Quick viewing(Text Mode)

Uniglobe Armillary Sphere

UNIGLOBEARMILLARYSPHERE

INSTRUCTIONMANUAL

DanielLeeWenger

CONTENTS

Introduction...... 1 DescriptionoftheUniglobe...... 2 Glossary...... 3 MeasurementofAnglesinthePlane ...... 4 PositionsonaSphere...... 6 Positionsonthe ...... 7 PositionsontheCelestialGlobe ...... 8 RelativeOrientationofEarthandCelestialandtheMeasurementofTime ...... 11 SiderealTime...... 11 ApparentTime ...... 12 MeanSunTime...... 12 ZoneTime...... 13 DaylightSavingsTime...... 13 OrientingtheUniglobefortheCurrentTimeandtheObserver'sPosition...... 13 UseoftheSpannertoMeasureBearingandZenithDistance(DirectionCoordinates)ofCelestialObject ...... 15 TransitTime...... 15 RisingandSettingTimes...... 15 Uniglobeasa...... 16 CelestialNavigation...... 17 PrecessionoftheEquinoxes(andZodiacalSystems) ...... 18 EffectsofPrecession...... 20 EarthSatellitesandtheMotionofthe...... 21 DeterminingAstrologicalData...... 23 HistoricalNotes...... 24

INTRODUCTION

FromtheearliestplanetariaofArchimedesthroughthecomplexarmillaryspheresofthe17thCenturytothepresentcombinationcelestialand terrestialglobes,manhasproduceddevicestounderstandandteachrelationshipsbetweenheavenlybodies.InNovember1973thecomet Kahoutecwasbeingwidelydiscussed.Itspositioncoordinateswerepublished,butthisinformationdidnotsufficetodeterminewhereinthe skytolookforthecomet.Beingatheoreticalphysicist,Iwasabletodesignadevicethatwouldgivethedesiredinformation.Irealizedthatsuch adevicewouldbeofvalueineducationandhaveagreatpopularappeal.AprototypeoftheUniglobewascompleteinJuneof1974.Thisdevice representsthe20thCenturyversionofthearmillarysphere,ananalogcomputerofpracticalvalue.

DanielL.Wenger,PhD

PublishedandprintedintheUnitedStatesofAmerica,1975,byDanielL.Wenger,Soquel,California. Copyright©1975byDanielL.Wenger.Allrightsreserved.Nopartofthisbookmaybereproducedwithoutpermissionofthepublisher. UniglobeisatrademarkofDanielL.Wenger.

1 DESCRIPTIONOFTHEUNIGLOBE

TheUniglobeisaGLOBEimmediatelysurroundedbyatransparentCELESTIALGLOBEuponwhicharemarkedtheandother pertinentcelestialdata.ThetwoglobesaresupportedbyaYOKEMOUNTwhichrestsinaslottedBASEfororientingtheAXIStowardany direction.Abrakingsystemallowsthecelestialglobetobeturnedindependentlyandthetwoglobestobeturnedsimultaneously.ATIMERING attheofthecelestialglobeallowssettingoftheearthandcelestialglobesaccordingtothetimeofday.Thetimeringismovable allowinguseofanyofthesystemsoftimemeasurementinuse. Ameasuringdevice,theSPANNER,allowsdeterminationofzenithangleandbearingofacelestialobjectfromanypontontheearth.APOINTER indicatesthedirectionofacelestialobjectatagiventimeandconversely,whenthepointerisdirectedtowardsthesun,theUniglobebecomesa sundial.TheUniglobeissuppliedwithaSATELLITESPANNERforindicatingtheregionofvisibilityofasatelliteandaGREATCIRCLEBANDfor indicatingsatelliteorbits.Agraphicalandtabularephemerisissuppliedtoallowplottingofthepositionsofthesun,moonand.

2 Altitude.Angulardistanceabovethehorizon:thearcofaverticalcircle Latitude.Theangulardistancenorthorsouthoftheequatoranda betweenthehorizonandapointonthecelestialsphere,measured pointonthesurfaceoftheearth,measurednorthwardorsouthward upwardfromthehorizon. fromtheequatorthrough90°,andlabeledNorStoindicatethe Angle.Theinclinationtoeachotheroftwointersectinglines, directionofmeasurement. measuredbythearcofacircleinterceptedbythetwolinesforming Longitude.Theanglebetweentheprimeorreferenceand theangle,thecenterofthecirclebeingthepointofintersection. anothermeridianofinterest,measuredfromtheprimemeridianEor AngularDistance.Theanglebetweentwodirectionsasseenfroma Wthrough180°. givenpoint. Meansun.Afictitiouspointconceivedtomoveeastwardalongthe Apogee.Thatorbitalpointfarthestfromtheearthwhentheearthis celestialequatoratauniformrateequaltotheaveragerateofthe thecenterofattraction(asinthecaseofthemoon). apparentsunalongthe. Apparentsun.Theactualsunasitappearsinthesky. Meridian.Agreatcircleperpendiculartotheequator. Apparenttime.Timebasedupontherotationoftheearthrelativeto Parallax.Thedifferenceintheapparentdirectionorpositionofan theapparent(true)sun. objectwhenviewedfromdifferentpoints. Azimuth.Thehorizontalanglebetweenareferencedirectionand Perigee.Thatorbitalpointnearesttheearthwhentheearthisthe anotherdirectionofinterest.Itismeasuredfrom0°atthereference centerofattraction(asinthecaseofthemoon). directionclockwiseorcounterclockwisethrough360. Polardistance.Theangulardistancefromacelestialpole,usuallythe Bearing.Thehorizontalanglebetweenareferencedirectionand elevatedpole. anotherdirectionofinterest.Itisusuallymeasuredfrom0°attrue Precession.Thechangeinthedirectionoftheaxisofrotationofa northclockwisethrough360°. spinningbody,asagyroscope,whenacteduponbyatorque. Celestialbody.Anyaggregationofmatterinspaceconstitutingaunit, Primemeridian.Themeridianoflongitude0°usedastheoriginfor suchasthesun,a,etc. themeasurementoflongitude. CelestialSphere.Asphereconcentricwiththeearth,onwhichall Siderealday.Thedurationofonerotationoftheearthonitsaxis, celestialbodiesexcepttheearthareimaginedtobeprojected. withrespecttothevernalequinox. Coordinate.Oneofasetofmagnitudesdefiningapointinspace. Sideralhourangle.Theangulardistancewestofthevernalequinox; .Theangulardistancenorthorsouthofthecelestial thearcofthecelestialequator,ortheangleatthecelestialpole, equator:thearcofanhourcirclebetweenthecelestialequatoranda betweenthehourcircleofthevernalequinoxandthehourcircleof pointonthecelestialsphere,measurednorthwardorsouthwardfrom apointonthecelestialsphere,measuredwestwardfromthehour thecelestialequatorthrough90°,andlabeledNorStoindicatethe circleofthevernalequinoxthrough360° directionofmeasurement. Siderealtime.Timebasedupontherotationoftheearthrelativeto Ecliptic.Theapparentannualpathofthesunamongthestars. thevernalequinox. Equator.Theprimarygreatcircleoftheearth,orasimilarbody, Solarday.Thedurationofonerotationoftheearthonitsaxis,with perpendiculartothepolaraxis. respecttothesun. Equinox.Oneofthetwopointsofintersectionoftheeclipticandthe Vernalequinox.Thatpointofintersectionoftheeclipticandthe celestialequator,ortheinstantthesunoccupiesoneofthesepoints, celestialequator,occupiedbythesunasitchangesfromsouthto whenitsdeclinationis0°. northdeclinationonoraboutMarch21,ortheinstantthisoccurs. Greatcircle.Theintersectionofasphereandaplanethroughits Zenithdistance.Theangulardistancefromthezenith. center. Hourcircle.Agreatcircleperpendiculartothecelestialequator.

3 MEASUREMENTOFANGLESINTHEPLANE Themeasurementofanglesisthebasicconceptrequiredfordefinitionofthe celestialenvironment.ConsiderthecircleshowninFigure2.Ourbasicframe ofreferenceinmeasuringanglesisthecircle.Thecircleisconsideredtobe composedof360separateparts,eachofwhichiscalledaDEGREE.Thus,the anglebetweenAandBshowninFigure2is15divisions,or15°.Thesymbol foradegreeis°.

InFigure3,theobserver'seyecandeterminetheanglebetweentwoobjects, assumingthathehassometypeofmeasuringdevice.Itisimportantto rememberthatthedistancesfromtheobservertotheobjectsmaybechanged withoutaffectingtheangle:thusobjectAcanbeanywhereonthelinethrough itandtheobserverandobjectBcanbeanywhereonthelinethroughitand theobserver.

Usingthespanner,whichisessentiallyadeviceformeasuringangles,as showninFigure4,theanglebetweenobjectsAandBcanbedetermined withsomeaccuracy.Theuseofthespannerinvolvestheuseofanangular whichisdifferentfromthescaleonthecircleinthatthelinear distancesbetweenmarksdiffer.Thespannerisanarcofacirclewitha radiusofapproximately61/4inches.Thecircleisofaradiusof approximately2inches.However,theanglesmeasuredwitheitherdevice arethesame.Tousethespanner,theobserver'seyemustbeatapoint61/4 inchesfromthespanner.(Atthecenterofthecircledefinedbythe spanner).Anglesinanyplanecanbemeasuredbyrotatingthespanner.

4 EXERCISES 1.Measuretheanglebetweenthetopandthebottomofatreeor telephonepole(measurementofanangleintheverticleplane).See Figure5.

2.Measuretheanglebetweenthebottomsoftwotreesor telephonepoles(measurementofanangleinthehorizontal plane.).SeeFigure6.

3.Measuretheanglebetweenthetopofonetreeortelephonepole andthebottomofanother(measurementofanangleinaslanted plane.)SeeFigure7.

4.Measuretheanglebetweentwoprominentstarsinthesky(anglescan bemeasuredinanyplane).SeeFigure8.

5 POSITIONSONASPHERE Thelocationofanexactpositiononthesurfaceofaspherecanbeexpressedina varietyofways.Theparticularmethodusedinnavigationandastronomymakesuse oftwocoordinates.Theanglebetweenthepolaraxisandtheposition,andanangle measurementaroundthepolaraxisfromameridianreferencelinewhichis arbitrarilyestablished.Thereferencemeridianisagreatcirclethroughbothpoles. ReferringtoFigure9,thepositionAislabeledbyanangle(calledthePolar Distance)betweenthepolaraxisandtheposition,andanangle(calledtheAzimuth Angle)measuredeitherclockwiseorcounter-clockwisefromthereferenceline.The polaranglecanbemeasureddirectlyfromthecursorscaleonthespanner.The azimuthalanglebetweenthereferencemeridianandthespannercursorcanbe measureddirectlyfromtherosettaonthespanner,orbetweentheintersectionat theequatorofthereferencelineandthespannercursor. Forpositionsinthesouthernhemisphere,polardistanceismeasuredfromthe southpoleandlabeledwithanS.

Thesametypesofmeasurementsareusedtodeterminepositionswithrespect tothepositionoftheobserver.ReferringtoFigure10,thespanneris positionedwiththespannerrosettacenteredovertheobserver'sposition,and thespannercursorlinelyingonpositionA.Theanglemeasuredbetweenthe observer'spositionandpositionAiscalledtheZENITHDISTANCE.The observer'slocationandthecenterofthespheredefinetheZENITH DIRECTION.Thezenithdirectionisanimaginarylinefromthecenterofthe spherethroughtheobservationpoint,andextendingabovetheobserver. Azimuthalangleattheobserver'spositioniscalledBEARINGandisusually measuredwithrespecttothemeridianthroughtheobserver'spositionandthe poles.

6 POSITIONSONTHEEARTHGLOBE ThesystemdescribedinFigure9isusedwiththeEARTHGLOBE,asshown inFigure11.Thepolardistanceistheanglebetweenthepolaraxisandthe zenithdirectionatPositionA.Thecomplementaryvalue,calledLATITUDEis theangledistancefromtheequatortoPositionA.Latitudeequals90°-polar distanceandisNorthorSouthoftheequator. Themeasurementbetweenmeridiansontheearthglobeiscalled LONGITUDE,andisreferencedtothePrimeorGreenwichMeridian,which passesthroughbothpolesandGreenwich,nearLondon,England. LongitudeisspecifiedaseitherWestorEastlongitude,dependingon whetherthedirectionliesWestorEastofGreenwich.Conventionally,the maximumlongitudevaleis180WorE.Themaximumlatitudevlaueis90°N orS. Thissystemofcoordinatespermitsprecisedescriptionofanypointonthe surfaceoftheearthglobe,usingthereferencepointsnoted.

ThesystemdescribedinFigure10ofreferringpositionstotheobserverisalso usedontheearthglobe.RefertoFigure12.Thespannerisusedtomeasurethe azimuthalangle(bearing)fromNorthtoanotherpointontheglobe.Inthe figure,NewYorklies70°EofNasviewedfromLosAngles.Thespannercanalso beusedtodetermineactuallineardistancealongthegreatcirclebetweenthe twopoints.Inthiscase,NewYorklies38divisionsordegreesfromLosAngeles. Eachdivisiononthespannerrepresents60nauticalmiles,thereforeNewYorkis 38x60=2280nauticalmilesfromLosAngeles. EXCERCISES 1.MeasurethedistancefromNewOrleanstoPortGuinea(ontheW.Coastof Africa).Whatisthebearing? Answer:4800mi.,6°NofEast. 2.MeasurethedistancefromPortGuineatoMoscow.Whatisthebearing? Answer:45000mi.,30°EofNorth. 3.MeasurethebearingfromLondontoMecca.(20°N,39°E). Answer:120°EofN.

7 POSITIONSONTHECELESTIALGLOBE AsystemofcoordinatessimilartothatdescribedinFigures11and12isusedtolabeldirectionsinthesky.Thesedirectionsarerepresentedas positionsontheCELESTIALGLOBEoftheUniglobe.TheeffectofthesizeoftheearthonmeasurementofangleisshowninFigure13.The extremelylargedistancesfromtheearthtoacelestialobject,comparedtotheradiusoftheearth,resultsinmakingthelinesofsighteffectively parallel.Thismeansthatthemeasurementofpolardistanceforadistantwillbeessentiallythesamewhenmeasuredfromanypointonthe earth'ssurface.DECLINATION,thecomplementofpolardistance,willalsobethesame. Figure14demonstrateshowthepositionsofcelestialobjectsarelocatedonthecelestialglobebyextendinganimaginarylinefromthecenterof theearthtothecelestialobject.Thelocationofthecelestialobjectisindicatedatthepointwheretheimaginarylineintersectsthesurfaceofthe celestialglobe.Thepolardirectionsatallobservationpointsareconsideredparallel,andthelinesofsighttothecelestialobjectareconsidered parallel,thereforethepolardistancetothecelestialobjectwillbethesameatanypointontheearth'ssurfaceandattheearth'scenter.Inthe caseofobjectsneartotheearth,linesofsightdirectionsarenotparallelandthedifferenceissignificant,(calledPARALLAX).Inthecaseof distantstarsandplanets,theparallaxislessthan1/60thofadegree.Theparallaxofthemoonvariesfromzerotonearlyonedegree,andwillbe discussedlater.Theparallaxofearthsatellitesisverylargeandsignificant.

8 Anotherimportantpointwhichmustbethoroughlyunderstoodistheestablishmentofareferencelineincelestialspacewhichservesthesame purposeofazimuth-typereferenceasdoestheGreenwichMeridianoftheEarthGlobe. AstheEarthmovesaboutthesunonitsannualjourney,theapparentpathofthesunthroughtheskyasseenfromEarth,appearsasshownin Figure15.Therearefoursignificantpointsonthispath: Anotherimportantpointwhichmustbethoroughlyunderstoodistheestablishmentofareferencelineincelestialspacewhichservesthesame purposeofazimuth-typereferenceasdoestheGreenwichMeridianoftheEarthGlobe. AstheEarthmovesaboutthesunonitsannualjourney,theapparentpathofthesunthroughtheskyasseenfromEarth,appearsasshownin Figure15.Therearefoursignificantpointsonthispath:

1.Winter(Dec.22) ...... Whenthesunisatitsmostsoutherlypoint 2.VernalEquinox(Mar.21)...... Whenthesuncrossestheequatoronitswaynorth 3.SummerSolstice(June22) ...... Whenthesunisatitsmostnortherlypoint 4.AutumnalEquinox(Sept.22) ...... Whenthesuncrossestheequatoronitswaysouth

Thecelestialreferencelineisdefinedasthemeridianthatpassesthroughthevernalequinox.AllreferencescomparabletoElongitudearecalled RIGHTASCENSION.ReferencescomparabletoWlongitudearecalledSIDEREALHOURANGLEandareusuallyspecifiedinhoursandminutes fromtheVernalEquinox.

9 Inspecifyingrightascensionandsiderealhourangle,anglemeasurements arebasedonthedivisionofthecircleinto24equalparts,eachofwhich contains15degrees.Each15°segmentrepresentsanhourandisfurther dividedinto60minutes.Thus,thereare60/15=4minutesperdegree.The Uniglobetimeringhastwoscales.SeeFigure16.Theuppershowsdegrees. Thelowerscaleisdividedinto24segments,eachofwhichincludes15 degrees. Whenthetimeringissetwiththe24markonthevernalequinox,adirect readingofrightascensionofanystarmaybemadebyplacingthespanner cursoroverthestarandreadingthenumberofhoursandminutesalongthe timeringfromthevernalequinoxtotheintersectionofthetimeringwith thespannercursor. ThepathofthesunasseenfromtheearthiscalledtheECLIPTIC.Theeclipticformsanangleofapproximately231/2°withtheequator.

EXERCISES 1.Setthetimering24hourmarkontheVernalEquinox.MeasuretheofRIGEL.Confirmthatitisapproximately5hoursand12minutes. 2.Plotthepositionofanobjectontheeclipticatrightascensionof6hours. (Positionofsummersolstice). ThereferencesystemusedonthecelestialglobeisshowninFigure17.The termDECLINATIONisusedtodenotetheanglewhichwascalledLATITUDE ontheearthglobe.Allothertermsareanalogous.Forexample:the declinationofVegais37°N,andtherightascensionisapproximately280°or 18hours35minutes. EXERCISE 1. Plotastaronthecelestialglobewhosepositionis6h43mright ascensionand161/2°S.Thisstaristhebrighteststarinthesky,Sirius.

AsinthecaseoftheEarthGlobe,anglemeasurementsmaybemadewiththe spannerbetweenpointsonthecelestialglobe.Sincethesepointsarenotat thesamedistancefromtheearth,thespannercannotrepresentlinear distancebetweenobjectsinthesky.Figure18showstheanglemeasurement betweenVegaandDenebas25°.

10 RELATIVEORIENTATIONOFEARTHANDCELESTIALGLOBESANDTHEMEASUREMENTOFTIME Theearth'srotationuponitspolaraxiscanberepresentedbyholdingthecelestialglobefirmlyonitsaxisandrotatingtheearthglobe,bymeans oftheearthrotatingknob,counter-clockwiseasviewedfromtheNorthpole.Thesameeffectcanbeachievedbyholdingtheearthglobe stationaryandrotatingthecelestialglobeclockwise. Astheearthrotates,areferencelongitudeontheearthwillcrossacelestialreferencemeridian.Theperiodbetweentwosuchcrossingiscalleda DAY.Whenthecelestialmeridianistheprimecelestialmeridian,theperiodisaSIDERIALDAY.Whenthecelestialmeridianisthatofthesun, theperiodisanAPPARENTSUNDAY.Ameasurementoftheanglebetweentheterrestialreferencelongitudeandthecelestialreference meridianrepresentsameasurementofthetimeofday. ThetimeringontheUniglobeisdividedinto360degreesonitsupperscale,withlongergraduationsevery10degrees.Thelowerscaleis dividedinto24one-hoursegments(eachofwhichcontains15degrees),andgraduationsatthehalfhourand15minutespoints.Thereare severaltimesystemswhichareusedtomeasurethepassageoftime,dependingonwhatspecificearthandcelestialreferencelinesareused. Figure19showsthevariousreferencelinesandtheterminologyusedtodefinethedifferenttimesystems.

SIDEREALTIME Siderialtimecorrespondstoplacingthetimeringwith1200atthe autumnalequinox.Thispositioncorrespondstosettingthezeromarkat thevernalequinox.Localsiderealtime(LST)canthenbereadforany longitudeatitsintersectionwiththetimering.GreenwichSiderealTime (GST)isreadattheintersectionoftheGreenwichmeridianwiththetime ring. Figure20showsthesettingofthetimeringforsiderealtime,andthe readingofGSTas0400hours. QUESTIONS 1.WhenGSTis0400whatisLSTatCairo,Egypt? Answer:(0604). 2.WhenGSTis0400whatisLSTatSanFrancisco? Answer:(1945),or7:45P.M.

11 APPARENTSUNTIME Apparentsuntimeismeasuredbyplacingthe1200positionofthetime ringatthemeridianofthesun'scurrentpositioninthesky.Thisposition isgiveninthegraphicalephemerisforthecurrentdate,orcanbe estimatedbyinterpolatingforthecurrentdatebetweenthedatesshown alongtheeclipticontheUniglobe.LocalApparentSunTime(LAT)canbe directlyreadforranylongitudeatitsintersectionwiththetimering. Figure21showsthe1200positionsetatthepositionofthesunfor November22,andtheearthglobeorientedfor1100hoursinRiode Janeiro.ThelocalApparentSunTimeinDakar,Senegalis1245whenitis 1100hoursinRio.TheLocalApparentSunTimeis1200ornoonforany obervationointwhenthesunisduenorthorsouthofthatpoint. GreenwichApparentTime(GAT)istheLocalApparentSunTimeatthe Greenwichmeridian.WhenapparentsuntimeatRiodeJaneirois1100, GATis1350. Theapparentsundaydiffersfromthesideraldayby31/2to41/2 minutes.Thisisduetothefactthatthesun'spositionintheskymoves about1°duringthetimethatittakestheearthtorotateonce.Theprecise differencedependsupontwofactors.Oneistheearth'svaryingspeedin itsellipticalorbitaroundthesunduringtheyear.Theotherisduetothe inclinationoftheecliptictotheequator.Nearthe,thesunmoves totheeast,duringaday,agreateramountthanwhenitisnearthe equinox. Tohaveaunitoftimewhichisapproximatelyequaltotheapparentsun dayandofthesamelengththroughouttheyear,theconceptofthemean sunisintroduced.

MEANSUNTIME Themeansunisanimaginarypointthatmovesuniformlyalongthe celestialequatorwithaspeedequaltotheaveragespeedoftheapparent sunasitmovesthroughtheyear.Sincethemeansundayconstitutesone completerotationwithrespecttoareferencepointthatisalsomovingat therateofapproximately1degreeperdayinthesamedirectionof rotation,themeansundayisapproximately1degreeor4minuteslonger thanthesiderealday.(SeeFigures22and23). MeanSunTimeismeasuredwiththe1200positiononthetimeringsetat themeridianofthemeansun.Sincetheaverageapparentsunspeedis used,thereisnovariationinthelengthofthemeansunday.

12 Thepositionofthemeansuncanbedeterminedbyfindingthepositionoftheapparentsunfromtheephemerisandaddingthecorrection fromthetabularephemeris. Forexample:IntheephemerisonApril10,1975,thesun'spositionis1h11mR.A.Onthisdatethepositionofthemeansunis-1mfromthe positionofthesun.Withthe2400markofthetimeringsetonthevernalequinox,markonthecelestialglobenearthetimeringthepositionof themeansun1h11m+(-1m)=1h10mR.A.(SeeFigure22).ThisisthepositionofthemeansunonApril10.Nowsetthe1200markofthe timeringonthepositionofthemeansun.LocalMeanSunTimecanthenbereaddirectlyfromthetimeringatanyparticularmeridianonthe earthglobeforanyorientationofthetwoglobes.InFigure23,thetwoglobesareorientedat1320localmeansuntime(LMT)inDakar, thereforeatthatinstantitis0800(LMT)inMexicoCity.GMTistheLocalMeanSunTimeontheGreenwichMeridianor1425inFigure23. EXERCISE1.Set,forApril10th,therelativeorientationofthetwoglobesfor1545LMTinLosAngeles.WhatisGMT?2340hrs.

THEEQUATIONOFTIME Thepositionofthemeansunandtheapparentsundifferduringtheyearbyuptoapproximately16minutes.Thisdifferenceiscalledthe EQUATIONOFTIME.Foranyparticulartimeoftheyear,

where:

ThisdifferenceisgivenintheEphemerisforanygivendate..

ZONETIME Itisapparentfromthepreviousdiscussionthattimesasmeasuredattwoparticularlocations separatedbyafewdegreesoflongitudearedifferent. Asamatterofconvenience,peoplehaveagreedtousecertainstandardlongitudelinesto measuretimeforeverydaypurposes.Thus,thereare24standardlongitudelinesat15°intervalsabouttheearth.Ingeneral,peopleusethe standardlongitudelinenearesttotheirlocationtomeasuretheirtime.Theselinesarenotalwayspreciseandmayvarysomewhattofollow geographiclinesorpoliticaldivisions.Weefindthatgenerallytheterritorywithin+or-71/2°ofastandardlinewillbeatimezone,butasinthe caseoftheArizona-Californiaborderwhichoccursclosetostandardlongitudelineof120°W,thetimezoneboundaryfollowsthestateline. DAYLIGHTSAVINGTIME Ithasbeenthepractice,sincetheintroductionofzonetimes,toaltertheterrestrialreferencelineduringtheyeartotakemaximumadvantage ofthelongerhoursofsunlightinthesummertime.Theconversionofstandardtimetodaylighttimeisaccomplishedbyusingthenextmost easterlystandardreferenceline.Thisresultsinachangeofonehourbetweenstandardanddaylightsavingtimes.Forexample:whenitis0400 PSTinLosAngeles,(120°Wlinecoincidingwith0400onthetimering)itis0500PacificDaylightSavingstime.(105Wlinecoincidingwiththe 0500markonthetimering). ORIENTINGTHEUNIGLOBEFORTHECURRENTTIMEANDTHEOBSERVER'S POSITION BeforeorientingtheUniglobeforthecurrenttime,consulttheephemerisforthe currentdatetodeterminethepositionofthemeansunandplotitspositionnearthe timeringonthecelestialglobe.RefertoFigures24and25forexamplesforMay1, 1975Repeatthisproceedureforthesun,placingthesun'spositionontheeclipticon thecelestialglobe.Toplotthepositionoftheplanetsandthemoon,determinethe rightascensionanddeclinationforthecurrentdateandplottheirpositionsonthe celestialglobe.

13 Next,orienttheUniglobewiththepolaraxispointingtothepolardirection (NorthpoletotheNorth,SouthpoletotheSouth)andtheobserver's positioninthezenithpositionasshowninFigure26.Setthetimeringwith the1200onthemeansun,andorientthecelestialglobetocorrespondwith presentzonetimeattheobserver'spositionusingtheoberver'sstandard longitude.Itisnowpossibletodeterminewhichcelestialobjectsshownon thecelestialglobewillbevisiblefromtheobeserver'spoint.Todetermine whichobjectsarevisibletotheobserver,placethespannerrosettaoverthe observer'sposition.Thelocalhorizonisthendeterminedbytheendofthe spannerasitisrotatedabouttheobserver'sposition.Anyobjectfalling betweentheobserver'spositionandtheendofthespanner(assumingno mountainsorotherobjectsinterfere)willbevisible.Thedirectiontoany objectintheskycanbeindicatedbyplacingthepointerontheobjectand notingtheapproximatedirectioninwhichtolook.(Ifthesunisout,nostars arevisible..)

14 USEOFTHESPANNERTOMEASUREBEARINGANDZENITHDISTANCE(DIRECTION COORDINATES)OFCELESTIALOBJECTS TheUniglobeanditsspannermaybeusedtodeterminedirectioncoordinates,amore preciseprocessthanshowninFigure26.Withthetwoglobesorientedforthecurrent dateandtimeasdescribedpreviously,twodefinitvepositioncoordinatesmaybe measuredwiththespannerasshowninFigure27. Tomeasurezenithdistancetoacelestialobjectplacethespannerrosettaoverthe observationposition,andthecursorlineoverthecelestialobject.Thezenithdistance fromthepositionontheearthglobetothecelestialobject'spositionismeasured directlyonthespanner.Forexample,thezenithdistancefromLosAngelestoProcyon onMay1stat1400hours(PacificStandardTime)is471/2°. Tomeasurebearingtoacelestialobject,atagiventime,readtheanglefromthe roesettabetweenthecursorlineandnorth.Forexample,withtheconditionsshown, thebearingfromnorthtoProcyonatLosAngelesis1121/2°EofNor221/2°SofE.

TRANSITTIME Itispossibletodeterminethetimeatwhichacelestialobjectiseitherduenorthor southofagivenobeservationpoint.(ThisiscalledtheTRANSITTIME).Thisisaccomplishedbysettingupthetwoglboesforthespecificdate andmeasuringthetimethataspecificcelestialobjectpassesthroughthemeridianoftheobservationpoint.Forexample,thetransittimeof RigelatMexicoCityonMay1is1500CST(notethatRigelwillnotbevisibleattransitbecauseitisstilldaylight).MexicoCityusesthetimeofthe 90°standardlongitude.

RISINGANDSETTINGTIMES Therisingandsettingtimesofacelestialobjectcanbedeterminedforaspecific observationpoint.Therisingtimeofanobjectisthattimewhentheobjectrises abovethehorizonintheEastforaspecificobservationpoint(Zenithdistance 90°).Thesettingtimeisthattimewhentheobjectdisappearsoverthehorizonin theWest(ZenithDistance90°).SeeFigure28.Todeterminetherisingtimeofthe sunasseenfromNewYorkonMay,placethespannerrosettaonNewYork,and rotatethecelestialsphereuntilthe90°markonthespannercursorintersectsthe positionofthesunonMay1eastofNewYork.ThelocalMeanStandardTimecan thenbereaddirectlyonthetimeringat75°Wmeridianas0505EST.SinceNew YorkwouldbeonDaylightSavingstime,thetimeatlongitude60°Wwouldbe sued,or0605EDST.Thebearingofthesunwhenitrisesisapproximately15°N ofE.ThesunatthattimeisdirectlyoverheadinSudan,andalmostduesouthof Helsinki,Finland.Thesun'ssettingtimeinNewYorkonMay1(90°Zenith Distance)is1930EDSTor7:30P.M. EXERCISE DeterminerisingtimeofDenebonMay1,asseeninJamaica(2250EST).When DenebisjustrisinginJamaica,itis18°abovethehorizoninNewYork..

15 UNIGLOBEASASUNDIAL TheUniglobecanbeusedtotelltimefromthesun'spositionbyorientingtheearthglobesothattheobserver'spositionisatzenith,andthe polaraxisispointinginthepolardirection.SeeFigure29.Placethepointeronthesun'sposition(determinedfromtheephemeris)androtate thecelestialglobeuntilthepointer'sshadowdisappears(thepointeristhendirectlypointedatthesun).Thisestablishestheorientationofthe twoglobesfortheparticulardayandhour.Thetimeringisnowrotatedtotheparticulartimesystemdesired: SiderealTime 24onVernalEquinox ApparentSunTime 12onSun'sposition(fromephemeris) MeanSunTime 12onMeanSunPosition(fromephemeris) Thetimeataparticularobservationpointisnowreadattheintersectionofthetimeringandtheearthreferenceline.(SeeFigure30).(Nearest standardlongitudeforstandardmeantime,localmeridianforlocaltime,etc.). Notethatthismethodmaybeusedtotelltimeusinganycelestialobjectonthecelestialsphere.Forinstance,ifArcturusisintransitinHawaii onMay1,thenitis2350HawaiiStandardTime(150°W).

16 CELESTIALNAVIGATION Celestialnavigationingeneraldependsuponbeingabletoestablishthe orientationoftheearthglobewithrespecttothecelestialglboe(i.e.,thetimeof day).Ifsiderealtimeisknownitispossibletodetermineone'spositiononthe earthbyusingtheUniglobeandspanner.Itshouldbenotedthatstellar navigationisessentiallybasedonsiderealtime.IfGMTisknown,itmustbe convertedtosiderealtimebeforecalculationscanbemade. RefertoFigure31.Assumethatanobserveraboardashipknowsthatthetimeis 0430GST,andlooksintotheheavensandobservesthestarsRigelandCapella. Usingthespanner,hemeasuresthealtitude(i.e.,theanglefromthehorizon)of Capellaas60°.(Thus,zenithdistanceis30°)andthealtitudeofRigelas35° (zenithdistance55°.ByorientingthespannerrosettaoverCapella,acircleof 30°radiuscanbedrawnaroundthestar.Thiscirclerepresentsallofthepossible positionsatwhichtheobservermaybe.Thecirclerepresentsallpointshavinga zenithdistancefromCapellaof30°.Ifacircleofradius55°isalsoplotted aroundRigelontheUniglobe,thecirclewillintersecttheCapellacircleattwo points.Thus,thereareonlytwoplacesontheglobewherethesetwoconditions exist. Byorientingthetwoglobesfor0430GST,(24onvernalequinoxand0430onGreenwich)wefindthatatthistime,oneofthetwopoints appearsintheAtlantic,andtheotherinIran.TheambiguityisresolvedsincetheobeserverisknowntobeintheAtlantic.Athirdmeasurement andplot,perhapsofDeneb(altitude36°)wouldalsoresolvetheambiguity,ortheobservercouldnotethatCapellaisintheeasternsky,notthe westernsky.Thisisanexampleofcelestialnavigationwhichdoesnotrequiretheuseofanalmanacoranephemeris,justacatalogueofstar positions.Thistypeofcalculationcanbeperformedusinganyofthefixedcelestialobjects(thenavigationalstars).

Thenavigationprocesscanalsobeperformedusingmovingcelestialobjects suchasthesun,moonorplanets,butthepositionsoftheseobjectsforthe particulardateandtimeofdaymustbeknown.Thisrequiresanalmanacor ephemeris,togetherwithaknowledgeofGSTorGMT. ThenormalSUNSHOTrequiresgoingtotheephemerisoralmanacto determinethesun'spositionforthecurrenttime.Thesun'sdeclinationis approximatelyknownusingonlythedateandwithoutknowingthetimeof day.Thedeterminationofone'slatitudealonemaybeperformedby measuringthesun'saltitudeatlocalnoonortransit. Forexample,assumingitisthe15thofMay,itiseasytoapproximatethesun's positionfromaninterpolationofthedatesontheeclipticoftheUniglobe, whichestabishesthedeclinationofthesunforthatdate.Thelatitudeis determinedbyfirstcomputingthezenithdistancefromthemeasuredaltitude atlocalnoon.(90°-altitude=zenithdistance).Bydrawingacircleaboutthe sunofradiusequaltothezenithdistance,twopossiblelatitudesare determined,onedirectlynorthofthesunandonesouth.Thisambiguityis easilyresolvedbyobservation.(SeeFigure32).celestialobjects(the navigationalstars).

17 Duringthedaylighthoursthereisgenerallyonlyonecelestialobjectvisibile,thesun.Todeterminelongitudeduringtheday,twoobservations ofthesunaremadewithaknownperiodoftimebetweenobservationstodeveloptwozenithcirclesabouttwodifferentpositionsofthesun. Hereitiseasiesttopositionthecelestialglobefortheearliesttimereadingandtoplotthesecondpositionofthesunonthecelestialglobeas anobjectatthesamedeclinationasthesun'sfirstpositionbutmovedwestwardbyanamountdeterminedbythetimeintervalbetween sightings.Theobserver'spositionisthendeterminedinthesamewayasitisdonewithtwostars.(SeeFigure33). PRECESSION OF

THEEQUINOXES Thepositionsofstarswithrespecttotheearthchangeslowlyinaregularway.Thischangeisassociatedwiththechangeinthedirectionofthe axisofrotationoftheearth.TheNorthpolenowpointsapproximatelytowardsthestarPolaris.About4,000yearsfromnow,thepolaraxiswill bepointingnearthedirectionofVega,astarthatnowpassesoverheadinSanFrancisco. Thischangeindirectionoftheaxisoftheearthissimilartothemotionofaspinningtopasitprecessesaboutthevertical.Inthecaseofthe earth,theverticalisadirectionperpendiculartotheorbitoftheearthaboutthesunduringtheyear.Thisdirectioniscalledthepoleofthe ecliptic,andthepolaraxisoftheearthmovesaboutthisdirectiononceinabout25,800years.SeeFigure34.Presently,theearth'saxismaintains anangleofapproximately231/2°withrespecttothepoleoftheecliptic,however,duringthe25,800yearprecessionalcycle,theangleofthe polaraxistothepoleoftheeclipticdecreasesapproximately3°.Thus,thepathofthepolaraxisshownontheUnigloberepresentsaspiral. Thechangeinthedirectionofthepolaraxismeansthatthedirectioninspaceofthesunasseenfromtheearthwhenitispassingoverthe equatoronitswaynorth(i.e.,thedirectionofthevernalequinox)ischangingalso.Thevernalequinox,whichlinesontheecliptic,ismoving slowlyalobngtheeclipticinawesterlydirectionatarateof30°inabout2,150years.Ofcourse,thesolsticesandtheautumnalequinoxalso moveinthesamemanner.Thesun,initsapparentpaththroughthesky,willappeartopassthroughornearthesameasitnow does. Anaturaldivisionoftheprecessionalcycleisinto12equalpartsofabout2,150yearseach:eachpartiscalledanage.The12partsarethengiven thenamesofthe12constellationsofthe. Tospecifyacertainage,oneismakingastatementaboutthepositionofthevernalequinoxontheecliptic.TheageoftheBullandtheageof theRamhavesignificancetohistoriansofcultures2,000to6,000yearsold.Thepositionofthevernalequinoxtodayismovingfromthe PiscestowardtheconstellationAquariusandthisleadstotheexpressionheardtodaythatweareenteringtheageofAquarius.

18 Historically,therehasbeentheconventionofdividingtheeclipticinto12regions(ZodiacalRegions)of30°eachandlabelingeachregionwith thenameoftheconstellationthatfallsinthatregion.About2,000yearsago,thevernalequinoxwasbetweentheconstellationsAriesandPisces andthevernalequinoxwasnamedtheFirstPointofAries;thatis,thepositionofthesunwasjustenteringAriesatthevernalequinox.Atthat time,therewastheadoptionofadivisionoftheeclipticintotwelve30degreeregions,adivisionthatmaintaineditsrelationshiptothevernal equinox. Thus,withrespecttothisnewdivisionoftheecliptic,thevernalequinoxdefinedtheseparationbetweenthetwo30°regionscalledPisces(e) andAries(e).Today,someephemeridesarepublishedgivingthepositionsofthesun,moonandplanetsassomanydegreesintoTaurus,for example.Thisisaprecisewayofspecifyingpositionsalongtheeclipticwithrespecttothevernalequinox,butthehistoricalbasisoflabelingof theregionscanleadtoconfusion,sincethestatementdoesnotsaythattheobjectisneartheconstellationTaurus. Itappearsthatintheattempttobepreciseinthespecificationofpositionsalongtheeclipticbytheintroductionofthefixed30°divisionsofthe eclipticwithrespecttotheequinox,onehaslostacontinuitywiththepast.Asystemoftimemeasurementexistedthatreflectedaknowledgeof theprecessionoftheequinoxandalabelingofthetimebythe specificationofthepositionofthevernalequinoxalongtheecliptic (i.e.,theageoftheBull,etc.). TheUniglobeusestwonotationstospecifybetweenthetwo differentdivisionsoftheecliptic.SeeFigure35. Onthelowerscale,alongtheecliptic,aretwelvedivisionswitha boundaryatthevernalequinox.Thedivisionsarelabeledtotheeast byAries(e),Taurus(e),etc.,wherethe(e)standsforequinoctial.In thissystemthevernalequinoxisalwaysattheFirstPointofAries.On theupperscaleisadivisionoftheeclipticwhichisconsideredfixed withrespecttothestars.Onthisscale,thevernalequinoxmovesto thewestandisnowat31/2°Aquarius(s).Theotherregionsofthe siderealzodiacarenamedbytheconstellationslyinginthem followedby(s)standingforsidereal.(Notethatthisisadefinitionof thefixedorsidereal(s)zodiacwithrespecttothevernalequinoxof 1975.0).

19 EFFECTSOFPRECESSION Toseetheeffectuponastar'spositionduetoprecession,itisonlynecessarytomovethestar'spositiononthecelestialglobeaboutthepoleof theecliopticbyagivenangle.SeeFigure36.IfweareinterestedinthepositionofVegaoneagefromnowor2,150yearsfromnow,intheyear 4125A.D.wemovethecurrentpositionofVegacounter-clockwiseaboutthenortheclipticpoleby30°.Itscurrentdistancefromtheecliptic poleis291/2°andafteritismoveitwillstillbe291/2°fromtheeclipticpole,butinapositionabouthalf-waybeweenthecurrentpostionsof VegaandDeneb.Itsdeclinationwillbe42°anditsR.A.willbe19h40m.Ofcourseallotherstarswillalsohavemoved.Polaris,thecurrentwillbeatapolardistanceof12°,anditsR.A.willbe12h45m.Herewehaveignoredthechangeinthedeclinationoftheearth'spolewith respecttotheecliptic. ThestarRegulusinCancer(s)willhavemoveddowntoapositionalmostovertheequator. Togobackintimewemustmovethestarsinaclockwisedirectionaboutthenortheclipticpole.Forexample,towagesago(60°clockwise),or 4,300yearsagointheyear2,325B.C.,thePleiadeswereabout4°northoftheequatorandjustwestofthevernalequinox.SeeFigure37.Infact, thePleiadeswereusedbysomepeopletoindicatethebeginningofthenewyear.WhenthePleiadeswereonthemeridianatmidnight,thesun wasattheautumnalequinoxandthenewyearwasstarted.About21/6agesago,(65°clockwise)orabout2,600B.C.,thestarThubanorAlpha Draconiswasthepolestar.ItisbelievedthatthedescendingtunnelintheGreatPyramidCheopswasalignedtosighttowardsThubanatits lowerculmination.

20 EARTHSATELLITES ThepositionsofthemoonandotherearthsatellitesmaybeplottedontheUniglobeusingthesamemethodsasforothercelestialobjects.Any earthsatelliteincludingthemoon,revolvesinanorbitdefinedbyitsAPOGEE,thepointatwhichitisfurthestfromtheearth,andPERIGEE,the pointatwhichitisclosesttotheearthanditsinclinationwithrespecttoareferencecircle.Inthecaseofthemoon,apogeeis253,000mi.and perigeeis21,000mi.Theaveragedistanceis238,000mi.Theperiodofthemoon'sorbitisapproximately291/2dayswithrespecttothesun. Theorbitisinclinedtotheearth'seclipticapproximately5°. Artificialsatellitesaregenerallyinorbitsof100milesorhigherabovetheearthandcanassumeanyinclinationtotheearth'sequatordepending onthelaunchdirection.SatelliteslaunchedfromVandenbergAirForeceBase,southacrossthePacificOceanassumeanorbitatangles approaching90°totheequator.ThoselaunchedfromCapeKennedyeastwardovertheAtlanticOcean,generallyhaveorbitslyinginaband aroundtheequator.Theperiodofa100milehighorbitingsatelliteisgenerallyabout90minutes.Earthsatellitesin2,200milehighorbitshavea periodof24hours(stationaryorbit). Thesesatellitesareusedforradio,televisionandtelphonerelaysbetweencontinentsandareusuallyequatorialorbits. ReferringtoFigure38themoon'sorbitisdescribedbyadescendingnodewhichisthepointatwhichthemoonpassestheeclipticonitsway southandandascendingnode180°fromthedescendingnode.Eclipsesofthemoonappearwhenthemoonisnearanodeandthesunisnear theoppositenode.Solareclipsesoccurwhenthesunandthemoonarebothneareitherthedescendingorascendingnode.Thenodesarenot fixedbutmoveinawesterlydirectionalongtheecliptic.Inaperiodof18.9yearsthenodeswillcomplete1cycleof360°.Becauseoftheeffectof thesunonthemoon'sorbititisnotatruegreatcirclebutaspiralwhichapproximatesagreatcircle.SeeFigure39. Toplotthemoon'sposition,refertothegraphicalephemeris.Whenthemoonisfullitisdirectlyoppositethesun'sposition.Consultthe ephemerisforthesun'spositionforanyparticulardate.Whenthemoonisnotfull,itissomewhereelseinitsorbitdependinguponthenumber ofdaysfromafullmoon.Thetimebetweenfullisabout291/2days,so143/4daysfromafullmoonthemoonisnearthepositionofthe sunandiscalledanewmoon.

21 Earthsatellitesdifferfromothercelestialobjectsinthattheyaremuchclosertotheearthandtheeffectofparallaxispronounced.Anobserver seeingthemoonoverheadwillobservethemoonatazenithdistanceof0degreesbutifhemoves10°away,hewillobserveitaadistanceof10° plusafewminutes.Ifhemovesabout89°awayhewillobservethemoonatazenithdistanceof90°oronthehorizon.Thus,theparallaxofthe moonisapproximately1degree.Iftheobservedobjectisanaircraftdirectlyoverheadat1milealtitudetheobserverneedonlymoveabout10 milesor1/6ofadegreetoobservetheaircraftatazenithdistanceof90°.Theparallaxdependsonthealtitudeoftheobject.Thusanartificial satelliteina100milehighorbitdirectlyoverheadtoanobserverwillbeonthehorizontoanobserverwhoisatadistanceof12°or72miles away. The12°satellitespannerfurnishedwiththeUnigloberepresentsthe regionaroundanobserverforwhicha100milehighsatellitewillbe abovethehorizon.Ifthesatellitespannerisplacedwithitscenterover theobserver'spositionandthesatelliteiswithinthe12°circle,itwillbe abovethehorizonoftheobserver.Thespanner,whenplaceddirectly underthesatellitewillindicatetheareainwhicha100milehighorbiting satellitewillbevisible.RefertoFigure40. Figure41showstheuseofthesatellitespannerforaseriesof consecutivepassesofa100milehighsatellitearoundtheearth.The greatcircleringisplacedoverthecelestialspheretorepresentthe satelliteorbit.Theearthglobeisthenrotatedholdingthecelestialglobe fixed.Todeterminewhenthesatelliteisvisible,placethesatellite spanneroverthesatellite'spositionintheorbit.Todetermineifan observercansightthesatellite,placethesatellitespanneroverthe observer'spositionandnoteifthesatellite'sorbitpassesthroughthe ring.Ifitdoes,andifthesatelliteisinthatpartoftheorbitthatlies withinthesatellitespannerthentheobjectisvisible.Thus,inthefigure, thesatelliteisnotvisibleonthefirsttwopassesbutispotentiallyvisible onthethird.

22 DETERMININGASTROLOGICALDATA TheUniglobeisanidealrepresentationofthepositionsofthesun,earth andplanetsatthetimeofone'sbirth.Todeterminethebirthsign,placethe suninitspositionontheeclipticforthedateofbirth.Thesunwillfallinto oneofthezodiacalregionsontheecliptic.Theequinoctialbirthsignisread onthelowersideoftheecliptic;thesiderealbirthsignontheupper. Determinefromanephemerisfortheyearofbirththepositionsofthe planetsandthemoonatthetimeofbirthandplottheirpositionsonthe Uniglobe.Theresultisabirthchart. Todeterminetherisingsign,orienttheearthandcelestialglobesforthe timeofbirthandmarkthepositiononthecelestialglobedirectlyoverthe placeofbirth.Thisdeterminesthezenithdirectionatbirth.Positionthe spannerrosettraoverthispositionandextenditeastwardtointersectthe eclipticatthe90°pointonthespannercursor.Thezodiacalzignatthe intersectionistherisingsign.SeeFigure42.

23 HISTORICALNOTES Thescienceofastronomyisperhapstheoldestofthesciences.Thefirstwereprobablyoftheheavens,sincemenusedthemovementsof themoon,thesun,andthestarsasguidesinhunting,fishing,andfarming. TheBabyloniansstudiedcelestialmotionsaslongagoas3,800B.C.andpredictedeclipsesbytabulatingthemoon'shourangle.Thesearethe earliestknownephemerides.Theygroupedthestarsbyconstellationsanddividedthesun'sapparentmotionaroundtheearthinto24parts. TheearlyEgyptiansfixedthedatesoftheirreligiousfestivalsastronomicallynearlyasearlyastheBabylonians.Theycouldmeasureangles preciselyandorientedthepyramidswithinoneminuteofnorth.ThegreatpyramidofCheopsappearstohavebeenanearlyastronomical observatory.ThelightfromSirusshonedownashaftatuppertransit.,andthelightofthepolestarshonedownthenortherlyshaftatlower transit.ThepolestarwhenthepyramidwasbulitwasnotPolarisbutratherThubanintheconstellationDraco. TheearlyGreekslearnednavigationfromthePhoenicians.Thales,anearlyGreek,wasaPhoenician.Hemeasuredthelengthofthe yearandobservedthatthesundoesnotmoveuniformlybetweensolstices.Heismostfamousforpredictingthesolareclipseof585B.C.which endedabattlebetweenMedesandtheLydians. AristarchusofSamosoftheAlexandrianschoolwholivedinthe1sthalfofthe3rdCenturyB.C.,wasanearlyproponentoftheheliocentric theoryofthesolarsystem,i.e.,thesunwasthecenteroftheuniverseandtheearthrevolvedaboutit.AristyllusandTimocaris,alsoAlexandrians, measuredpositionsoftheprincipalstarswhichtheycataloguedwithsomenumericalprecision. ,alsoanAlexandrianastronomer,calculatedthesizeoftheearth.Duringthesummersolsticehemeasuredthezenithdistanceof thesunatAlexandriaknowingthatthesunwasinthezenithatAswanontheTropicofCancer.Fromthedistancebetweenthetwoplaceshe calculatedtheearth'scircumferencetobe24,000miles.Thecorrectvalueisabout25,900miles. ArchimedesinthethirdcenturyB.C.usedaglasscelestialglobewithasmallerterrestrialglobeinsidetodemonstratethemotionofcelestial bodies.Cicerodescribedthisdevice.Thus,althoughmanypeopleinthedarkagesdidnotunderstandthattheearthwasspherical, haveacceptedthefactforatleast25centuries. ,whowasbornin180B.C.wasthegreatestoftheearlyastronomers.Unfortunately,herejectedtheheliocentrictheoryof Aristarchus.Hecompiledacatalogueofmorethan1,000stars,givingtheircoordinatesanddividedthemintosixgroupsonthebasisof brightness.BycomparingthepositionsofthesestarswiththecatalogueofTimocasrisandAristyllusof250yearsearlier,hecalculatedthe precessionoftheequinoxesanddefinedthesiderealyearandthetropicalyear. ,whochronicledtheworkofHipparchus,livedbetween100and200A.D.hewrotethe,aworkof13bookscoveringallGreek astronomy.Heprovedtheearthtoberound,describedthepositionoftheeclipticandtwomethodsofdeterminingtheobliquityoftheecliptic. Hedescribedthe,aninstrumentformeasuringthealtitudeofanobjectandamethodforconstructingcelestialglobes. AftertheburningofthelibraryatAlexandria,astronomyenteredadormantperiod(476-1500A.D.).FromthepublicationoftheAlamagesttothe timeofCopernicustherewasnoastronomicaldiscoveryofgreatimportance.NicholasCopernicus,aPole,wasbornin1473.Hewasalawyer andadoctorofmedicineanddevelopedanewheliocentrictheoryoinanattempttobringcalculationandobservationintoagreement.InDe Revolutionibushepresentedhistheoryandtriggeredthebirthofmodernastronomy.AlthoughtheCopernicantheoryhasbeengreatly modifieditwasimportantinthatitspurredmuchnewinterestinastronomy. Galileo,bornin1564,developedthetelescopeasanastronomicaldeviceandmadeprecisemeasurementsofthemovementsofcelestialbodies. GalieoalsodevelopedthefundamentalnotionsofmechanicsuponwhichNewtonlaterdevelopedhistheories.TychoBrahe,thegreatDanish astronomer,designedandusedspecialinstrumentstomakepreciseobservationswhichbecamethebasisformuchofKepler'swork.Healso developedthe. JohannesKepler,borninGermanyin1571,workedwiththeobservationsofTychoBraheandGalileotoevolvehisthreebasiclawsofmotionof theplanets.Hedeterminedthattheplanetsmovedinellipticalpathsaboutthesun. TwocontemporariesofCopernicus,CasperVopalandChristianHayden,designedarmillaryspherestodisplayinformationaboutthesky.Vopel, in1500,madeanarmillaryspherewiththeearthinthecenter.Hayden,professorofmathematicsatNurenburgamdeabrassshellwitha celestialglobeontheinteriorandaterrestialglobeontheexterior. TheGothorpglobe,designedbyOleariusin1654,was11feetindiameter.Ithasaterrestrialontheoutsideandacelestialmaponthe insideanda15cem.terrestrialspheresupportedinthecenter. IsaacNewton,bornin1643,developedthefirsttheoryofgravitationandanewsystemofmathematics,thecalculus,withwhichhedeveloped histheory.HederivedfromhistheorythethreebasiclawspreviouslypropoundedbyKepler. AlbertEinsteinannouncedhisspecialtheoryofrelativityin1905andhisgeneraltheoryofrelativityin1915.Hepredictedfromhistheoryof gravitationnewlawsofmotionwhichhavebeenconfirmedthroughobservations.Hisnewtheoryofgravitationhasexplainedminute discrepanciesbetweentheobservedmotionsoftheplanetsandthosepredictedbyNewton'stheory.

24