Measuring a Heating Systemls Efficiency

Total Page:16

File Type:pdf, Size:1020Kb

Measuring a Heating Systemls Efficiency 45% 57% Space heating is the largest The most common home energy expense in your home, heating fuel is natural gas, accounting for about 45 percent of and it’s used in about 57 percent your energy bills. of American homes. Between 2007 and 2012, the average U.S. household spent more than $700 $1,700 on heating using on heating homes natural gas using heating oil. Before upgrading your heating system, improve the efficiency of your house. This will allow you to purchase a smaller unit, saving you money on the upgrade and operating costs. All heating systems have three basic components. If your heating system isn’t working properly, one of these basic components could be the problem. 68 The heat source -- most The heat distribution The control system -- most commonly a furnace or system -- such as forced air or commonly a thermostat -- boiler -- provides warm air radiators -- moves warm air regulates the amount of to heat the house. through the home. warm air that is distributed. Furnaces and boilers are often called CENTRAL HEATING SYSTEMS because the heat is generated in a central location and then distributed throughout the house. INSTALL A PROGRAMMABLE THERMOSTAT and save big on your energy bills! Save68 an estimated 10 percent a year on heating and cooling costs by using a programmable thermostat. HEAT ACTIVE SOLAR ELECTRIC FURNACES BOILERS PUMPS HEATING HEATING A furnace heats air and uses a A boiler heats water to provide A heat pump pulls heat from the The sun heats a liquid or air in a Sometimes called electric blower motor and air ducts to hot water or steam for heating surrounding air to warm the solar collector to provide resistance heating, electric distribute warm air throughout that is then distributed through house. It can also be used for immediate heat or store it for heating is any process in which the house. a series of pipes. home cooling. future use. electricity is converted into heat. EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY EFFICIENCY 59-98.5%, depending 50-90%, depending on 6.8-10 HSPF Not applicable 95-100% on the system’s age the system’s age LIFE EXPECTANCY LIFE EXPECTANCY LIFE EXPECTANCY LIFE EXPECTANCY LIFE EXPECTANCY 15-30 years 15-30 years 15 years 20+ years 20+ years FUEL FUEL FUEL FUEL FUEL Natural gas, propane, Natural gas, propane, Electricity, Solar energy Electricity heating oil, electricity heating oil, biodiesel geothermal energy blends, electricity PRO PRO PRO PRO PRO Inexpensive Easier to practice zone Can provide both your Can reduce your fuel bills. Can be used for a heating (only heating heating and cooling number of distribution the rooms you use in needs if you live in a heating systems. your home). mild climate. CON CON CON CON CON The blower fan Expensive to install and Some types can be Can require a second Can be expensive to can be loud. requires a minimum expensive to install. heating source, which operate compared to temperature to prevent makes the initial purchase combustion appliances. pipes from freezing. more costly. FORCED AIR STEAM RADIANT HOT WATER ELECTRIC SYSTEM RADIANT HEATING BASEBOARDS BASEBOARDS The most common type of home One of the oldest types of Radiant heating -- which can be Similar to radiant heating, hot A type of zone heater, electric heating system, a forced air heating systems, steam radiant installed as floor, ceiling or wall water baseboards (also called baseboards release heated air system distributes heat from a heating uses radiators to panels -- transfers heat directly hydronic heat) use hot water to out of the top while pulling furnace throughout the home distribute heat. from a hot surface to people and heat a space via wall-mounted cooler air to the bottom of using air ducts and vents. objects in the room. baseboard units. the unit. PRO PRO PRO PRO PRO Can be used for cooling. Relatively trouble free. Doesn’t distribute Provide close Quiet operation and allergens. temperature control. low maintenance. CON CON CON CON CON Distributes allergens Requires separate Can be expensive to install Limits furniture Limits furniture placement throughout the house. distribution system for and repair if problems arise. placement and slow to and easily damaged. cooling systems. increase temperature. ENERGY-SAVING TIP ENERGY-SAVING TIP ENERGY-SAVING TIP ENERGY-SAVING TIP ENERGY-SAVING TIP Clean your air filters Put foil behind the radiator When installing in a Install a programmable Clean the heating coils monthly and replace them to reflect the heat into the wood-framed floor, consider thermostat to take regularly to prolong the regularly. room. covering it with ceramic tiles, advantage of zone heater’s life and maintain which add thermal mass. heating. its efficiency. COMPATIBLE HEAT COMPATIBLE HEAT COMPATIBLE HEAT COMPATIBLE HEAT COMPATIBLE HEAT SOURCE SYSTEMS SOURCE SYSTEM SOURCE SYSTEMS SOURCE SYSTEMS SOURCE SYSTEM Furnace, heat pump, Boiler Boiler, heat pump, active Boiler, active solar heating Electric heating active solar heating solar heat, electric heating Measuring a Heating System’s Efficiency The efficiency of COMBUSTION HEATING APPLIANCES (FURNACES AND BOILERS) is measured by ANNUAL FUEL UTILIZATION EFFICIENCY (AFUE). how efficient the appliance the annual fossil fuel is at converting the energy ÷ energy consumed by AFUE = in its fuel to heat the appliance. 56-70% 80-83% 90-98.5% AFUE AFUE AFUE furnace boiler old, low-efficiency mid-efficiency high-efficiency heating systems heating systems heating systems A HEAT PUMP can be used for both heating and cooling. A heat pump’s cooling efficiency is measured using the seasonal energy efficiency ratio (SEER), while its heating efficiency is measured using heating season performance factor (HSPF) or coefficient of performance (COP), depending on the type of heat pump. WHAT’S THE DIFFERENCE? total space heating the total electrical HSPF ranges required during the energy consumed during from 6.8-10. HSPF = heating season ÷ the same season. heat the amount of COP ranges COP = provided ÷ energy input. from 2-4. Types of Space Heaters Sometimes call point-of-use heaters, space heaters provide supplemental heat to a specific room. Since safety is a big concern with space heaters, every home should have a carbon monoxide detector installed. WOOD OR PORTABLE & DIRECT FIREPLACE PELLET STOVES VENT WALL HEATERS Wood-burning stoves are a good heating Portable heaters are used when the main While some fireplaces are only option for those who live in an area where heating system is inadequate or when decorative, others can be used as a wood is readily available. Pellet stoves central heating is too costly to install or heating source. Installing a heat-air typically are more efficient than wood stoves operate. Portable heaters can either be exchange system in the chimney will help but may require servicing. electric or combustion. blow the warm air back into the room. SAFETY SAFETY SAFETY Follow manufacturer instructions for If not used properly, unvented portable Fireplaces should be inspected regularly installation and make sure to have your combustion heaters can be dangerous -- causing to ensure the chimney is clean and that wood and pellet stoves regularly cleaned carbon monoxide poisoning, severe illness and the fireplace drafts properly. to improve efficiency and safety. even death. To ensure safe operation, follow all manufacturer directions. All unvented combustion space heaters should be labeled to verify compliance with ANSI Z21.11.2. Selecting a Heating System Before replacing your heating system, consider the following: FUEL CLIMATE EFFICIENCY SIZE The heating fuels The type of heating system The higher a heating system’s Proper sizing is as important as available depend on you buy will depend on where efficiency is, the higher the efficiency. If your heating where you live in the U.S. you live. In warmer climates, purchase cost but the lower system is too big for your For example, in the you might only need space the operating costs. Look for home, it will cost more to Northeast heating oil is heaters, while in colder ENERGY STAR products, operate. Work with a more popular because climates, you might consider a which exceed the minimum professional contractor to find there is limited access to central heating system. standards for efficiency and install the best heating natural gas. and quality. system for your home. Heating System Maintenance Periodic maintenance can extend the life of your heating system and minimize efficiency loss. CLEAN FILTERS MONTHLY and replace them Check air ducts and regularly. heating pipes to make sure they are PROPERLY SEALED. REMOVE DIRT, SOOT OR Make sure air vents, CORROSION FROM THE SYSTEM, baseboard heaters and clean the heat exchanger to and radiators aren’t maintain heating levels. obstructed. Tips for Cutting Your Heating Bills In winter months, open your curtains during the day to naturally heat your home and close Use a programmable Consider air sealing your home and adding insulation them at night to thermostat to set your to your walls and attic to help retain your home’s heat. keep the heat inside. heater back while you Up to 25 percent of your home’s heat is lost through are away or asleep. small cracks and holes throughout your home. Seal your air ducts, and make sure they are properly insulated when they are installed in an Weatherstrip around unheated area of the Set your ceiling fan to your doors and Make sure your home, such as an spin clockwise to blow windows to keep warm chimney is clean. attic or crawlspace. the rising hot air down. air from escaping. Sources: Energy Saver (www.energy.gov/energysaver), Weatherization Assistance Program Technical Assistance Center (http://waptac.org/) and U.S. Energy Information Administration (www.eia.gov). .
Recommended publications
  • Iot Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings
    sensors Article IoT Operating System Based Fuzzy Inference System for Home Energy Management System in Smart Buildings Qurat-ul-Ain 1, Sohail Iqbal 1,∗ ID , Safdar Abbas Khan 1 ID , Asad Waqar Malik 1 ID , Iftikhar Ahmad 1 and Nadeem Javaid 2 1 School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan; [email protected] (Q.-u.-A.); [email protected] (S.A.K.); [email protected] (A.W.M.); [email protected] (I.A.) 2 COMSATS Institute of Information Technology, Islamabad 44000, Pakistan; [email protected] * Correspondence: [email protected]; Tel.: +92-336-5501-539 Received: 2 August 2018; Accepted: 20 August 2018; Published: 25 August 2018 Abstract: Energy consumption in the residential sector is 25% of all the sectors. The advent of smart appliances and intelligent sensors have increased the realization of home energy management systems. Acquiring balance between energy consumption and user comfort is in the spotlight when the performance of the smart home is evaluated. Appliances of heating, ventilation and air conditioning constitute up to 64% of energy consumption in residential buildings. A number of research works have shown that fuzzy logic system integrated with other techniques is used with the main objective of energy consumption minimization. However, user comfort is often sacrificed in these techniques. In this paper, we have proposed a Fuzzy Inference System (FIS) that uses humidity as an additional input parameter in order to maintain the thermostat set-points according to user comfort.
    [Show full text]
  • Innovate-UK-Energy-Catalyst-Round-4-Directory-Of-Projects
    Directory of projects Energy Catalyst – Round 4 1 Introduction Energy markets around the world – private and public, household and industry, developed and developing – are all looking for solutions to the same problem: how to provide a resilient energy system that delivers affordable and clean energy with access for all. Solving this trilemma requires innovation and collaboration on an international scale and UK businesses and researchers are at the forefront of addressing the energy revolution. Innovate UK is the UK’s innovation agency. We work with business, policy-makers and the research base to help support the development of new ideas, technologies, products and services, and to help companies de-risk their innovations as they journey towards commercialisation and business growth. The Energy Catalyst was established as a national open competition, run by Innovate UK and co-funded with the Engineering & Physical Sciences Research Council (EPSRC), the Department for Business, Energy & Industrial Strategy (BEIS) and the Department for International Development (DFID). Since 2013, the Energy Catalyst has invested almost £100m in grant funding across more than 750 organisations and 250 projects. The Energy Catalyst exists to accelerate development, commercialisation and deployment of the very best of UK energy technology and business innovation. Support from the Energy Catalyst has enabled many companies to validate their technology and business propositions, to forge key supply-chain partnerships, to accelerate their growth and to secure investment for the next stages of their business development. Affordable access to clean and reliable energy supplies is a key requirement for sustainable and inclusive economic growth. With funding through DFID’s “Transforming Energy Access” programme, the Energy Catalyst is helping UK energy innovators to forge new international partnerships, and directly address the energy access needs of poor households, communities and enterprises in Sub-Saharan Africa and South Asia.
    [Show full text]
  • District Heating System, Which Is More Efficient Than
    Supported by ECOHEATCOOL Work package 3 Guidelines for assessing the efficiency of district heating and district cooling systems This report is published by Euroheat & Power whose aim is to inform about district heating and cooling as efficient and environmentally benign energy solutions that make use of resources that otherwise would be wasted, delivering reliable and comfortable heating and cooling in return. The present guidelines have been developed with a view to benchmarking individual systems and enabling comparison with alternative heating/cooling options. This report is the report of Ecoheatcool Work Package 3 The project is co-financed by EU Intelligent Energy Europe Programme. The project time schedule is January 2005-December 2006. The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Communities. The European Commission is not responsible for any use that may be made of the information contained therein. Up-to-date information about Euroheat & Power can be found on the internet at www.euroheat.org More information on Ecoheatcool project is available at www.ecoheatcool.org © Ecoheatcool and Euroheat & Power 2005-2006 Euroheat & Power Avenue de Tervuren 300, 1150 Brussels Belgium Tel. +32 (0)2 740 21 10 Fax. +32 (0)2 740 21 19 Produced in the European Union ECOHEATCOOL The ECOHEATCOOL project structure Target area of EU28 + EFTA3 for heating and cooling Information resources: Output: IEA EB & ES Database Heating and cooling Housing statistics
    [Show full text]
  • Consumer Guide: Balancing the Central Heating System
    Consumer Guide: Balancing the central heating system System Balancing Keep your home heating system in good working order. Balancing the heating system Balancing of a heating system is a simple process which can improve operating efficiency, comfort and reduce energy usage in wet central heating systems. Many homeowners are unaware of the merits of system balancing -an intuitive, common sense principle that heating engineers use to make new and existing systems operate more efficiently. Why balance? Balancing of the heating system is the process of optimising the distribution of water through the radiators by adjusting the lockshield valve which equalizes the system pressure so it provides the intended indoor climate at optimum energy efficiency and minimal operating cost. To provide the correct heat output each radiator requires a certain flow known as the design flow. If the flow of water through the radiators is not balanced, the result can be that some radiators can take the bulk of the hot water flow from the boiler, leaving other radiators with little flow. This can affect the boiler efficiency and home comfort conditions as some rooms may be too hot or remain cold. There are also other potential problems. Thermostatic radiator valves with too much flow may not operate properly and can be noisy with water “streaming” noises through the valves, particularly as they start to close when the room temperature increases. What causes an unbalanced system? One cause is radiators removed for decorating and then refitted. This can affect the balance of the whole system. Consequently, to overcome poor circulation and cure “cold radiators” the system pump may be put onto a higher speed or the boiler thermostat put onto a higher temperature setting.
    [Show full text]
  • Healthy Building Industry Review Resources
    Healthy Building Industry Review Resources Pacific Northwest National Laboratory December 31, 2019 Contact: Kevin Keene ([email protected]) PNNL-SA-159876 The Department of Energy and Pacific Northwest National Laboratory do not endorse any of the products, services, or companies included in this document. This industry review investigates existing resources for facility managers, owners, operators, and other decision-makers to make informed decisions relating to energy efficient buildings that also support occupant health and productivity. Healthy building practices have had limited adoption due to lack of awareness and limited research compared to energy efficiency. This review explores some of the most impactful existing resources for healthy buildings and their integration with energy efficiency. The focus is on the commercial and federal sector and healthy building categories that intersect with energy use New or Existing Name Type Summary IEQ Elements Sector Buildings? Energy Connection Reference The Financial Case for High Performance Business Case By applying financial impact calculations to findings from Lighting, Indoor Air Quality, Commercial Existing No https://stok.com/wp- Buildings over 60 robust research studies on the effect of HPBs in Thermal Comfort content/uploads/2018/10/stok_report_financial-case-for- three key occupant impact areas (Productivity, Retention, high-performance-buildings.pdf and Wellness), this paper arrives at the financial impacts below to help owneroccupants and tenants quantify the benefits of
    [Show full text]
  • DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies
    IES RE LOG SIDE NO NT CH IA TE L L TE A C I H T N N E O D L I O S G E I R E S R DSML Pocket Guidebook E S A I I D VolumeT 1: Residential Technologies E N N E T D I I A S L E R T E S C E H I N G O O L L O O G N I H E C S E T R E L S A I I D T E N N E T D I I A S L E R T E S C E H I N G O O L Western Area Power Administration August 2007 DSM Pocket Guidebook Volume 1: Residential Technologies DSM Pocket Guidebook Volume 1: Residential Technologies Produced and funded by Western Area Power Administration P.O. Box 281213 Lakewood, CO 80228-8213 Prepared by National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 August 2007 Table of Contents List of Tables v List of Figures v Foreword vii Acknowledgements ix Introduction xi Energy Use and Energy Audits 1 Building Structure 9 Insulation 10 Windows, Glass Doors, and Sky lights 14 Air Sealing 18 Passive Solar Design 21 Heating and Cooling 25 Programmable Thermostats 26 Heat Pumps 28 Heat Storage 31 Zoned Heating 32 Duct Thermal Losses 33 Energy-Efficient Air Conditioning 35 Air Conditioning Cycling Control 40 Whole-House and Ceiling Fans 41 Evaporative Cooling 43 Distributed Photovoltaic Systems 45 Water Heating 49 Conventional Water Heating 51 Combination Space and Water Heaters 55 Demand Water Heaters 57 Heat Pump Water Heaters 60 Solar Water Heaters 62 Lighting 67 Incandescent Alternatives 69 Lighting Controls 76 Daylighting 79 Appliances 83 Energy-Efficient Refrigerators and Freezers 89 Energy-Efficient Dishwashers 92 Energy-Efficient Clothes Washers and Dryers 94 Home Offices
    [Show full text]
  • Microgeneration Strategy: Progress Report
    MICROGENERATION STRATEGY Progress Report JUNE 2008 Foreword by Malcolm Wicks It is just over two years since The Microgeneration Strategy was launched. Since then climate change and renewables have jumped to the top of the global and political agendas. Consequently, it is more important than ever that reliable microgeneration offers individual householders the chance to play their part in tackling climate change. In March 2006, there was limited knowledge in the UK about the everyday use of microgeneration technologies, such as solar thermal heating, ground source heat pumps, micro wind or solar photovolatics. Much has changed since then. Thousands of people have considered installing these technologies or have examined grants under the Low Carbon Buildings Programme. Many have installed microgeneration and, in doing so, will have helped to reduce their demand for energy, thereby cutting both their CO2 emissions and their utility bills. The Government’s aim in the Strategy was to identify obstacles to creating a sustainable microgeneration market. I am pleased that the majority of the actions have been completed and this report sets out the excellent progress we have made. As a consequence of our work over the last two years, we have benefited from a deeper understanding of how the microgeneration market works and how it can make an important contribution to a 60% reduction in CO2 emissions by 2050. Building an evidence base, for example, from research into consumer behaviour, from tackling planning restrictions and from tracking capital costs, means that we are now in a better position to take forward work on building a sustainable market for microgeneration in the UK.
    [Show full text]
  • Comfort in High-Performance Homes in a Hot-Humid Climate
    Comfort in High-Performance Homes in a Hot-Humid Climate A. Poerschke and R. Beach IBACOS, Inc. January 2016 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at SciTech Connect http:/www.osti.gov/scitech Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 OSTI http://www.osti.gov Phone: 865.576.8401 Fax: 865.576.5728 Email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5301 Shawnee Road Alexandria, VA 22312 NTIS http://www.ntis.gov Phone: 800.553.6847 or 703.605.6000 Fax: 703.605.6900 Email: [email protected] Comfort in High-Performance Homes in a Hot-Humid Climate Prepared for: The National Renewable Energy Laboratory On behalf of the U.S.
    [Show full text]
  • The Role of Micro-Generation Technologies in Alleviating Fuel
    The role of micro -generation technologies in alleviating fuel poverty In a bid to ease the burden of fuel poverty, social housing providers are increasingly turning to micro-generation technologies to help reduce fuel costs. However, with many different types of micro-generation technologies on the market, designers need to know which technologies offer the best chance of alleviating fuel poverty The aim of the study was to determine the The three different types of micro-generation impact of micro-renewable energy technologies technologies were evaluated across three in alleviating fuel poverty. In particular, it sought different case study schemes in South to establish which micro-renewable energy Yorkshire and the West Midlands. Evaluation technologies offered the most cost-effective of the technologies involved monitoring their means of alleviating fuel poverty; and the factors performance, interviewing residents, collecting that influenced the cost-effectiveness of such longitudinal household energy consumption technologies. In doing so we focused on three data and modelling the financial payback of types of technology: ground source heat pumps the systems. (GSHPs); solar thermal hot water (STHW) systems; and solar photovoltaic (PV) systems. Key findings Solar thermal hot water systems The study was conducted by Fin O'Flaherty of STHW systems are not a cost-effective the Centre for Infrastructure Management and measure for alleviating fuel poverty, based on James Pinder, Visiting Fellow, Sheffield Hallam University. the data from our case studies. Although they are relatively cheap to purchase and install (at Background around £3,500 each), the net financial savings This report is based on the findings of a two generated from STHW systems are relatively year study into the role that micro-generation small (approximately £50 per year in this technologies can play in alleviating fuel study), particularly for under-performing poverty in the UK.
    [Show full text]
  • Energy Saving Trust CE131. Solar Water Heating Systems: Guidance For
    CE131 Solar water heating systems – guidance for professionals, conventional indirect models Contents 1 Solar hot water systems 3 1.1 Scope 3 1.2 Introduction 3 1.3 Safety 4 1.4 Risk assessment 5 1.5 Town and country planning 5 2 Design overview 6 2.1 Introduction 6 2.2 Solar domestic hot water (SDHW) energy 6 2.3 SDHW systems 7 3 Design detail 8 3.1 Collectors 8 3.2 Solar primary types 9 3.3 Primary system components 10 3.4 Secondary systems 11 3.5 Pre-heat storage 11 3.6 Auxiliary DHW heating 14 3.7 Combined storage – twin-coil cylinders 15 3.8 Separate storage – two stores 15 3.9 Separate storage – direct DHW heaters 16 3.10 Risk of scalding 16 3.11 Risk of bacteria proliferation 17 3.12 Risk of limescale 17 3.13 Energy conservation 18 3.14 Controls and measurement 20 4 Installation and commissioning 23 4.1 Installation tasks: site survey – technical 23 4.2 Installation tasks: selecting specialist tools 28 4.3 Installation tasks: Initial testing 28 4.4 Commissioning 29 5 Maintenance and documentation 30 6 Appendices 31 6.1 Sample commissioning sheet 31 6.2 Annual solar radiation (kWh/m2) 33 6.3 Sample installation checklist 33 6.4 Further reading 37 6.5 Regulations 38 6.6 Other publications 39 7 Glossary 40 The Energy Saving Trust would like to thank the Solar Trade Association for their advice and assistance in producing this publication. 2 Solar water heating systems – guidance for professionals, conventional indirect models 1 Solar hot water systems 1.1 Scope By following the Energy Saving Trust’s best practice This guide is designed to help installers, specifiers and standards, new build and refurbished housing will commissioning engineers ensure that conventional be more energy efficient – reducing these emissions indirect solar domestic hot water systems (SDHW) and saving energy, money and the environment.
    [Show full text]
  • Small Air to Water Heat Pump Chiller | Resdiential Hydronic Heat Pump
    The World’s Most Efficient Chiller Heat Pump Ultra-Efficient Multiple IDUs - Up to 8 Indoor Units Per CX34 CX34 Air-To-Water Heat Pump 2 Tons Cooling / 3 Tons heating IPLV Cooling 26,615 BTU COP 6.75 EER 23.02 Heating 33,813 BTU COP 3.92 Save More w/ DC Inverter Fan Motors All of the thin-line (5.1" thin) wall, floor and ceiling fan coil units use high efficiency and nearly silent DC Inverter fan motors, designed for 115v 50/60Hz power. 220v 50/60Hz standard FCUs are available for export customers. Geothermal Performance There is no Energy Star program for air to water heat pumps. However, the Chiltrix air-cooled chiller exceeds the Energy Star EER requirements for geothermal water-to-water systems. Server Room Cooling Ultra High Efficiency Heat Pump Chiller Chiltrix offers an optional Free Cooling add-on which allows up The CX34 obtains its ultra high efficiency using existing technologies in to EER 141+ & COP 41+ cooling performance during winter at a new way. For example, we use a DC Inverter compressor and a DC low ambient temperatures. Chiltrix chillers are also available Inverter water pump (both are variable speed) controlled together with in a N+1 redundant configuration. a DC inverter fan motor to achieve the best possible balance of water flow rate, compressor speed, and energy use. Solar Ready Perfect for solar PV operation with super low power draw and A special control algorithm looks at the temperature delta between the a 2 amp soft start that’s easy on inverters and batteries.
    [Show full text]
  • Idronics 13: Hydronic Cooling
    "@KDEkCaleffi-NQSG North America, LDQHB@ (MB Inc. 6 ,HKV@TJDD1C9850 South 54th Street ,HKV@TJDD 6HRBNMRHMFranklin, WI 53132 3 % T: 414.421.1000 F: 414.421.2878 Dear Hydronic and Plumbing Professional, Dear Hydronic Professional, Cooling a living space using chilled water is not new. Visit a high-rise hotel nd roomWelcome in summer, to the and2 edition notice ofhow idronics it is cooled. – Caleffi’s Chances semi-annual are that design cool journal air enters for fromhydronic a vent professionals.located in the wall or ceiling. Behind the vent is a heat exchanger withThe chilled 1st edition water of flowing idronics into was it. released The water in January absorbs 2007 the and heat distributed from room to airover and80,000 carries people it back in North to a chillerAmerica. that It extractsfocused onthe the heat topic and hydraulic rejects separation.it outside From thethe building. feedback After received, being it’sre-cooled, evident wethe attained water returns our goal back of explaining to the room— the benefits completingand proper the application cooling cycle. of this modern design technique for hydronic systems. A Technical Journal WithIf you advances haven’t inyet technology, received a copyhydronic of idronics cooling #1, is you no canlonger do solimited by sending to high- in the from risesattached and other reader large response commercial card, or buildings. by registering Improvements online at www.caleffi.us in chilled-water. The publication will be mailed to you free of charge. You can also download the Caleffi Hydronic Solutions generators,complete journaldistribution as a PDFequipment file from and our pipingWeb site.
    [Show full text]