Passive House
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Annual Report MESSAGE from the VICE PRESIDENT 2010 - 2011
2010 - 2011 Annual Report MESSAGE FROM THE VICE PRESIDENT 2010 - 2011 Dear Friends of Concordia Language Villages, Annual Report The summer of 2010 was marked by the momentous These improvements and developments are remarkable, celebrations of our 50th anniversary that provided an but only possible with the endorsement of the thousands opportunity to reflect on our successes while planning of friends who support our mission of promoting CONTENTS for our future. I personally enjoyed connecting with responsible citizenship in our global community. Thank many of the people who were instrumental in the you very much for your gifts, for sharing the Concordia 5 Concordia Language Villages & Waldsee Celebrate 50 Years growth of our program and the development of our Language Villages mission with your friends and 7 The Future of German community over the years. colleagues and for so many of you re-connecting and th re-engaging during our 50 celebration. 7 UN Dignitary Visits th While we celebrated our 50 , we also reflected on the sudden loss of a great advocate for the Language My very best, 8 The Healthy Camps Study Villages and global education. Pamela Jolicoeur passed away suddenly in June 2010 after completing her 11 Dakota Programs “Thank you very much for your sixth year as president of Concordia College. President 11 Italian Da Vinci Program gifts, for sharing the Concordia Jolicoeur was a visionary leader and an important Language Villages mission with partner as we strategically moved forward in the Christine Schulze, J.D. 13 STARTALK Russian Teachers your friends and colleagues and 21st century. -
Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications
energies Article Modeling PCM Phase Change Temperature and Hysteresis in Ventilation Cooling and Heating Applications Yue Hu *, Rui Guo , Per Kvols Heiselberg and Hicham Johra Division of Architectural Engineering, Department of the Built Environment, Aalborg University, Thomas Manns Vej 23, DK-9220 Aalborg Øst, Denmark; [email protected] (R.G.); [email protected] (P.K.H.); [email protected] (H.J.) * Correspondence: [email protected] Received: 22 October 2020; Accepted: 1 December 2020; Published: 6 December 2020 Abstract: Applying phase change material (PCM) for latent heat storage in sustainable building systems has gained increasing attention. However, the nonlinear thermal properties of the material and the hysteresis between the two-phase change processes make the modelling of PCM challenging. Moreover, the influences of the PCM phase transition and hysteresis on the building thermal and energy performance have not been fully understood. This paper reviews the most commonly used modelling methods for PCM from the literature and discusses their advantages and disadvantages. A case study is carried out to examine the accuracy of those models in building simulation tools, including four methods to model the melting and freezing process of a PCM heat exchanger. These results are compared to experimental data of the heat transfer process in a PCM heat exchanger. That showed that the four modelling methods are all accurate for representing the thermal behavior of the PCM heat exchanger. The model with the DSC Cp method with hysteresis performs the best at predicting the heat transfer process in PCM in this case. The impacts of PCM phase change temperature and hysteresis on the building energy-saving potential and thermal comfort are analyzed in another case study, based on one modelling method from the first case study. -
Consumer Guide: Balancing the Central Heating System
Consumer Guide: Balancing the central heating system System Balancing Keep your home heating system in good working order. Balancing the heating system Balancing of a heating system is a simple process which can improve operating efficiency, comfort and reduce energy usage in wet central heating systems. Many homeowners are unaware of the merits of system balancing -an intuitive, common sense principle that heating engineers use to make new and existing systems operate more efficiently. Why balance? Balancing of the heating system is the process of optimising the distribution of water through the radiators by adjusting the lockshield valve which equalizes the system pressure so it provides the intended indoor climate at optimum energy efficiency and minimal operating cost. To provide the correct heat output each radiator requires a certain flow known as the design flow. If the flow of water through the radiators is not balanced, the result can be that some radiators can take the bulk of the hot water flow from the boiler, leaving other radiators with little flow. This can affect the boiler efficiency and home comfort conditions as some rooms may be too hot or remain cold. There are also other potential problems. Thermostatic radiator valves with too much flow may not operate properly and can be noisy with water “streaming” noises through the valves, particularly as they start to close when the room temperature increases. What causes an unbalanced system? One cause is radiators removed for decorating and then refitted. This can affect the balance of the whole system. Consequently, to overcome poor circulation and cure “cold radiators” the system pump may be put onto a higher speed or the boiler thermostat put onto a higher temperature setting. -
Microgeneration Strategy: Progress Report
MICROGENERATION STRATEGY Progress Report JUNE 2008 Foreword by Malcolm Wicks It is just over two years since The Microgeneration Strategy was launched. Since then climate change and renewables have jumped to the top of the global and political agendas. Consequently, it is more important than ever that reliable microgeneration offers individual householders the chance to play their part in tackling climate change. In March 2006, there was limited knowledge in the UK about the everyday use of microgeneration technologies, such as solar thermal heating, ground source heat pumps, micro wind or solar photovolatics. Much has changed since then. Thousands of people have considered installing these technologies or have examined grants under the Low Carbon Buildings Programme. Many have installed microgeneration and, in doing so, will have helped to reduce their demand for energy, thereby cutting both their CO2 emissions and their utility bills. The Government’s aim in the Strategy was to identify obstacles to creating a sustainable microgeneration market. I am pleased that the majority of the actions have been completed and this report sets out the excellent progress we have made. As a consequence of our work over the last two years, we have benefited from a deeper understanding of how the microgeneration market works and how it can make an important contribution to a 60% reduction in CO2 emissions by 2050. Building an evidence base, for example, from research into consumer behaviour, from tackling planning restrictions and from tracking capital costs, means that we are now in a better position to take forward work on building a sustainable market for microgeneration in the UK. -
The Role of Micro-Generation Technologies in Alleviating Fuel
The role of micro -generation technologies in alleviating fuel poverty In a bid to ease the burden of fuel poverty, social housing providers are increasingly turning to micro-generation technologies to help reduce fuel costs. However, with many different types of micro-generation technologies on the market, designers need to know which technologies offer the best chance of alleviating fuel poverty The aim of the study was to determine the The three different types of micro-generation impact of micro-renewable energy technologies technologies were evaluated across three in alleviating fuel poverty. In particular, it sought different case study schemes in South to establish which micro-renewable energy Yorkshire and the West Midlands. Evaluation technologies offered the most cost-effective of the technologies involved monitoring their means of alleviating fuel poverty; and the factors performance, interviewing residents, collecting that influenced the cost-effectiveness of such longitudinal household energy consumption technologies. In doing so we focused on three data and modelling the financial payback of types of technology: ground source heat pumps the systems. (GSHPs); solar thermal hot water (STHW) systems; and solar photovoltaic (PV) systems. Key findings Solar thermal hot water systems The study was conducted by Fin O'Flaherty of STHW systems are not a cost-effective the Centre for Infrastructure Management and measure for alleviating fuel poverty, based on James Pinder, Visiting Fellow, Sheffield Hallam University. the data from our case studies. Although they are relatively cheap to purchase and install (at Background around £3,500 each), the net financial savings This report is based on the findings of a two generated from STHW systems are relatively year study into the role that micro-generation small (approximately £50 per year in this technologies can play in alleviating fuel study), particularly for under-performing poverty in the UK. -
Energy Saving Trust CE131. Solar Water Heating Systems: Guidance For
CE131 Solar water heating systems – guidance for professionals, conventional indirect models Contents 1 Solar hot water systems 3 1.1 Scope 3 1.2 Introduction 3 1.3 Safety 4 1.4 Risk assessment 5 1.5 Town and country planning 5 2 Design overview 6 2.1 Introduction 6 2.2 Solar domestic hot water (SDHW) energy 6 2.3 SDHW systems 7 3 Design detail 8 3.1 Collectors 8 3.2 Solar primary types 9 3.3 Primary system components 10 3.4 Secondary systems 11 3.5 Pre-heat storage 11 3.6 Auxiliary DHW heating 14 3.7 Combined storage – twin-coil cylinders 15 3.8 Separate storage – two stores 15 3.9 Separate storage – direct DHW heaters 16 3.10 Risk of scalding 16 3.11 Risk of bacteria proliferation 17 3.12 Risk of limescale 17 3.13 Energy conservation 18 3.14 Controls and measurement 20 4 Installation and commissioning 23 4.1 Installation tasks: site survey – technical 23 4.2 Installation tasks: selecting specialist tools 28 4.3 Installation tasks: Initial testing 28 4.4 Commissioning 29 5 Maintenance and documentation 30 6 Appendices 31 6.1 Sample commissioning sheet 31 6.2 Annual solar radiation (kWh/m2) 33 6.3 Sample installation checklist 33 6.4 Further reading 37 6.5 Regulations 38 6.6 Other publications 39 7 Glossary 40 The Energy Saving Trust would like to thank the Solar Trade Association for their advice and assistance in producing this publication. 2 Solar water heating systems – guidance for professionals, conventional indirect models 1 Solar hot water systems 1.1 Scope By following the Energy Saving Trust’s best practice This guide is designed to help installers, specifiers and standards, new build and refurbished housing will commissioning engineers ensure that conventional be more energy efficient – reducing these emissions indirect solar domestic hot water systems (SDHW) and saving energy, money and the environment. -
A Review on Roughness Geometry Used in Solar Air Heaters
Available online at www.sciencedirect.com Solar Energy 81 (2007) 1340–1350 www.elsevier.com/locate/solener A review on roughness geometry used in solar air heaters Varun a, R.P. Saini b, S.K. Singal b,* a Department of Mechanical Engineering, Moradabad Institute of Technology, Ram Ganga Vihar, Moradabad 244001, India b Alternate Hydro Energy Centre, Indian Institute of Technology, Roorkee 247667, India Received 16 June 2006; received in revised form 29 January 2007; accepted 31 January 2007 Available online 28 February 2007 Communicated by: Associate Editor Brian Norton Abstract The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of a solar air heater. Number of geometries of roughness elements has been investigated on the heat transfer and friction characteristics of solar air heater ducts. In this paper an attempt has been made to review on element geometries used as artificial roughness in solar air heaters in order to improve the heat transfer capability of solar air heater ducts. The correlations developed for heat transfer and friction factor in roughened ducts of solar air heaters by various investigators have been reviewed and presented. Ó 2007 Elsevier Ltd. All rights reserved. Keywords: Solar air heater; Artificial roughness; Effective efficiency; Heat transfer; Friction factor 1. Introduction these can also be effectively used for curing/drying of concrete/clay building components. The solar air heater Energy in various forms has played an increasingly occupies an important place among solar heating system important role in world wide economic progress and indus- because of minimal use of materials and cost. -
Passive House Cepheus
PASSIVE HOUSE CEPHEUS • The term passive house (Passivhaus in German) refers to the rigorous, voluntary, Passivhaus standard for energy efficiency in buildings. It results in ultra-low energy buildings that require little energy for space heating or cooling. A similar standard, MINERGIE-P, is used in Switzerland. The standard is not confined only to residential properties; several office buildings, schools, kindergartens and a supermarket have also been constructed to the standard. Passive design is not the attachment or supplement of architectural design, but an integrated design process with the architectural design. Although it is mostly applied to new buildings, it has also been used for refurbishments. Thermogram of a Passive house Explain the difference CEPHEUS - Passive Houses in Europe.mht • Passive Houses require superior design and components with respect to: • insulation • design without thermal brigdes • air tightness • ventilation with heat recovery • comfortwindows und • innovative heating technology • To realise an optimal interaction of all components, an energy balance of the building has to be worked out. And step by step any new design may be improved to meat Passive House sta HOW? WALL FLOOR WALL WINDOW Space heating requirement • By achieving the Passivhaus standards, qualified buildings are able to dispense with conventional heating systems. While this is an underlying objective of the Passivhaus standard, some type of heating will still be required and most Passivhaus buildings do include a system to provide supplemental space heating. This is normally distributed through the low- volume heat recovery ventilation system that is required to maintain air quality, rather than by a conventional hydronic or high-volume forced-air heating system, as described in the space heating section below. -
Experience the Calming Beauty of RSF Fireplaces and the Real Wood Fire
2021 Experience the calming beauty of RSF fireplaces and the real wood fire. 1 “Just like Sunday dinner Nothing can replace the warm embrace of a real wood doesn’t come out of fire. A wood fire gives off a special kind of warmth that a can and fine wine penetrates and soothes. It’s true that burning wood in doesn’t come out of a your fireplace isn’t as convenient as burning gas. But box, a real fire doesn’t like all of life’s best things, that little extra effort makes come out of a pipeline.” a world of difference. Just like Sunday dinner doesn’t come out of a can and fine wine doesn’t come out of a box, a real fire doesn’t come out of a pipeline. If it’s a real fire…it’s wood. And if it’s a clean burning efficient wood fire… it’s probably an RSF fireplace. So come in, relax, kick off your shoes and leave your frantic life at the door. Experience the calming beauty of RSF fireplaces and the real wood fire. RSF is a proud supporting member of: 2 Contents 4 The RSF Built-in Advantage 5 The RSF Comfort Advantage 6 The RSF Smart BurnRate Air Control 7 Catalytic or Non-Catalytic Series: Choosing What’s Right for You 8 Focus 3600 Fireplace 10 Pearl 3600 Fireplace 14 Focus SBR Fireplace 16 Delta Fusion Fireplace 18 Opel Keystone Catalytic Fireplace 20 Opel 2 Plus Catalytic Fireplace 22 Opel 3 Plus Catalytic Fireplace 24 Focus ST Fireplace 26 Chimney Safety and Performance 26 RSF Convenience 27 RSF Heat Distribution 29 RSF Performance 29 RSF Accessories 30 RSF Specifications 31 Burning Wood in an RSF Fireplace is Good for the Environment 3 THE RSF THE RSF BUILT-IN ADVANTAGE COMFORT ADVANTAGE A fireplace is one of the most sought after features in a home and will increase its resale value more than a freestanding wood stove. -
Utilizing Solar Energy to Reduce Air Pollution in Ulaanbaatar
Die approbierte Originalversion dieser Diplom-/ Masterarbeit ist in der Hauptbibliothek der Tech- nischen Universität Wien aufgestellt und zugänglich. MSc Program http://www.ub.tuwien.ac.at Environmental Technology & International Affairs The approved original version of this diploma or master thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng Utilizing Solar Energy to Reduce Air Pollution in Ulaanbaatar A Master’s Thesis submitted for the degree of “Master of Science” supervised by Prof. Dr. Günther Brauner Enkhchimeg Munkhgerel 1528141 Vienna, 25.05.2017 Affidavit I, ENKHCHIMEG MUNKHGEREL, hereby declare 1. that I am the sole author of the present Master’s Thesis, "UTILIZING SOLAR ENERGY TO REDUCE AIR POLLUTION IN ULAANBAATAR", 63 pages, bound, and that I have not used any source or tool other than those referenced or any other illicit aid or tool, and 2. that I have not prior to this date submitted this Master’s Thesis as an examination paper in any form in Austria or abroad. Vienna, 25.05.2017 Signature Abstract Ulaanbaatar, the capital city of Mongolia, is among the top 5 cities with worst air quality in the world. Particulate matter pollution is extreme during winter with PM2.5 3 3 and PM10 reaching 436 µg/m and 1100 µg/m , respectively. One of the major air pollution sources is suburban traditional housing areas called “ger districts”. Households of ger districts consume approximately 850,000 tons of coal per year primarily for heating purposes, emitting tons of pollutants into the atmosphere. This thesis presents possibilities of utilizing solar energy to reduce air pollution from ger districts. -
Underfloor Heating Systems :///Users//Downloads/ LDS7 FINAL.Pdf
CI/SfB (53) First Issue April 2019 Underfloor Heating Systems :///Users//Downloads/ LDS7_FINAL.pdf SUPERIOR HEATING SOLUTIONS SINCE 1980 2 Firebird Envirofloor™ Underfloor Heating Systems An economical and environmentally friendly alternative to traditional heating and hot water systems. Firebird Products Ltd are market-leading manufacturers of heating products with a proven track record built on the global supply of heating systems. Established in Ireland in 1980, the Firebird name has become synonymous with performance, quality and innovative design. At the forefront of technology, Firebird are committed to providing cost-effective, energy-efficient heating solutions that not only meet, but easily exceed today’s stringent legislative requirements. Historically an oil-fired boiler manufacturer, the product range has been expanded to include air source heat pumps, biomass boilers & stoves, solar thermal systems and underfloor heating systems. @firebirdboilers www.firebird.uk.com 3 Underfloor Heating Systems Underfloor heating is not a new concept and dates back to Roman times when hot gasses from a fire or furnace passed through a network of flues under the floor of the building. From the 1960’s onwards, various modern systems have been introduced which include expensive to run electric underfloor heating and steel pipes, which had expensive material costs. In 1975 plastic underfloor heating pipe was introduced into the UK which greatly reduced the material cost and allowed wider access to this highly efficient way of heating. Suitable for both new build and renovation projects, Envirofloor underfloor heating systems are ‘wet’ underfloor heating is the most efficient way suitable for a wide range of ground and upper to provide space heating as it is up to 25% more floor constructions. -
'Radiation *Arkansas;'*Solar Heaters. Be Attached,To
.DOCUMENT RESUME ED 222. 385 SE-949 489 1 AUTHOR Skiles, Albert; Rose, Mary Jo 'TITLE Arkansas,Solar Retrofit.Guide. Greenhouses, Air' Heaters and Water Heatets. INSTITUTION. Arkansas State Energy Office, Little Rock. SPONS AGENCY. Department of EnergylWashington, D.p.; Ozarks .q Regional Commission, Little Rock, Ark. PUB DATE Jun 81 NOTE 109p. EDRS PRICE' MF01/PC05 Plusi(Postage. DESCRIPTORS *Building Plans; Climate Control; *Constructi.on '(Procesd); Censtructiott Costs; Energy; ,*Greenhouses; -5-- *Heating; Resource Materials; Site SelectiOn; *Solar- 'Radiation IDENTIFIERS *Arkansas;'*Solar Heaters. 1-ABSTRACI -Solar retrofitS-are devices of Structures designed to' be attached,to existing buildingsAO Augmehttheir existing heating sources with solar energy.-An investigationq>f how solariretrofits should be desigeedto suit, the climate and resources of Arkansas is the'subject of this report.. FollOwing an introduction (sectiOn 1); section 2 focuses on solar greenhouses. Topics discuised'incldee.:the nature of 'Solar greenhouseS,-site reguiiementS and coSts, sun motion and orientation, greenhouse-house connection, glazing, heat storage., winter/summer temperaf4re control, greenhouse vardeting, and construCtion notes.,Case studieS'are also provided.. Section 3 focuses on the fUndamentals of.:solar air heaters, including, modular solar'air' 4, heaters, performance, and design methodt. SeCtion 4, foCusing on, batch solar Water heaters, includes an introduction, brief history, design, performance, and.limitations. Appendices include a glossary, referenCes for solar greenhouses; air heaters and water heaters, lists of solar periodicals and solar infoiMation sources, and solar radiation data .(incruding maps for each month7, evaluation of.solar radiation maps, and suCh technical ihfOrmatiOn as:tilt factors foi various regions,of'Arkansas) -(Author/JN) ***********************************************************************_ * Reproductions'supplied by EDRS are the best that can be made * * from,the original document.