General Disclaimer One Or More of the Following Statements May Affect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unknown Amorphous Carbon II. LRS SPECTRA the Sample Consists Of
Table I A summary of the spectral -features observed in the LRS spectra of the three groups o-f carbon stars. The de-finition o-f the groups is given in the text. wavelength Xmax identification Group I B - 12 urn E1 9.7 M™ Silicate 12 - 23 jim E IB ^m Silicate Group II < 8.5 M"i A C2H2 CS? 12 - 16 f-i/n A 13.7 - 14 Mm C2H2 HCN? 8 - 10 Mm E 8.6 M"i Unknown 10 - 13 Mm E 11.3 - 11 .7 M«> SiC Group III 10 - 13 MJn E 11.3 - 11 .7 tun SiC B - 23 Htn C Amorphous carbon 1 The letter in this column indicates the nature o-f the -feature: A = absorption; E = emission; C indicates the presence of continuum opacity. II. LRS SPECTRA The sample consists of 304 carbon stars with entries in the LRS catalog (Papers I-III). The LRS spectra have been divided into three groups. Group I consists of nine stars with 9.7 and 18 tun silicate features in their LRS spectra pointing to oxygen-rich dust in the circumstellar shell. These sources are discussed in Paper I. The remaining stars all have spectra with carbon-rich dust features. Using NIR photometry we have shown that in the group II spectra the stellar photosphere is the dominant continuum. The NIR color temperature is of the order of 25OO K. Paper II contains a discussion of sources with this class of spectra. The continuum in the group III spectra is probably due to amorphous carbon dust. -
The Planets for 1955 24 Eclipses, 1955 ------29 the Sky and Astronomical Phenomena Month by Month - - 30 Phenomena of Jupiter’S S a Te Llite S
THE OBSERVER’S HANDBOOK FOR 1955 PUBLISHED BY The Royal Astronomical Society of Canada C. A. C H A N T, E d ito r RUTH J. NORTHCOTT, A s s is t a n t E d ito r DAVID DUNLAP OBSERVATORY FORTY-SEVENTH YEAR OF PUBLICATION P r i c e 50 C e n t s TORONTO 13 Ross S t r e e t Printed for th e Society By the University of Toronto Press THE ROYAL ASTRONOMICAL SOCIETY OF CANADA The Society was incorporated in 1890 as The Astronomical and Physical Society of Toronto, assuming its present name in 1903. For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal and Quebec, P.Q.; Ottawa, Toronto, Hamilton, London, and Windsor, Ontario; Winnipeg, Man.; Saskatoon, Sask.; Edmonton, Alta.; Vancouver and Victoria, B.C. As well as nearly 1000 members of these Canadian Centres, there are nearly 400 members not attached to any Centre, mostly resident in other nations, while some 200 additional institutions or persons are on the regular mailing list of our publications. The Society publishes a bi-monthly J o u r n a l and a yearly O b s e r v e r ’s H a n d b o o k . Single copies of the J o u r n a l are 50 cents, and of the H a n d b o o k , 50 cents. Membership is open to anyone interested in astronomy. Annual dues, $3.00; life membership, $40.00. -
Cosmic Evolution Through Uv Surveys (Cetus) Final Report
COSMIC EVOLUTION THROUGH UV SURVEYS (CETUS) FINAL REPORT Thematic Activity: Project (probe mission concept) Program: Electromagnetic observations from space Authors of Final Report: Jonathan Arenberg, Northrop Grumman Corporation Sally Heap, Univ. of Maryland, [email protected] Tony Hull, Univ. of New Mexico Steve Kendrick, Kendrick Aerospace Consulting LLC Bob Woodruff, Woodruff Consulting Scientific Contributors: Maarten Baes, Rachel Bezanson, Luciana Bianchi, David Bowen, Brad Cenko, Yi-Kuan Chiang, Rachel Cochrane, Mike Corcoran, Paul Crowther, Simon Driver, Bill Danchi, Eli Dwek, Brian Fleming, Kevin France, Pradip Gatkine, Suvi Gezari, Lea Hagen, Chris Hayward, Matthew Hayes, Tim Heckman, Edmund Hodges-Kluck, Alexander Kutyrev, Thierry Lanz, John MacKenty, Steve McCandliss, Harvey Moseley, Coralie Neiner, Goren Östlin, Camilla Pacifici, Marc Rafelski, Bernie Rauscher, Jane Rigby, Ian Roederer, David Spergel, Dan Stark, Alexander Szalay, Bryan Terrazas, Jonathan Trump, Arjun van der Wel, Sylvain Veilleux, Kate Whitaker, Isak Wold, Rosemary Wyse Technical Contributors: Jim Burge, Kelly Dodson, Chip Eckles, Brian Fleming, Jamie Kennea, Gerry Lemson, John MacKenty, Steve McCandliss, Greg Mehle, Shouleh Nikzad, Trent Newswander, Lloyd Purves, Manuel Quijada, Ossy Siegmund, Dave Sheikh, Phil Stahl, Ani Thakar, John Vallerga, Marty Valente, the Goddard IDC/MDL. September 2019 Cosmic Evolution Through UV Surveys (CETUS) TABLE OF CONTENTS INTRODUCTION TO CETUS ................................................................................................................ -
A Review of the Disc Instability Model for Dwarf Novae, Soft X-Ray Transients and Related Objects a J.M
A review of the disc instability model for dwarf novae, soft X-ray transients and related objects a J.M. Hameury aObservatoire Astronomique de Strasbourg ARTICLEINFO ABSTRACT Keywords: I review the basics of the disc instability model (DIM) for dwarf novae and soft-X-ray transients Cataclysmic variable and its most recent developments, as well as the current limitations of the model, focusing on the Accretion discs dwarf nova case. Although the DIM uses the Shakura-Sunyaev prescription for angular momentum X-ray binaries transport, which we know now to be at best inaccurate, it is surprisingly efficient in reproducing the outbursts of dwarf novae and soft X-ray transients, provided that some ingredients, such as irradiation of the accretion disc and of the donor star, mass transfer variations, truncation of the inner disc, etc., are added to the basic model. As recently realized, taking into account the existence of winds and outflows and of the torque they exert on the accretion disc may significantly impact the model. I also discuss the origin of the superoutbursts that are probably due to a combination of variations of the mass transfer rate and of a tidal instability. I finally mention a number of unsolved problems and caveats, among which the most embarrassing one is the modelling of the low state. Despite significant progresses in the past few years both on our understanding of angular momentum transport, the DIM is still needed for understanding transient systems. 1. Introduction tems using Doppler tomography techniques (Steeghs et al. 1997; Marsh and Horne 1988; see also Marsh and Schwope Dwarf novae (DNe) are cataclysmic variables (CV) that 2016 for a recent review). -
Present Status and Future Directions of the EVN
http://www.evlbi.org/ Present status and future directions of the EVN Michael Lindqvist, Onsala Space Observatory Zsolt Paragi, JIVE Onsala Space Observatory http://www.evlbi.org/ Thanks Tasso! Onsala Space Observatory http://www.evlbi.org/ VLBI science • Radio jet & black hole physics • Radio source evolution • Astrometry • Galactic and extra-galactic masers • Gravitational lenses • Supernovae and gamma-ray-burst studies • Nearby and distant starburst galaxies • Nature of faint radio source population • HI absorption studies in AGN • Space science VLBI • Transients • SETI Onsala Space Observatory http://www.evlbi.org/ Description of the EVN • The European VLBI Network (EVN) was formed in 1980. Today it includes 15 major institutes, including the Joint Institute for VLBI ERIC, JIVE • JIVE operates EVN correlator. JIVE is also involved in supporting EVN users and operations of EVN as a facility. JIVE has officially been established as an European Research Infrastructure Consortium (ERIC). • The EVN operates an “open sky” policy • No standing centralised budget for the EVN - distributed European facility Onsala Space Observatory http://www.evlbi.org/ The network Onsala Space Observatory http://www.evlbi.org/ EVN and e-VLBI From tape reel to intercontinental light paths • Pieces falling into place around 2003: – Introduction of Mark5 recording system (game changer) by Haystack Observatory – Emergence of high bandwidth optical fibre networks e-VLBI JIVE Hot scienceJIVE • The development of e-VLBI has been spearheaded by the JIVE/EVN (EXPReS, Garrett) • In this way, the EVN/JIVE is a recognized SKA pathfinder Onsala Space Observatory http://www.evlbi.org/ e-VLBI - rapid turn-around • e-VLBI has made rapid turn-around possible – X-ray, γ-ray binaries in flaring states (including novae) – AGN γ-ray outbursts — locus of VHE emission – Other high-energy flaring (e.g., Crab) – Outbursts in Mira variables (spectral-line) – Just-exploded GRBs, SNe – Binaries (incl. -
407 a Abell Galaxy Cluster S 373 (AGC S 373) , 351–353 Achromat
Index A Barnard 72 , 210–211 Abell Galaxy Cluster S 373 (AGC S 373) , Barnard, E.E. , 5, 389 351–353 Barnard’s loop , 5–8 Achromat , 365 Barred-ring spiral galaxy , 235 Adaptive optics (AO) , 377, 378 Barred spiral galaxy , 146, 263, 295, 345, 354 AGC S 373. See Abell Galaxy Cluster Bean Nebulae , 303–305 S 373 (AGC S 373) Bernes 145 , 132, 138, 139 Alnitak , 11 Bernes 157 , 224–226 Alpha Centauri , 129, 151 Beta Centauri , 134, 156 Angular diameter , 364 Beta Chamaeleontis , 269, 275 Antares , 129, 169, 195, 230 Beta Crucis , 137 Anteater Nebula , 184, 222–226 Beta Orionis , 18 Antennae galaxies , 114–115 Bias frames , 393, 398 Antlia , 104, 108, 116 Binning , 391, 392, 398, 404 Apochromat , 365 Black Arrow Cluster , 73, 93, 94 Apus , 240, 248 Blue Straggler Cluster , 169, 170 Aquarius , 339, 342 Bok, B. , 151 Ara , 163, 169, 181, 230 Bok Globules , 98, 216, 269 Arcminutes (arcmins) , 288, 383, 384 Box Nebula , 132, 147, 149 Arcseconds (arcsecs) , 364, 370, 371, 397 Bug Nebula , 184, 190, 192 Arditti, D. , 382 Butterfl y Cluster , 184, 204–205 Arp 245 , 105–106 Bypass (VSNR) , 34, 38, 42–44 AstroArt , 396, 406 Autoguider , 370, 371, 376, 377, 388, 389, 396 Autoguiding , 370, 376–378, 380, 388, 389 C Caldwell Catalogue , 241 Calibration frames , 392–394, 396, B 398–399 B 257 , 198 Camera cool down , 386–387 Barnard 33 , 11–14 Campbell, C.T. , 151 Barnard 47 , 195–197 Canes Venatici , 357 Barnard 51 , 195–197 Canis Major , 4, 17, 21 S. Chadwick and I. Cooper, Imaging the Southern Sky: An Amateur Astronomer’s Guide, 407 Patrick Moore’s Practical -
The Argonne Leadership Computing Facility Scott Parker Argonne and the Blue Gene
The Argonne Leadership Computing Facility Scott Parker Argonne and the Blue Gene . 2005: – Argonne accepts 1 rack (1024 nodes) of Blue Gene/L (5.6 TF) . 2006: – Argonne Leadership Computing Facility (ALCF) created . 2008: – ALCF accepts 40 racks (160k nodes) of Blue Gene/P (557 TF) . 2009: – ALCF approved for 10 petaflop system to be delivered in 2012 . 2012 – 10 PF Mira Blue Gene/Q hardware delivered to ALCF . 2013: – Mira in production 2 ALCF Systems . Mira – BG/Q system – 49,152 nodes / 786,432 cores – 768 TB of memory – Peak flop rate: 10 PF – Linpack flop rate: 8.6 PF (#5 Top 500) . Cetus & Vesta (T&D) - BG/Q systems – 4K & 2k nodes / 64k & 32k cores – 64 TB & 32 TB of memory – 820 TF & 410 TF peak flop rate . Tukey – Nvidia system – 100 nodes / 1600 x86 cores/ 200 M2070 GPUs – 6.4 TB x86 memory / 1.2 TB GPU memory – Peak flop rate: 220 TF . Storage – 30 PB capacity, 240 GB/s bw (GPFS) – Storage upgrade planned in 2015 3 ALCF Systems (16) DDN 12Ke couplets – Scratch – 28 PB (raw), 240 GB/s Mira Infiniband 48 racks/768K cores 10 PF I/O Switch Switch (3) DDN 12Ke couplets – Home – 1.8 PB (raw), 45 GB/s Cetus (Dev) 4 rack/64K cores Complex I/O 820 TF Tape Library – 16 PB (raw) Tukey (Viz) 100 nodes/1600 cores 200 NVIDIA GPUs 220 TF Networks – 100Gb (via ESnet, internet2 UltraScienceNet, ) IB Switch (1) DDN 12Ke – 600 TB (raw), 15 GB/s Vesta (Dev) 2 racks/32K cores I/O 410 TF 4 Blue Gene DNA . -
WASP-26B: a 1-Jupiter-Mass Planet Around an Early-G-Type Star B
A&A 520, A56 (2010) Astronomy DOI: 10.1051/0004-6361/201014705 & c ESO 2010 Astrophysics WASP-26b: a 1-Jupiter-mass planet around an early-G-type star B. Smalley1,D.R.Anderson1, A. Collier Cameron2, M. Gillon3,4, C. Hellier1,T.A.Lister5,P.F.L.Maxted1, D. Queloz4,A.H.M.J.Triaud4,R.G.West6,S.J.Bentley1,B.Enoch2,F.Pepe4, D. L. Pollacco7, D. Segransan4,A.M.S.Smith1, J. Southworth1,S.Udry4,P.J.Wheatley8,P.L.Wood1, and J. Bento8 1 Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK e-mail: [email protected] 2 School of Physics and Astronomy, University of St. Andrews, North Haugh, Fife, KY16 9SS, UK 3 Institut d’Astrophysique et de Géophysique, Université de Liège, 17 Allée du 6 Août, Bât. B5C, Liège 1, Belgium 4 Observatoire de Genève, Université de Genève, 51 Chemin des Maillettes, 1290 Sauverny, Switzerland 5 Las Cumbres Observatory, 6740 Cortona Dr. Suite 102, Santa Barbara, CA 93117, USA 6 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK 7 Astrophysics Research Centre, School of Mathematics & Physics, Queen’s University, University Road, Belfast, BT7 1NN, UK 8 Department of Physics, University of Warwick, Coventry CV4 7AL, UK Received 1 April 2010 / Accepted 24 June 2010 ABSTRACT We report the discovery of WASP-26b, a moderately over-sized Jupiter-mass exoplanet transiting its 11.3-mag early-G-type host star (1SWASP J001824.70-151602.3; TYC 5839-876-1) every 2.7566 days. A simultaneous fit to transit photometry and radial-velocity measurements yields a planetary mass of 1.02 ± 0.03 MJup and radius of 1.32 ± 0.08 RJup. -
Bo\" Otes IV: a New Milky Way Satellite Discovered in the Subaru Hyper
Publ. Astron. Soc. Japan (2014) 00(0), 1–13 1 doi: 10.1093/pasj/xxx000 Bootes¨ IV: A New Milky Way Satellite Discovered in the Subaru Hyper Suprime-Cam Survey and Implications for the Missing Satellite Problem Daisuke Homma1, Masashi Chiba2, Yutaka Komiyama1,3, Masayuki Tanaka1, Sakurako Okamoto1,7, Mikito Tanaka4, Miho N. Ishigaki5,2, Kohei Hayashi6, Nobuo Arimoto7,10, Scott G. Carlsten8, Robert H. Lupton8, Michael A. Strauss8, Satoshi Miyazaki1,3, Gabriel Torrealba9, Shiang-Yu Wang9, and Hitoshi Murayama5 1National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan 2Astronomical Institute, Tohoku University, Aoba-ku, Sendai 980-8578, Japan 3The Graduate University for Advanced Studies, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan 4Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University, 184-8584 Tokyo, Japan 5Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan 6ICRR, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan 7Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA 8Princeton University Observatory, Peyton Hall, Princeton, NJ 08544, USA 9Institute of Astronomy and Astrophysics, Academia Sinica, Taipei, 10617, Taiwan 10Astronomy Program, Department of Physics and Astronomy, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Korea ∗E-mail: [email protected] Received hreception datei; Accepted hacception datei Abstract We report on the discovery of a new Milky Way (MW) satellite in Bootes¨ based on data from the on-going Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP). -
FOUR EARTH-SIZED PLANETS FOUND at Nearest Sun-Like Star the Nearest Sun-Like Star Is Tau Ceti, Only 12 Light-Years Away
FOUR EARTH-SIZED PLANETS FOUND at nearest Sun-like star The nearest Sun-like star is Tau Ceti, only 12 light-years away. It’s now known to have at least 4 planets orbiting it, with relatively small masses, tantalizingly close to Earth’s mass. An international team of astronomers has discovered four Earth-sized planets orbiting the nearest Sun-like star, Tau Ceti, only about 12 light-years away and visible to the unaided eye. They found the planets by observing tiny wobbles in the star as it appears in our sky, indicating the pull of gravity from unseen planets, and they hailed the discovery as an advance in the technology used to discover planets via this method. A paper describing these researchers’ study has been accepted for publication in the peer-reviewed Astrophysical Journal and is available online as of August 7, 2017. Coauthor Steven Vogt, professor of Illustration comparing the 4 newly detected planets orbiting the nearby star tau astronomy and astrophysics at UC Santa Ceti (top) with the inner planets of our solar system (bottom) Cruz, commented: We are now finally crossing a threshold where, through very sophisticated modelling of large combined data sets from multiple independent observers, we can disentangle the noise due to stellar surface activity from the very tiny signals generated by the gravitational tugs from Earth-sized orbiting planets. Tau Ceti is a rather faint star in the constellation Cetus the Whale – only 3.5 magnitude – but it is visible to the unaided eye in a dark sky. Lead author Fabo Feng of the University of Hertfordshire, UK, said astronomers are getting “tantalizingly close” to being able to detect true Earth analogs, that is, a world like Earth, perhaps with oceans on its surface, perhaps even with life. -
Cetus: a Source-To-Source Compiler Infrastructure
!"#$%&'('%)$*!"+#)+%)$*!"'!),-./"*' .01*(%#*$!#$*"'1)*',$/#.!)*"%' ! ! ! "#$%#!"&'()%!*+,!"#-.&+)!/#.0&%%&1+%2! 3,$4*)&1+*5!1.!-#.%1+*5!$%#!16!)(&%!0*)#.&*5!&%!-#.0&))#,!7&)(1$)!6##8!-.19&,#,!%$4(! $%#2!:;!&%!+1)!0*,#!61.!-.16&)<!=;!&+45$,#%!)(&%!+1)&4#!*+,!*!6$55!4&)*)&1+!)1!)(#!1.&'&+*5! 71.>!1+!)(#!6&.%)!-*'#!16!)(#!41-?<!*+,!@;!,1#%!+1)!&0-5?!A333!#+,1.%#0#+)!16!*+?! )(&.,B-*.)?!-.1,$4)%!1.!%#.9&4#%C!D$)(1.%!*+,!)(#&.!410-*+&#%!*.#!-#.0&))#,!)1!-1%)! )(#&.!A333B41-?.&'()#,!0*)#.&*5!1+!)(#&.!17+!E#F!%#.9#.%!7&)(1$)!-#.0&%%&1+8! -.19&,#,!)(*)!)(#!A333!41-?.&'()!+1)&4#!*+,!*!6$55!4&)*)&1+!)1!)(#!1.&'&+*5!71.>! *--#*.!1+!)(#!6&.%)!%4.##+!16!)(#!-1%)#,!41-?C! ! /#.0&%%&1+!)1!.#-.&+)G.#-$F5&%(!)(&%!0*)#.&*5!61.!4100#.4&*58!*,9#.)&%&+'8!1.! -.101)&1+*5!-$.-1%#%!1.!61.!4.#*)&+'!+#7!4155#4)&9#!71.>%!61.!.#%*5#!1.! .#,&%).&F$)&1+!0$%)!F#!1F)*&+#,!6.10!A333!F?!7.&)&+'!)1!)(#!A333!A+)#55#4)$*5! /.1-#.)?!"&'()%!H66&4#8!IIJ!K1#%!L*+#8!/&%4*)*7*?8!MN!OPPJIBI:I:!1.!-$F%B -#.0&%%&1+%Q&###C1.'C!R1-?.&'()!S!=OOT!A333C!D55!.&'()%!.#%#.9#,C! ! DF%).*4)&+'!*+,!L&F.*.?!U%#2! DF%).*4)&+'!&%!-#.0&))#,!7&)(!4.#,&)!)1!)(#!%1$.4#C!L&F.*.&#%!*.#!-#.0&))#,!)1! -(1)141-?!61.!-.&9*)#!$%#!16!-*).1+%8!-.19&,#,!)(#!-#.B41-?!6##!&+,&4*)#,!&+!)(#! 41,#!*)!)(#!F1))10!16!)(#!6&.%)!-*'#!&%!-*&,!)(.1$'(!)(#!R1-?.&'()!R5#*.*+4#!R#+)#.8! ===!"1%#711,!V.&9#8!V*+9#.%8!WD!O:T=@C! ! ! R&)*)&1+2! R(&.*'!V*9#8!K*+%*+'!X*#8!Y#$+'BN*&!W&+8!Y#?1+'!L##8!"$,156!3&'#+0*++8!Y*0$#5! W&,>&668!ZR#)$%2!D!Y1$.4#B)1BY1$.4#!R10-&5#.!A+6.*%).$4)$.#!61.!W$5)&41.#%8Z! !"#$%&'(8!915C!I=8!+1C!:=8!--C!@[BI=8!V#4C!=OOT8!,1&2:OC::OTGWRC=OOTC@PJ! -
SS Cygni—A Nonlinear Look at 100 Years of AAVSO Data
138 Jevtic et al., JAAVSO Volume 31, 2003 SS Cygni—A Nonlinear Look at 100 Years of AAVSO Data N. Jevtic Physics Department, University of Connecticut, 2152 Hillside Rd. U-3046, Storrs, CT 06269 Janet A. Mattei AAVSO, 25 Birch Street, Cambridge, MA 02138 J. S. Schweitzer Physics Department, University of Connecticut, 2152 Hillside Rd. U-3046, Storrs, CT 06269 Presented at the 91st Annual Meeting of the AAVSO, October 2002 Abstract A full nonlinear time series analysis was conducted of ~100 years of visual observations from the American Association of Variable Star Observers (AAVSO) International Database for the cataclysmic variable SS Cygni. Intensity was obtained from the AAVSO magnitude data using: F(L) = 10 – (0.4 (visual magnitude) + 8.43). Intensity is a “better” dynamical variable because energy couples all the active degrees of freedom. An intensity phase space portrait was reconstructed in 3-D using time delay coordinates. A series of Poincare sections was obtained. The Poincare section return times suggest a long-term periodicity of ~52 years. We also obtained the times between outbursts in a more traditional manner, the outbursts being defined with respect to a baseline determined by the adjacent quiescent sections. Excellent agreement was found between these two approaches. An observed region of discrepancy is for an interval containing many lower amplitude shorter outbursts. Earlier reports using the O–C method indicated a long-term variation on the order of at least 100 years, thus it remains to be seen whether we are detecting a fundamental frequency or its first harmonic. 1. Introduction Observations of the brightness of a variable star over time result in a time series.