris Hammel and Dr. Vish Subramaniam. Their support, critiques and advice have truly made me a better scientist, and for that I am grateful. A number of individuals have contributed their time and expertise to make the work in this dissertation possible. I would like to thank my co-authors Dr. Christopher Murray and Dr. Jun Chen from the University of Pennsylvania for providing the synthetic Fe3O4 SPNs and SQUID/ZFC characterizations for my anisotropy and probe comparison studies. I am also grateful to Ed Calomeni and Henk Colijn for the generous amount of time they took to teach me electron microscopy and for their thoughtful insights during discussions of my projects. v Thank you to BME undergraduate Yuzhi (Kevin) Zeng, who helped co-author and share in my enthusiasm for the ferritin MFM project. Kevin optimized ferritin/apoferritin sample preparation and assisted with MFM data collection. I would also like to thank Dr. Dana McTigue and Dr. Andrew Sauerbeck for their contributions to the work involving rat spinal cord tissue and serum. They generously provided the tissue/serum samples, performed Perls and immunohistochemistry studies and conducted serum ferritin experiments. I am also grateful to Dr. John Moreland from NIST for providing microfluidic silicon nitride membranes for our indirect MFM pilot studies. To my past labmate, Dr. Angela Blissett and my current labmates, Jeff Tonniges and David Yeung: your unending support, advice and breaks have kept me sane and helped me to push through. Thank you for your willingness to help me whenever you could and for making my experience much more enjoyable. I am especially grateful to my softball and Hamptons crew, broomball team and fellow graduate school friends; you have helped me to find many outlets for stress and the balance I desperately needed to face the challenges of grad school one week at a time. Thank you to my furry best friend, Tesla, for appearing on my doorstep two years ago and changing my life. Lastly, I would like to thank Panera Bread for providing bottomless coffee and tea, sometimes two or three meals in a day, free WIFI and kindness. I very well may have never finished writing my papers, proposals and this dissertation without your help. vi Vita August 1987 .................................................................................................. Born, Butler, PA June 2005 .................................................................... Butler Senior High School, Butler, PA May 2009 ........................................................................................... B.S. Physics, Allegheny College, Meadville, PA December 2011 ...................................................... M.S. Biomedical Engineering, The Ohio State University, Columbus, OH August 2009 to August 2012…………………...….AFM Core Laboratory Manager, Davis Heart and Lung Research Institute, Columbus, OH August 2012 to May 2013………………………..…..Graduate Teaching Associate, Department of Biomedical Engineering, The Ohio State University, Columbus, OH June 2009 to Present………..……………………….Graduate Research Associate, Department of Biomedical Engineering, The Ohio State University, Columbus, OH vii Publications Included in Dissertation Chapter 3: Nocera, T.M., Chen, J., Murray, C.B., Agarwal, G., “Magnetic Anisotropy Considerations in Magnetic Force Microscopy Studies of Single Superparamagnetic Nanoparticles,” Nanotechnology 2012; 23 (49): 495704. Included in Dissertation Chapter 4: Nocera, T.M., Sauerbeck, A., Zeng Y., McTigue, D. M., Agarwal, G., “Quantification and Spatial Localization of Ferritin Using Magnetic Force Microscopy,” Revised and resubmitted to Nanomedicine: Nanotechnology, Biology and Medicine. Additional Publications: Stevenson, M.D., Pristine, H., Hogrebe, N.J., Nocera, T. M., Boehm, M., Reen, R., Koelling, K., Agarwal, G., Saraang-Sieminski, A.L., Gooch, K.J., “Self- assembling Peptide Matrix that Independently Controls Stiffness and Binding Site Density Supports the Formation of Microvascular Networks in 3D,” Acta Biomaterialia 2013; 9(8): 7651-7661. viii Agarwal, G., and Nocera, T.M., "Atomic Force Microscopy (AFM)." In The Nanobiotechnology Handbook. Ed.Yubing Xie. Boca Raton: CRC Press, 2012; 369-91. Hilfiger, M.G., Chen, M., Brinzari,T.V., Nocera, T.M., Shatruk, M., Petasis, D.T., Musfeldt, J.L., Achim, C. Dunbar, K.R., “An Unprecedented Charge Transfer Induced Spin Transition in an Fe–Os Cluster,” Angewandte Chemie International Edition 2010; 49(8): 1410–1413. Fields of Study Major Field: Biomedical Engineering Concentrations: Biomedical Micro/Nanotechnology, Biomedical Imaging ix Table of Contents Abstract .................................................................................................................ii Dedication ............................................................................................................iv Acknowledgements ..............................................................................................v Vita ..................................................................................................................... vii List of Tables ...................................................................................................... xii List of Figures .................................................................................................... .xiii List of Abbreviations .......................................................................................... .xv List of Symbols .................................................................................................xviii Chapter 1: Superparamagnetic
Recommended publications
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Two-Dimensional Field-Sensing Map and Magnetic Anisotropy Dispersion
    PHYSICAL REVIEW B 83, 144416 (2011) Two-dimensional field-sensing map and magnetic anisotropy dispersion in magnetic tunnel junction arrays Wenzhe Zhang* and Gang Xiao† Department of Physics, Brown University, Providence, Rhode Island 02912, USA Matthew J. Carter Micro Magnetics, Inc., 617 Airport Road, Fall River, Massachusetts 02720, USA (Received 22 July 2010; revised manuscript received 24 January 2011; published 22 April 2011) Due to the inherent disorder in local structures, anisotropy dispersion exists in almost all systems that consist of multiple magnetic tunnel junctions (MTJs). Aided by micromagnetic simulations based on the Stoner-Wohlfarth (S-W) model, we used a two-dimensional field-sensing map to study the effect of anisotropy dispersion in MTJ arrays. First, we recorded the field sensitivity value of an MTJ array as a function of the easy- and hard-axis bias fields, and then extracted the anisotropy dispersion in the array by comparing the experimental sensitivity map to the simulated map. Through a mean-square-error-based image processing technique, we found the best match for our experimental data, and assigned a pair of dispersion numbers (anisotropy angle and anisotropy constant) to the array. By varying each of the parameters one at a time, we were able to discover the dependence of field sensitivity on magnetoresistance ratio, coercivity, and magnetic anisotropy dispersion. The effects from possible edge domains are also discussed to account for a correction term in our analysis of anisotropy angle distribution using the S-W model. We believe this model is a useful tool for monitoring the formation and evolution of anisotropy dispersion in MTJ systems, and can facilitate better design of MTJ-based devices.
    [Show full text]
  • Tailored Magnetic Properties of Exchange-Spring and Ultra Hard Nanomagnets
    Max-Planck-Institute für Intelligente Systeme Stuttgart Tailored Magnetic Properties of Exchange-Spring and Ultra Hard Nanomagnets Kwanghyo Son Dissertation An der Universität Stuttgart 2017 Tailored Magnetic Properties of Exchange-Spring and Ultra Hard Nanomagnets Von der Fakultät Mathematik und Physik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Kwanghyo Son aus Seoul, SüdKorea Hauptberichter: Prof. Dr. Gisela Schütz Mitberichter: Prof. Dr. Sebastian Loth Tag der mündlichen Prüfung: 04. Oktober 2017 Max‐Planck‐Institut für Intelligente Systeme, Stuttgart 2017 II III Contents Contents ..................................................................................................................................... 1 Chapter 1 ................................................................................................................................... 1 General Introduction ......................................................................................................... 1 Structure of the thesis ....................................................................................................... 3 Chapter 2 ................................................................................................................................... 5 Basic of Magnetism .......................................................................................................... 5 2.1 The Origin of Magnetism .......................................................................................
    [Show full text]
  • Understanding the Origin of Magnetocrystalline Anisotropy in Pure and Fe/Si Substituted Smco5
    Understanding the origin of magnetocrystalline anisotropy in pure and Fe/Si substituted SmCo5 *Rajiv K. Chouhan1,2,3, A. K. Pathak3, and D. Paudyal3 1CNR-NANO Istituto Nanoscienze, Centro S3, I-41125 Modena, Italy 2Harish-Chandra Research Institute, HBNI, Jhunsi, Allahabad 211019, India 3The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011–3020, USA We report magnetocrystalline anisotropy of pure and Fe/Si substituted SmCo5. The calculations were performed using the advanced density functional theory (DFT) including onsite electron-electron correlation and spin orbit coupling. Si substitution substantially reduces both uniaxial magnetic anisotropy and magnetic moment. Fe substitution with the selective site, on the other hand, enhances the magnetic moment with limited chemical stability. The magnetic hardness of SmCo5 is governed by Sm 4f localized orbital contributions, which get flatten and split with the substitution of Co (2c) with Si/Fe atoms, except the Fe substitution at 3g site. It is also confirmed that Si substitutions favor the thermodynamic stability on the contrary to diminishing the magnetic and anisotropic effect in SmCo5 at either site. INTRODUCTION Search for high-performance permanent magnets is always being a challenging task for modern technological applications as they are key driving components for propulsion motors, wind turbines and several other direct or indirect market consumer products. Curie temperature Tc, magnetic anisotropy, and saturation magnetization Ms, of the materials, are some basic fundamental properties used to classify the permanent magnets. At Curie temperature a material loses its ferromagnetic properties, hence higher the Tc, better is the magnets to be used under extreme conditions.
    [Show full text]
  • Superparamagnetism and Magnetic Properties of Ni Nanoparticles Embedded in Sio2
    PHYSICAL REVIEW B 66, 104406 ͑2002͒ Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2 F. C. Fonseca, G. F. Goya, and R. F. Jardim* Instituto de Fı´sica, Universidade de Sa˜o Paulo, CP 66318, 05315-970, Sa˜o Paulo, SP, Brazil R. Muccillo Centro Multidisciplinar de Desenvolvimento de Materiais Ceraˆmicos CMDMC, CCTM-Instituto de Pesquisas Energe´ticas e Nucleares, CP 11049, 05422-970, Sa˜o Paulo, SP, Brazil N. L. V. Carren˜o, E. Longo, and E. R. Leite Centro Multidisciplinar de Desenvolvimento de Materiais Ceraˆmicos CMDMC, Departamento de Quı´mica, Universidade Federal de Sa˜o Carlos, CP 676, 13560-905, Sa˜o Carlos, SP, Brazil ͑Received 4 March 2002; published 6 September 2002͒ We have performed a detailed characterization of the magnetic properties of Ni nanoparticles embedded in a SiO2 amorphous matrix. A modified sol-gel method was employed which resulted in Ni particles with ϳ Ϸ average radius 3 nm, as inferred by TEM analysis. Above the blocking temperature TB 20 K for the most diluted sample, magnetization data show the expected scaling of the M/M S vs H/T curves for superparamag- netic particles. The hysteresis loops were found to be symmetric about zero field axis with no shift via Ͻ exchange bias, suggesting that Ni particles are free from an oxide layer. For T TB the magnetic behavior of these Ni nanoparticles is in excellent agreement with the predictions of randomly oriented and noninteracting magnetic particles, as suggested by the temperature dependence of the coercivity field that obeys the relation ϭ Ϫ 1/2 ϳ HC(T) HC0͓1 (T/TB) ͔ below TB with HC0 780 Oe.
    [Show full text]
  • Magnetic Anisotropy and Exchange in (001) Textured Fept-Based Nanostructures
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research: Department of Physics and Astronomy Physics and Astronomy, Department of 12-2013 Magnetic Anisotropy and Exchange in (001) Textured FePt-based Nanostructures Tom George University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/physicsdiss Part of the Condensed Matter Physics Commons George, Tom, "Magnetic Anisotropy and Exchange in (001) Textured FePt-based Nanostructures" (2013). Theses, Dissertations, and Student Research: Department of Physics and Astronomy. 31. https://digitalcommons.unl.edu/physicsdiss/31 This Article is brought to you for free and open access by the Physics and Astronomy, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research: Department of Physics and Astronomy by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAGNETIC ANISOTROPY AND EXCHANGE IN (001) TEXTURED FePt-BASED NANOSTRUCTURES by Tom Ainsley George A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Physics and Astronomy Under the Supervision of Professor David J. Sellmyer Lincoln, Nebraska December, 2013 MAGNETIC ANISOTROPY AND EXCHANGE IN (001) TEXTURED FePt-BASED NANOSTRUCTURES Tom Ainsley George, Ph.D. University of Nebraska, 2013 Adviser: David J. Sellmyer Hard-magnetic L10 phase FePt has been demonstrated as a promising candidate for future nanomagnetic applications, especially magnetic recording at areal densities approaching 10 Tb/in2. Realization of FePt’s potential in recording media requires control of grain size and intergranular exchange interactions in films with high degrees of L10 order and (001) crystalline texture, including high perpendicular magnetic anisotropy.
    [Show full text]
  • Magnetic Dynamics of Single Domain Ni Nanoparticles
    J. Appl. Phys. 93, 6531 (2003); doi:10.1063/1.1540032 (3 pages) AF-13 Magnetic dynamics of single domain Ni nanoparticles G. F. Goya, F.C. Fonseca, and R. F. Jardim Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo, Brazil R. Muccillo Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, CCTM-Instituto de Pesquisas Energéticas e Nucleares CP 11049, 05422-970, São Paulo, SP, Brazil N. L. V. Carreño, E. Longo, and E.R. Leite Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, Departamento de Química, Universidade Federal de São Carlos CP 676, 13560-905, São Carlos, SP, Brazil The dynamic magnetic properties of Ni nanoparticles diluted in an amorphous SiO2 matrix prepared from a modified sol-ge l me thod have been studied by the frequency f dependence of the ac magnetic susceptibility χ(T). For samples with similar average radii ~ 3-4 nm, an increase of the blocking temperature from TB ~ 20 to ~ 40 K was observed for Ni concentrations of ~ 1.5 and 5 wt.%, respectively, assigned to the effects of dipolar interactions. Both the in-phase χ’(T) and the out-of- phase χ’’(T) maxima follow the predictions of the thermally activated Néel-Arrhenius model. The effective magnetic anisotropy constant Keff inferred from χ’’(T) versus f data for the 1.5 wt.% Ni sample is close to the value of the magnetocrystalline anisotropy of bulk Ni, suggesting that surface effects are negligible in the present samples. In addition, the contribution from dipolar interactions to the total anisotropy energy Ea in specimens with 5 wt.% Ni was found to be comparable to the intrinsic magnetocrystalline anisotropy barrier.
    [Show full text]
  • Discovery of Ferromagnetism with Large Magnetic Anisotropy in Zrmnp and Hfmnp Tej N
    Discovery of ferromagnetism with large magnetic anisotropy in ZrMnP and HfMnP Tej N. Lamichhane,1,2 Valentin Taufour,1,2 Morgan W. Masters,1 David S. Parker,3 Udhara S. Kaluarachchi,1,2 Srinivasa Thimmaiah,2 Sergey L. Bud’ko,1,2 and Paul C. Canfield1,2 1)Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, U.S.A. 2)The Ames Laboratory, US Department of Energy, Iowa State University, Ames, Iowa 50011, USA 3)Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA ZrMnP and HfMnP single crystals are grown by a self-flux growth technique and structural as well as tem- perature dependent magnetic and transport properties are studied. Both compounds have an orthorhombic crystal structure. ZrMnP and HfMnP are ferromagnetic with Curie temperatures around 370 K and 320 K respectively. The spontaneous magnetizations of ZrMnP and HfMnP are determined to be 1.9 µB/f.u. and 2.1 µB/f.u. respectively at 50 K. The magnetocaloric effect of ZrMnP in term of entropy change (∆S) is estimated to be −6.7 kJm−3K−1 around 369 K. The easy axis of magnetization is [100] for both compounds, with a small anisotropy relative to the [010] axis. At 50 K, the anisotropy field along the [001] axis is ∼ 4.6T for ZrMnP and ∼ 10 T for HfMnP. Such large magnetic anisotropy is remarkable considering the absence of rare-earth elements in these compounds. The first principle calculation correctly predicts the magnetization and hard axis orientation for both compounds, and predicts the experimental HfMnP anisotropy field within 25 percent.
    [Show full text]
  • Magnetic Anisotropy in Molecular Nanomagnets
    Spectroscopic Investigations of Magnetic Anisotropy in Molecular Nanomagnets ECMM workshop on Magnetic Anisotropy Karlsruhe, 11th‐12th October 2013 Prof. Dr. Joris van Slageren Institut für Physikalische Chemie Dr. Shang‐Da Jiang 1. Physikalisches Institut Universität Stuttgart Germany Contents 2 1. Introduction 4. Inelastic Neutron Scattering 1.1 Magnetic Anisotropy 4.1 Theoretical background and Experimental Considerations 1.2 Magnetic Anisotropy in Transition Metal Clusters 4.2 Examples 1.3 Magnetic Anisotropy in f‐Elements 5. Electronic Absorption and Luminescence 2. Single‐crystal SQUID measurements 5.1 Electronic Absorption (f elements) 2.1 Motivation 5.2 Luminescence (f elements) 2.2 Magnetic susceptibility tensor 5.3 Magnetic circular dichroism (transition metal clusters, f elements). 2.3 Determination 3. High‐frequency EPR spectroscopy 3.1 Theoretical background and Experimental Considerations 3.2 Examples 3.3 Frequency Domain EPR Contents Literature 3 A. Abragam/B. Bleany – Electron Paramagnetic Resonance of Transition Ions, 1970 N.M. Atherton – Principles of Electron Spin Resonance, 1993. R. Boča – Theoretical Foundations of Molecular Magnetism, 1999 R. Carlin –Magnetochemistry, 1986 C. Görller‐Wallrand, K. Binnemans in Handbook on the Physics and Chemistry of Rare Earths, Vol. 23, http://dx.doi.org/10.1016/S0168‐1273(96)23006‐5 O. Kahn –Molecular Magnetism, 1993 F.E. Mabbs/D.J. Machin – Magnetism and Transition Metal Complexes, Chapman and Hall, London, 1973 K.R. Lea, M.J.M. Leask, W.P. Wolf, J. Phys. Chem. Solids, 23, 1381 (1962) H. Lueken – Magnetochemie, 1999 H. Lueken – Course of lectures on magnetism of lanthanide ions under varying ligand and magnetic fields, http://obelix.physik.uni‐ bielefeld.de/~schnack/molmag/material/Lueken‐kurslan_report.pdf 2008 D.J.
    [Show full text]
  • Controlling the Magnetic Anisotropy of Van Der Waals Ferromagnet Fe3gete2
    Controlling the magnetic anisotropy of van der Waals ferromagnet Fe3GeTe2 through hole doping Se Young Park1,2,†, Dong Seob Kim3,†, Yu Liu4, Jinwoong Hwang5,6, Younghak Kim7, Wondong Kim8, Jae-Young Kim9, Cedomir Petrovic4, Choongyu Hwang6, Sung-Kwan Mo5, Hyung-jun Kim3, Byoung-Chul Min3, Hyun Cheol Koo3, Joonyeon Chang3, Chaun Jang3,*, Jun Woo Choi3,*, and Hyejin Ryu3,* 1Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul 08826, Korea 2Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Korea 3Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea 4Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States 5Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA 6Department of Physics, Pusan National University, Busan 46241, Korea 7Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673 Korea 8Quantum Technology Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea 9Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea † These authors contributed equally to this work. 1 *(C.J.) e-mail: [email protected], Tel: +82-2-958-6713. (J. C.) e-mail: [email protected], Tel: +82-2-958-6445. (H.R.) e-mail: [email protected], +82-2-958-5705. Abstract Identifying material parameters affecting properties of ferromagnets is key to optimize materials better suited for spintronics. Magnetic anisotropy is of particular importance in van der Waals magnets, since it not only influences magnetic and spin transport properties, but also is essential to stabilizing magnetic order in the two dimensional limit.
    [Show full text]
  • Magnetic Anisotropy
    5 Magnetic anisotropy Magnetization reversal in thin films and some relevant experimental methods Maciej Urbaniak IFM PAN 2012 Today's plan ● Magnetocrystalline anisotropy ● Shape anisotropy ● Surface anisotropy ● Stress anisotropy Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis – hysteresis of a sphere Fe Co easy axis Ni image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999 Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis – hysteresis of a sphere 1.0 0.5 hard-axis reversal Fe Co s 0.0 easy axis M / M -0.5 -1.0 -10 -5 0 5 10 H[a.u] ●hard-axis reversal is characterized Niby higher field needed to saturate the sample ●the easy-axis reversal is usually characterized by higher hysteresis losses image source: S. Blügel, Magnetische Anisotropie und Magnetostriktion, Schriften des Forschungszentrums Jülich ISBN 3-89336-235-5, 1999 Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis ●In case of large sphere (containing many atoms) the shape of the sample does not introduce additional anisotropy ●In small clusters the magnetization reversal is complicated by the reduction of symmetry (and the increased relative contribution of surface atoms) In Fe sphere of radius 1μm the surface atoms constitute roughly 0.04% of all atoms Urbaniak Magnetization reversal in thin films and... Anisotropy of hysteresis ●In case of large sphere (containing many atoms) the shape of the sample does not introduce additional anisotropy ●In small clusters the magnetization reversal is complicated by the reduction of symmetry (and the increased relative contribution of surface atoms) sphere-like – no breaking of crystal symmetry for high r M.
    [Show full text]
  • Magnetism and Interactions Within the Single Domain Limit
    Magnetism and interactions within the single domain limit: reversal, logic and information storage Zheng Li A dissertation Submitted in partial fulfillment of the requirement for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Dr. Kannan M. Krishnan, Chair Dr. Karl F. Bohringer Dr. Marjorie Olmstead Program Authorized to Offer Degree: Materials Science & Engineering © Copyright 2015 Zheng Li ABSTRACT Magnetism and interactions within the single domain limit: reversal, logic and information storage Zheng Li Chair of the Supervisory Committee: Dr. Kannan M. Krishnan Materials Science & Engineering Magnetism and magnetic material research on mesoscopic length scale, especially on the size-dependent scaling laws have drawn much attention. From a scientific point of view, magnetic phenomena would vary dramatically as a function of length, corresponding to the multi-single magnetic domain transition. From an industrial point of view, the application of magnetic interaction within the single domain limit has been proposed and studied in the context of magnetic recording and information processing. In this thesis, we discuss the characteristic lengths in a magnetic system resulting from the competition between different energy terms. Further, we studied the two basic interactions within the single domain limit: dipole interaction and exchange interaction using two examples with practical applications: magnetic quantum-dot cellular automata (MQCA) logic and bit patterned media (BPM) magnetic recording. Dipole interactions within the single domain limit for shape-tuned nanomagnet array was studied in this thesis. We proposed a 45° clocking mechanism which would intrinsically eliminate clocking misalignments. This clocking field was demonstrated in both nanomagnet arrays for signal propagation and majority gates for logic operation.
    [Show full text]