Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes By

Total Page:16

File Type:pdf, Size:1020Kb

Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes By Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes By Omar Lahlou Bachelor of Science University of California, San Diego A thesis submitted to the College of Engineering and Sciences at Florida Institute of Technology in partial fulfillment of the requirement for the degree of Master of Science in Ocean Engineering Melbourne, Florida May, 2019 We the undersigned committee hereby approve the attached thesis, “Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes” by Omar Lahlou, for partial fulfilment of the degree of Master of Science in Ocean Engineering. ___________________________________ Robert J. Weaver, Ph.D. Associate Professor of Ocean Engineering Major Advisor ___________________________________ Stephen Wood, Ph.D. Associate Professor of Ocean Engineering ___________________________________ Yahya Sharaf Eldeen, Ph.D., P.E. Professor of Mechanical Engineering ___________________________________ Ronnal Reichard, Ph.D. Professor of Ocean Engineering ___________________________________ Richard Aronson, Ph.D. Professor and Head Department of Ocean Engineering and Marine Sciences Abstract Title: Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes. Author: Omar Lahlou Committee chair: Robert J. Weaver The aim of the present study is to define the hydrodynamic resistance of surfboards with different designs. Decreasing the drag acting on a board helps the surfer to attain higher surfing performances. It helps to attain higher speeds and maneuvering for the surfer. In this thesis, theoretical, experimental and computational approaches are used to explain how the drag changes with different surfboard shapes. Four surfboards with varying shapes were towed at different speeds and the resulting force was recorded. Two computational models were developed using Star CCM and Flowsquare to confirm the experimental results. The drag force on the boards increases with increasing area. The increased wetted surface area resulted in increased buoyancy but decreased mobility. The drag force could be broken down into frictional and form drag. Form drag is a function of the shape of the object and decreases with improved surfboard design, like pinned tail instead of squared. Longer surfboards attain planing mode at higher speeds. Displacement mode is dominated by form drag whereas planing mode is dominated by frictional drag. Drag coefficients for the various boards ranged from 0.1 at low speeds to 0.05 at high speeds. Shorter surfboards had higher drag coefficients because of higher shear stress. iii Table of Contents Chapter I: Introduction and Motivations ........................................................................ 1 1.1. Introduction and Hypothesis .................................................................................... 1 1.2. History and context................................................................................................... 2 1.3. Thesis approach ........................................................................................................ 3 Chapter II: Theory ........................................................................................................... 4 2.1. The Drag Force ......................................................................................................... 4 2.1.1. Skin Friction and Form Drag ................................................................................ 5 2.1.2. Drag Coefficient .................................................................................................... 6 2.2. Turbulence modeling ................................................................................................ 7 2.2.1. Reynolds Number .................................................................................................. 8 2.2.2. Froude Number .................................................................................................... 11 2.2.3. Boundary effects .................................................................................................. 11 2.2.4. Boundary Layer Thickness ................................................................................. 12 2.2.5. Shear Stress .......................................................................................................... 13 2.3. Displacement and Planing regimes ....................................................................... 14 2.3.1. Hull Speed ............................................................................................................ 15 Chapter III: Methodology .............................................................................................. 17 3.1. Surfing Data Analysis ............................................................................................ 17 3.1.1. Material and Calibration ..................................................................................... 18 3.2. Experimental Analysis using a Load Cell ............................................................. 20 3.2.1. Material and Calibration ..................................................................................... 22 3.2.2. Bronze Aluminum bar dimensions calculation ................................................. 24 3.2.3. Strain Gauges and Wheatstone bridge ............................................................... 24 3.2.4. Load Cell Design ................................................................................................. 28 3.2.5. Load Cell Calibration .......................................................................................... 31 3.3. Star CCM simulation .............................................................................................. 32 iv 3.4. Flowsquare Simulation ........................................................................................... 33 Chapter IV: Results ........................................................................................................ 34 4.1. Surfing Data Analysis ............................................................................................ 34 4.1.1. Hobo Data ............................................................................................................ 34 4.1.2. Spectral density.................................................................................................... 37 4.1.3. Iribarren Number ................................................................................................. 40 4.1.4. Surfboard Data ..................................................................................................... 42 4.1.5 Data Analysis ........................................................................................................ 45 4.1.5.1. Surf Identification............................................................................................. 45 4.1.5.2. Dimensionless parameters ............................................................................... 46 4.1.5.3. Drag Coefficient ............................................................................................... 47 4.2. Experimental Analysis using a Load Cell ............................................................. 48 4.2.1. Load Cell data ...................................................................................................... 48 4.2.2. Drag Force ........................................................................................................... 49 4.2.3. Drag Coefficient .................................................................................................. 56 4.2.4. Magnetometer data and Pitch Angle .................................................................. 57 4.3. Star CCM+ simulation ........................................................................................... 61 4.3.1. Drag Force ........................................................................................................... 62 4.3.2. Drag Coefficient .................................................................................................. 63 4.4. Flowsquare simulation ........................................................................................... 64 Chapter V: Discussion ................................................................................................... 67 5.1. Theoretical and Surfing data analysis ................................................................... 67 5.2. Experimental Analysis using a Load Cell ............................................................. 68 5.3. Experimental and Computational data comparison .............................................. 77 Chapter VI: Conclusion ................................................................................................. 80 References ...................................................................................................................... 82 Appendices ..................................................................................................................... 89 Appendix A: Theoretical Drag analysis for a flat plate ............................................... 89 v Appendix B: Instrumentation calibration and preparation .......................................... 92 B.1. Hobo Pressure Gauge Instrument preparation and calibration ........................... 92 B.2. Hobo calibration certificate ................................................................................... 93 B.3. Lowell Accelerometers/Magnetometer
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • © Copyright 2019 Association of Surfing Professionals LLC Page 1
    ® © Copyright 2019 Association of Surfing Professionals LLC Page 1 WSL RULE BOOK 2019 ALL CHANGES FROM PREVIOUS VERSIONS CAN BE REQUESTED FROM WSL. LAST UPDATED 6 DECEMBER 2019 World Surf League 147 Bay St Santa Monica, CA, 90405 USA Phone: +1 (310) 450 1212 Email: [email protected] U Hwww.worldsurfleague.comU All rights reserved. No part of this Rulebook may be reproduced in any form by any mechanical or electronic means including information storage or retrieval systems without permission in writing from Association of Surfing Professionals LLC. World Surf League, WSL, ASP, It’s On, Dream Tour, Big Wave Tour Awards, CT, QS, AirTour, BWT, Big Wave Tour, You Can’t Script This, Championship Tour, Qualification Series, and all associated logos and event logos are trademarks or registered trademarks of Association of Surfing Professionals LLC or it’s subsidiaries throughout the world. Modifications to this Rulebook can happen at any time with the approval and under the authority of the Head of Tours and Competition. The Rulebook will be enforceable upon publication on www.worldsurfleague.com. This Rulebook and the contents herein are the copyright of Association of Surfing Professionals LLC © Copyright 2019 Association of Surfing Professionals LLC Page 2 CONTENTS CHAPTER 1: CHAMPIONSHIP TOUR (CT) ........................................................................... 8 Article 1: Application of this Chapter ............................................................................ 8 Article 2: Prize Money .....................................................................................................
    [Show full text]
  • The Most Important Dates in the History of Surfing
    11/16/2016 The most important dates in the history of surfing (/) Explore longer 31 highway mpg2 2016 Jeep Renegade BUILD & PRICE VEHICLE DETAILS ® LEGAL Search ... GO (https://www.facebook.com/surfertoday) (https://www.twitter.com/surfertoday) (https://plus.google.com/+Surfertodaycom) (https://www.pinterest.com/surfertoday/) (http://www.surfertoday.com/rss­feeds) The most important dates in the history of surfing (/surfing/10553­the­most­ important­dates­in­the­history­of­surfing) Surfing is one of the world's oldest sports. Although the act of riding a wave started as a religious/cultural tradition, surfing rapidly transformed into a global water sport. The popularity of surfing is the result of events, innovations, influential people (http://www.surfertoday.com/surfing/9754­the­most­influential­people­to­ the­birth­of­surfing), and technological developments. Early surfers had to challenge the power of the oceans with heavy, finless surfboards. Today, surfing has evolved into a high­tech extreme sport, in which hydrodynamics and materials play vital roles. Surfboard craftsmen have improved their techniques; wave riders have bettered their skills. The present and future of surfing can only be understood if we look back at its glorious past. From the rudimentary "caballitos de totora" to computerized shaping machines, there's an incredible trunk full of memories, culture, achievements and inventions to be rifled through. Discover the most important dates in the history of surfing: 3000­1000 BCE: Peruvian fishermen build and ride "caballitos
    [Show full text]
  • Effect of Wind on Near-Shore Breaking Waves
    EFFECT OF WIND ON NEAR-SHORE BREAKING WAVES by Faydra Schaffer A Thesis Submitted to the Faculty of The College of Engineering and Computer Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida December 2010 Copyright by Faydra Schaffer 2010 ii ACKNOWLEDGEMENTS The author wishes to thank her mother and family for their love and encouragement to go to college and be able to have the opportunity to work on this project. The author is grateful to her advisor for sponsoring her work on this project and helping her to earn a master’s degree. iv ABSTRACT Author: Faydra Schaffer Title: Effect of wind on near-shore breaking waves Institution: Florida Atlantic University Thesis Advisor: Dr. Manhar Dhanak Degree: Master of Science Year: 2010 The aim of this project is to identify the effect of wind on near-shore breaking waves. A breaking wave was created using a simulated beach slope configuration. Testing was done on two different beach slope configurations. The effect of offshore winds of varying speeds was considered. Waves of various frequencies and heights were considered. A parametric study was carried out. The experiments took place in the Hydrodynamics lab at FAU Boca Raton campus. The experimental data validates the knowledge we currently know about breaking waves. Offshore winds effect is known to increase the breaking height of a plunging wave, while also decreasing the breaking water depth, causing the wave to break further inland. Offshore winds cause spilling waves to react more like plunging waves, therefore increasing the height of the spilling wave while consequently decreasing the breaking water depth.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • QUICK REFERENCE GUIDE XT and XE Ovens
    QUICK REFERENCE GUIDE XT AND XE OVENS SYMBOL OVEN FUNCTION FUNCTION SELECTION SETTING BEST FOR Select on the desired Activates the upper and the temperature through the This cooking mode is suitable for any Bake either oven control knob lower heating elements or the touch control smart kind of dishes and it is great for baking botton. 100°F - 500°F and roasting. Food probe allowed. Select on the desired Reduced cooking time (up to 10%). Activates the upper and the temperature through the Ideal for multi-level baking and roasting Convection bake either oven control knob lower heating elements or the touch control smart of meat and poultry. botton. 100°F - 500°F Food probe allowed. Select on the desired Reduced cooking time (up to 10%). Activates the circular heating temperature through the Ideal for multi-level baking and roasting, Convection elements and the convection either oven control knob especially for cakes and pastry. Food fan or the touch control smart probe allowed. botton. 100°F - 500°F Activates the upper heating Select on the desired Reduced cooking time (up to 10%). temperature through the Best for multi-level baking and roasting, Turbo element, the circular heating either oven control knob element and the convection or the touch control smart especially for pizza, focaccia and fan botton. 100°F - 500°F bread. Food probe allowed. Ideal for searing and roasting small cuts of beef, pork, poultry, and for 4 power settings – LOW Broil Activates the broil element (1) to HIGH (4) grilling vegetables. Food probe allowed. Activates the broil element, Ideal for browning fish and other items 4 power settings – LOW too delicate to turn and thicker cuts of Convection broil the upper heating element (1) to HIGH (4) and the convection fan steaks.
    [Show full text]
  • A STUDY of ELEVATED CONVECTION and ITS IMPACTS on SURFACE WEATHER CONDITIONS a Dissertat
    A STUDY OF ELEVATED CONVECTION AND ITS IMPACTS ON SURFACE WEATHER CONDITIONS _______________________________________ A Dissertation presented to the Faculty of the Graduate School at the University of Missouri-Columbia _______________________________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _____________________________________________________ by Joshua Kastman Dr. Patrick Market, Dissertation Supervisor December 2017 © copyright by Joshua S. Kastman 2017 All Rights Reserved The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled A Study of Elevated Convection and its Impacts on Surface Weather Conditions presented by Joshua Kastman, a candidate for the degree of doctor of philosophy, Soil, Environmental, and Atmospheric Sciences and hereby certify that, in their opinion, it is worthy of acceptance. ____________________________________________ Professor Patrick Market ____________________________________________ Associate Professor Neil Fox ____________________________________________ Professor Anthony Lupo ____________________________________________ Associate Professor Sonja Wilhelm Stannis ACKNOWLEDGMENTS I would like to begin by thanking Dr. Patrick Market for all of his guidance and encouragement throughout my time at the University of Missouri. His advice has been invaluable during my graduate studies. His mentorship has meant so much to me and I look forward his advice and friendship in the years to come. I would also like to thank Anthony Lupo, Neil Fox and Sonja Wilhelm-Stannis for serving as committee members and for their advice and guidance. I would like to thank the National Science Foundation for funding the project. I would l also like to thank my wife Anna for her, support, patience and understanding while I pursued this degree. Her love and partnerships means everything to me.
    [Show full text]
  • Surfing, Gender and Politics: Identity and Society in the History of South African Surfing Culture in the Twentieth-Century
    Surfing, gender and politics: Identity and society in the history of South African surfing culture in the twentieth-century. by Glen Thompson Dissertation presented for the Degree of Doctor of Philosophy (History) at Stellenbosch University Supervisor: Prof. Albert M. Grundlingh Co-supervisor: Prof. Sandra S. Swart Marc 2015 0 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the author thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Date: 8 October 2014 Copyright © 2015 Stellenbosch University All rights reserved 1 Stellenbosch University https://scholar.sun.ac.za Abstract This study is a socio-cultural history of the sport of surfing from 1959 to the 2000s in South Africa. It critically engages with the “South African Surfing History Archive”, collected in the course of research, by focusing on two inter-related themes in contributing to a critical sports historiography in southern Africa. The first is how surfing in South Africa has come to be considered a white, male sport. The second is whether surfing is political. In addressing these topics the study considers the double whiteness of the Californian influences that shaped local surfing culture at “whites only” beaches during apartheid. The racialised nature of the sport can be found in the emergence of an amateur national surfing association in the mid-1960s and consolidated during the professionalisation of the sport in the mid-1970s.
    [Show full text]
  • Chapter 430 BICYCLES, SKATEBOARDS and ROLLER SKATES
    Chapter 430 BICYCLES, SKATEBOARDS AND ROLLER SKATES § 430.01. Definitions. [Ord. No. 458, passed 2-25-1991; Ord. No. 535, passed 7-8-1996] The following words, when used in this chapter, shall have the following meanings, unless otherwise clearly apparent from the context: (a) BICYCLE — Shall mean any wheeled vehicle propelled by means of chain driven gears using footpower, electrical power or gasoline motor power, except that vehicles defined as "motorcycles" or "mopeds" under the Motor Vehicle Code for the State of Michigan shall not be considered as bicycles under this chapter. This definition shall include, but not be limited to, single-wheeled vehicles, also known as unicycles; two-wheeled vehicles, also known as bicycles; three-wheeled vehicles, also known as tricycles; and any of the above-listed vehicles which may have training wheels or other wheels to assist in the balancing of the vehicle. (b) SKATEBOARD — Shall include any surfboard-like object with wheels attached. "Skateboard" shall also include, under its definition, vehicles commonly referred to as "scooters," being surfboard-like objects with wheels attached and a handle coming up from the forward end of the surfboard area. (c) ROLLER SKATES — Shall include any shoelike device with wheels attached, including, but not limited to, roller skates, in-line roller skates and roller blades. § 430.02. Operation upon certain public ways prohibited; sails and towing prohibited. [Ord. No. 458, passed 2-25-1991; Ord. No. 677, passed 12-8-2003] (a) No person shall ride or in any manner use a skateboard, roller skate or roller skates upon the following public ways: (1) U.S.
    [Show full text]
  • © Copyright 2018 Association of Surfing Professionals LLC Page 1
    ® © Copyright 2018 Association of Surfing Professionals LLC Page 1 WSL RULE BOOK 2018 ALL CHANGES FROM PREVIOUS VERSIONS CAN BE REQUESTED FROM WSL. LAST UPDATED 23 August 2018 World Surf League 147 Bay St Santa Monica, CA, 90405 USA Phone: +1 (310) 450 1212 Email: [email protected] Hwww.worldsurfleague.com U All rights reserved. No part of this Rulebook may be reproduced in any form by any mechanical or electronic means including information storage or retrieval systems without permission in writing from Association of Surfing Professionals LLC. World Surf League, WSL, ASP, It’s On, Dream Tour, Big Wave Tour Awards, CT, QS, BWT, Big Wave Tour, You Can’t Script This, Championship Tour, Qualification Series, and all associated logos and event logos are trademarks or registered trademarks of Association of Surfing Professionals LLC or it’s subsidiaries throughout the world. Modifications to this Rulebook can happen at any time with the approval and under the authority of the WSL Commissioner. The Rulebook will be enforceable upon publication on www.worldsurfleague.com. This Rulebook and the contents herein are the copyright of Association of Surfing Professionals LLC © Copyright 2018 Association of Surfing Professionals LLC Page 2 CONTENTS CHAPTER 1: CHAMPIONSHIP TOUR (CT) ...................................................................... 7 Article 1: Application of this Chapter ....................................................................... 7 Article 2: Prize Money ..............................................................................................
    [Show full text]
  • Pace David 1976.Pdf
    PACK, DAVID LEE. The History of East Coast Surfing. (1976) Directed by: Dr. Tony Ladd. Pp. Hj.6. It was tits purpose of this study to trace the historical development of East Coast Surfing la the United States from Its origin to the present day. The following questions are posed: (1) Why did nan begin surfing on the East coast? (2) Where aid man begin surfing on the East Coast? (3) What effect have regional surfing organizations had on the development of surfing on the East Coast? (I*) What sffest did modern scientific technology have on East Coast surfing? (5) What interrelationship existed between surfers and the counter culture on the East Coast? Available Information used In this research includes written material, personal Interviews with surfers and others connected with the sport and observations which this researcher has made as a surfer. The data were noted, organized and filed to support or reject the given questions. The investigator used logical inter- pretation in his analysis. The conclusions based on the given questions were as follows: (1) Man began surfing on the East Coast as a life saving technique and for personal pleasure. (2) Surfing originated on the East Coast in 1912 in Ocean City, New Jersey. (3) Regional surfing organizations have unified the surfing population and brought about improvements in surfing areas, con- tests and soaauaisation with the noa-surflng culture. U) Surfing has been aided by the aeientlfle developments la the surfboard and cold water suit. (5) The interrelationship between surf era and the counter culture haa progressed frea aa antagonistic toleration to a core congenial coexistence.
    [Show full text]
  • Oven Settings Lighting the Burners Plates Which Are Designed to Catch Drippings and All Burners Are Ignited by Electric Circulate a Smoke Flavor Back Into the Food
    Surface Operation Range Controls Oven Settings Lighting the Burners plates which are designed to catch drippings and All burners are ignited by electric circulate a smoke flavor back into the food. Beneath the Interior Oven Left Front Burner Left Oven Left Oven Griddle Self-Clean Right Oven Right Front Burner BAKE (Two- require gentle cooking such as pastries, souffles, yeast MED BROIL ignition. There are no open-flame, flavor generator plates is a two piece drip pan which Light Switch Control Knob Function Temperature Indicator Light Indicator Temperature Control Knob Element Bake) breads, quick breads and cakes. Breads, cookies, and other Inner and outer broil “standing” pilots. catches any drippings that might pass beyond the flavor Full power heat is baked goods come out evenly textured with golden crusts. elements pulse on (15,000 BTU) Selector Knob Control Knob Light Indicator Light (15,000 BTU) generator plates. This unique grilling system is designed radiated from the No special bakeware is required. Use this function for single and off to produce VariSimmer™ to provide outdoor quality grilling indoors. bake element in the rack baking, multiple rack baking, roasting, and preparation less heat for slow Simmering is a cooking technique in CLEAN OVEN GRIDDLE OVEN CLEAN bottom of the oven of complete meals. This setting is also recommended when broiling. Allow about which foods are cooked in hot liquids kept at or just Dual Fuel cavity and baking large quantities of baked goods at one time. 4 inches (10 cm) Oven Functions Convection-Self Clean barely below the boiling point of water.
    [Show full text]