RADARSAT-1, RADARSAT-2 and RCM

Total Page:16

File Type:pdf, Size:1020Kb

RADARSAT-1, RADARSAT-2 and RCM RADARSAT-1, RADARSAT-2 and RCM Ahmed Mahmood, Satellite Operations, Canadian Space Agency GSCB Workshop, 18th –19th June 2009 ESA/ESRIN Frascati GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 Canadian EO Missions in Operation RADARSAT-1, C-Band SAR, launched November 1995, nominal 5.25 year mission, operational, Mission extension to 2012 RADARSAT-2, C-Band SAR, launched December 2007, nominal 7 year mission, 1st year of operation post commissioning SCISAT-1, Visible/Near-infrared Optical Imager, for atmospheric chemistry, launched August 2003, nominal 2 year mission, nominal operation ongoing GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 CSA Missions in Development •RCM – System requirements being developed with Industry for building a constellation of 3 small satellites to be launched 2014-2016 •PCW – Mission to provide unique temporal data with high spatial resolution over the whole northern circumpolar area (to be launched in 2014) •Chinook – The stratospheric wind study instrument project is in Phase A. GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 A Status Report On • 1. RADARSAT Archive Development Update • 2. RADARSAT-1 and -2 Mission Operations – Interoperability Status • 3. RCM – Mission Development Status GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 1.1 RADARSAT Archives • Archive System Upgrade – System upgrade for transcribing RADARSAT-1 data in computer compatible format. • Completed March 31st 2009, • “Lossless" Raw (vs. Standard) FRED (Framed Raw Expanded Data) format, • Common architecture with RADARSAT-2 archive. – RADARSAT-1 Archive transcription to the new system started on April 1st 2009. • Playback from Sony D1 to Direct Archiving System (DAS) unit, • DAS produces FRED Raw archive product, • Data stored on Petasite via Archive Management System (AMS) in RFC buffer, • Data will be re-catalogued via the ACS (Acquisition Cataloguing System) • New Archive Storage Reports will be generated and MMO database updated. GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 1.2 Archive Relocation Project • RADARSAT Archive Relocation – Objective : – Relocate the data archives and associated archive systems from the reception stations to CCRS (Booth St.) – Consolidate two archive systems at stations to one central location at Booth St. – Allow for ease of access, all raw data access completely under government control – Allow for ease of connection to data from external sites such as Polar Epsilon (future shared EO Ground Infrastructure) – PetaSite system (SAIT-1 tapes) to be replaced by LTO-4 based robotic library. GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 1.3 Current Status • Status – Basic components of system ordered and delivered – Preliminary design complete – Detailed design underway – Initial install/configuration underway GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 1.4 Milestones • Milestones – April/May 2009: Install/basic configuration – June 2009: Start moving current data holdings from Stations (PASS & GSS) to Booth St. – Move RADARSAT-1 Transcription System to Booth St. in Q1 09/10. – Complete increase in bandwidth to GSS and operational in Q3 09/10. – Move AMS systems from PASS/GSS to Booth St. in Q4 09/10. – Start initial operations in Q4 09/10. – Commence final operations April 2010. GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 2.1 Radarsat Mission Operations: RSAT-1 versus ENVISAT CSA and ESA signed a contingency agreement to which both parties agreed to provide access to each other’s sensors in case of a temporary failure of either Radarsat-1 or ENVISAT which does not exceed 90 days. CSA has developed an in-house ENVISAT ASAR data ordering capability which is based on ESA supplied tools (DESCW, EOLI). CSA provided ESA with a dedicated on-line access to RSAT-1 data ordering system (SPA, ODSys) to support large-volume orders from ESA in case of failure of ENVSAT. CSA and ESA participated in a cross-training exercise in April 2007 whereby CSA and ESA exchanged know-how on Radarsat-1 and ENVISAT ASAR operational data ordering tools and procedures. This resulted in a cost- effective implementation for CSA and ESA. CSA coordinated RSAT-1 contingency exercises in June 2007 with all operational partners (CCRS, CIS, MDA/GSI, CSA, ESA) for validating prescribed ASAR data ordering processes under contingency. ASAR level 1 processing performed on similar hardware platform as RSAT-1 PGS. Contingency agreement has not been executed to date by CSA or ESA. GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 2.2 Radarsat Mission Operations: RSAT-2 versus ENVISAT ASAR Similar objective as the CSA/ESA Contingency agreement for RSAT-1 Major difference is that a separate agreement is in place between MDA and ESA in case of temporary failure of RSAT-2 or ENVISAT. ASAR level 1 processing performed on similar hardware platform as RSAT-2 PGS. Contingency agreement has not been executed to date by MDA or ESA. GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 2.3 Radarsat Mission Operations: RSAT-2 GMES via HMA – RSAT-2 is a contributing mission to GMES – to harmonize operational access amongst GMES missions – use of common interfaces for data ordering, mission planning, discovery service, catalogue search, etc. – HMA concept definition phase concluded in July 2007. – ESA running a follow-on study to further develop the interfaces – Concurrently, the first group of GMES contributing missions is implementing the HMA interfaces in their ground segments – RSAT-2 is among this group, and MDA is beginning a project to implement the HMA catalogue interfaces which is scheduled to be completed in January 2010 GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 3.2 RCM Mission Status • Constellation of three SAR satellites to be launched in 2014, 2015, 2016 • RCM will be government-owned and operated • It will support maritime surveillance, disaster management and ecosystem monitoring and also provide C-band SAR data continuity beyond the expected lifetime of RADARSAT-2 • Phase B (preliminary design) is in progress • Requirements reviews (Mission, Space, and Ground) successfully held last February. ESA representatives attended • Phase B mid-term review scheduled for June 16th • Data Policy is under development • Interoperability with other missions is currently being discussed with Canadian users and in the near future will be coordinated with ESA GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009 GSCB Workshop, ESA/ESRIN (Frascati) 18th –19th June 2009.
Recommended publications
  • A New Satellite, a New Vision
    A New Satellite, a New Vision For more on RADARSAT-2 Canadian Space Agency Government RADARSAT Data Services 6767 Route de l’Aéroport Saint-Hubert, Quebec J3Y 8Y9 Tel.: 450-926-6452 [email protected] www.asc-csa.gc.ca MDA Geospatial Services 13800 Commerce Parkway Richmond, British Columbia V6V 2J3 Tel.: 604-244-0400 Toll free: 1-888-780-6444 [email protected] www.radarsat2.info Catalogue number ST99-13/2007 ISBN 978-1-100-15640-8 © Her Majesty the Queen in right of Canada, 2010 TNA H E C A D I A N SPA C E A G E N C Y A N D E A R T H O B S E R VAT I O N For a better understanding of our ocean, atmosphere, and land environments and how they interact, we need high-quality data provided by Earth observation satellites. RADARSAT-2 offers commercial and government users one of the world’s most advanced sources of space-borne radar imagery. It is the first commercial radar satellite to offer polarimetry, a capability that aids in identifying a wide variety of surface features and targets. To expand Canada’s technology leadership in Earth observation, the Canadian Space Agency is working with national and international partners on shared objectives to enhance • northern and remote-area surveillance • marine operations and oil spill monitoring • environmental monitoring and natural resource management • security and the protection of sovereignty • emergency and disaster management RADARSAT-2 is the next Canadian Earth observation success story. It is the result of collaboration between the Canadian Space Agency and the company MDA.
    [Show full text]
  • International Space Station Program Mobile Servicing System (MSS) To
    SSP 42004 Revision E Mobile Servicing System (MSS) to User (Generic) Interface Control Document Part I International Space Station Program Revision E, May 22, 1997 Type 1 Approved by NASA National Aeronautics and Space Administration International Space Station Program Johnson Space Center Houston, Texas Contract No. NAS15–10000 SSP 42004, Part 1, Revision E May 22, 1997 REVISION AND HISTORY PAGE REV. DESCRIPTION PUB. DATE C Totally revised Space Station Freedom Document into an International Space Station Alpha Document 03–14–94 D Revision D reference PIRNs 42004–CS–0004A, 42004–NA–0002, 42004–NA–0003, TBD 42004–NA–0004, 42004–NA–0007D, 42004–NA–0008A, 42004–NA–0009C, 42004–NA–0010B, 42004–NA–0013A SSP 42004, Part 1, Revision E May 22, 1997 INTERNATIONAL SPACE STATION PROGRAM MOBILE SERVICING SYSTEM TO USER (GENERIC) INTERFACE CONTROL DOCUMENT MAY 22, 1997 CONCURRENCE PREPARED BY: PRINT NAME ORGN SIGNATURE DATE CHECKED BY: PRINT NAME ORGN SIGNATURE DATE SUPERVISED BY (BOEING): PRINT NAME ORGN SIGNATURE DATE SUPERVISED BY (NASA): PRINT NAME ORGN SIGNATURE DATE DQA: PRINT NAME ORGN SIGNATURE DATE i SSP 42004, Part 1, Revision E May 22, 1997 NASA/CSA INTERNATIONAL SPACE STATION PROGRAM MOBILE SERVICING SYSTEM (MSS) TO USER INTERFACE CONTROL DOCUMENT MAY 22, 1997 Print Name For NASA DATE Print Name For CSA DATE ii SSP 42004, Part 1, Revision E May 22, 1997 PREFACE SSP 42004, Mobile Servicing System (MSS) to User Interface Control Document (ICD) Part I shall be implemented on all new Program contractual and internal activities and shall be included in any existing contracts through contract changes.
    [Show full text]
  • Core 1..44 Committee (PRISM::Advent3b2 9.00)
    House of Commons CANADA Standing Committee on Industry, Science and Technology INDU Ï NUMBER 024 Ï 2nd SESSION Ï 39th PARLIAMENT EVIDENCE Wednesday, March 5, 2008 Chair Mr. James Rajotte Also available on the Parliament of Canada Web Site at the following address: http://www.parl.gc.ca 1 Standing Committee on Industry, Science and Technology Wednesday, March 5, 2008 Ï (1535) I've been tracking the development of RADARSAT-2 for a [English] number of years and was invited to appear before the House of Commons Standing Committee on Foreign Affairs and International The Chair (Mr. James Rajotte (Edmonton—Leduc, CPC)): Trade in 2005 to speak about the Remote Sensing Space Systems We'll call this meeting to order. This is the 24th meeting of the Act, which was at that time called Bill C-25. At that time I was Standing Committee on Industry, Science and Technology. representing my previous employer, the Polaris Institute, and we Members, we have 13 votes at 5:30, so we'll have to end this raised concerns about the potential defence applications of meeting at 5:15. RADARSAT-2 and the need for its sensitive technology to be firmly controlled by the Canadian government. I believe our last guest is here. We have with us today four guests. The orders of the day today are, pursuant to Standing Order 108 In recent years my work has become more involved in promoting (2), for the study of the proposed sale of part of MacDonald, Canadian leadership and ensuring that the benefits of space and its Dettwiler and Associates Ltd.
    [Show full text]
  • For Immediate Release
    NEWS RELEASE FOR IMMEDIATE RELEASE October 17, 2018 MDA leaders outline opportunities, challenges for Canada in space Speech to the Greater Saskatoon Chamber of Commerce highlights innovation and economic upsides for Canada, if government acts to secure our place in space Saskatoon, SK – MDA, a Maxar Technologies company (formerly MacDonald, Dettwiler and Associates Ltd.) (NYSE: MAXR) (TSX: MAXR), today outlined that Canada’s role and potential involvement in the growing new space economy requires a full commitment from the Government of Canada for a new space strategy that would secure Canada’s place as a leader in space, Mike Greenley, the Group President of MDA, said in a speech to the Greater Saskatoon Chamber of Commerce. “We need a long-term, fully funded space plan for Canada that establishes the requisite funding to maintain and enhance our existing world-leading capabilities in AI-based space robotics, satellite communications, Earth observation and space science, while cultivating new areas of leadership. And we need it now, because there are pressing decisions that need to be made,” Greenley said. Greenley and Holly Johnson, the president’s business manager at MDA, made their presentation today in Saskatchewan to highlight the impact space has in the region, from Canadian Light Source Inc. to Calian SED Systems, a partner with MDA in the Don’t Let Go Canada campaign currently underway. Greenley and Johnson took advantage of their time in Saskatchewan to discuss MDA Launchpad, the company’s initiative to bring more Canadians companies on board the space industry. MDA has tasked senior leaders to deal with small- to medium-sized enterprises looking to collaborate with MDA.
    [Show full text]
  • Maxar 2020 Annual Report
    A message from Maxar CEO, Dan Jablonsky I would like to take this opportunity to provide a recap of last year’s performance, remind stockholders of our commitment to innovation and the path ahead, and end with a reminder of our commitment to value creation and our broader purpose. Despite the numerous challenges of the global COVID-19 pandemic, the year proved to be another important and successful year in our company’s journey. Maxar is a world leading space technology and intelligence company. We unlock the promise of space to help customers solve problems on Earth and beyond. In 2020, Maxar continued to lead the throughout the year, and we look forward industry in Earth Intelligence by providing to serving and growing with them in the critical data and insights that government years to come. Our team members are and commercial customers need to make passionate about the work we do and informed decisions in an increasingly believe strongly our Earth Intelligence and complex world. In Space Infrastructure, Space Infrastructure capabilities have the we continued to provide innovative ways power to change how we navigate and for our customers to support understand our changing world and explore communications and exploration across what’s beyond it. our planet and beyond, including the power needed to return to the moon and Mars. Our commitment to customers and their critical missions remained unwavering 1 annual shareholder letter 2020 PERFORMANCE AND KEY HIGHLIGHTS Managed well during the COVID-19 pandemic: One of the largest stories of the year was the global pandemic, and we remained steadfast in our efforts to protect our workforce while producing the products and solutions our partners need to complete their critical missions.
    [Show full text]
  • Loral Space & Communications Inc
    Table of Contents UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, D.C. 20549 Form 10-K ☒ ANNUAL REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 FOR THE FISCAL YEAR ENDED DECEMBER 31, 2020 OR ☐ TRANSITION REPORT PURSUANT TO SECTION 13 OR 15(d) OF THE SECURITIES EXCHANGE ACT OF 1934 Commission file number 1-14180 LORAL SPACE & COMMUNICATIONS INC. (Exact name of registrant specified in its charter) Jurisdiction of incorporation: Delaware IRS identification number: 87-0748324 600 Fifth Avenue New York, New York 10020 Telephone: (212) 697-1105 Securities registered pursuant to Section 12(b) of the Act: Title of each class Trading Symbol Name of each exchange on which registered Common stock, $.01 par value LORL Nasdaq Global Select Market Preferred Stock Purchase Rights Nasdaq Global Select Market Securities registered pursuant to Section 12(g) of the Act: None Indicate by check mark if the registrant is well-known seasoned issuer, as defined in Rule 405 of the Securities Act. Yes ◻ No ☒ Indicate by check mark if the registrant is not required to file reports pursuant to Section 13 or Section 15(d) of the Act. Yes ◻ No ☒ Indicate by check mark whether the registrant (1) has filed all reports required to be filed by Section 13 or 15(d) of the Securities Exchange Act of 1934 during the preceding 12 months (or for such shorter period that the registrant was required to file such reports), and (2) has been subject to such filing requirements for the past 90 days. Yes ☒ No ◻ Indicate by check mark whether the registrant has submitted electronically every Interactive Data File required to be submitted pursuant to Rule 405 of Regulation S-T (§ 232.405 of this chapter) during the preceding 12 months (or for such shorter period that the registrant was required to submit such files).
    [Show full text]
  • The RADARSAT-Constellation Mission (RCM)
    The RADARSAT-Constellation Mission (RCM) Dr. Heather McNairn Science and Technology Branch, ORDC [email protected] Daniel De Lisle RADARSAT Constellation Mission Manager Canadian Space Agency [email protected] Why Synthetic Aperture Radar (SAR)? The Physics: • At microwave frequencies, energy causes alignment of dipoles (sensitive to number of water molecules in target) • Characteristics of structure in target impacts how microwaves scatter (sensitive to roughness and canopy structure) The Operations: • At wavelengths of centimetres to metres in length, microwaves are unaffected by cloud cover and haze • As active sensors, SARs generate their own source of energy; can operate day or night and under low illumination conditions The Reality for Agriculture: • The backscatter intensity and scattering characteristics can be used to estimate amount of water in soils and crops, and tell us something about the type and condition of crops • The near-assurance of data collection is critical for time sensitive applications, in times of emergency (i.e. flooding), risk (i.e. disease), and for consistent measures over the entire growing season (i.e. monitoring crop condition) Why a RADARSAT Constellation? • The use of C-Band SAR has increased significantly since the launch of RADARSAT-1 • Many Government of Canada users have developed operational applications that deliver information and products to Canadians and the international community, based on RADARSAT • This constellation ensures C-Band continuity with improved system reliability, primarily to support current and future operational users • RCM is a government-owned mission, tailored to respond to Canadian Government needs for maritime surveillance, disaster management and ecosystem monitoring Improved stream flow forecasts1 Estimates of crop biomass2 AAFC’s annual crop inventory Produced by ACGEO Contact: [email protected] 1Bhuiyan, H.A.K.M, McNairn, H., Powers, J., and Merzouki, A.
    [Show full text]
  • RADARSAT-2 Provides Polarized Data, and Is the first RADARSAT-2 Spaceborne Commercial SAR to Offer Polarimetry Data
    R RADARSAT-1. RADARSAT-2 provides polarized data, and is the first RADARSAT-2 spaceborne commercial SAR to offer polarimetry data. The intent here is not to outline polarimetry theory, but to present the concepts in an intuitive manner so that those not familiar with RADARSAT-2, the second in a series of Canadian spaceborne Synthetic polarimetry can understand the benefits of polarimetry and the infor- Aperture Radar (SAR) satellites, was built by MacDonald Dettwiler, mation available in polarimetry data. Many articles are available that Richmond, Canada. RADARSAT-2, jointly funded by the Canadian discuss polarimetry theory, applications, and provide excellent back- Space Agency and MacDonald Dettwiler, represents a good example of ground information (Ulaby and Elachi, 1990; Touzi et al. 2004). public–private partnerships. RADARSAT-2 builds on the heritage of the Notwithstanding the inherent complexity of polarimetry, polarimetry RADARSAT-1 SAR satellite, which was launched in 1995. RADARSAT- in its simplest terms refers to the orientation of the radar wave relative 2 will be a single-sensor polarimetric C-band SAR (5.405 GHz). to the earth’s surface and the phase information between polarization RADARSAT-2 retains the same capability as RADARSAT-1. configurations. Morena et al., 2004 For example, the RADARSAT-2 has the same RADARSAT-1 is horizontally polarized meaning the radar wave (the imaging modes as RADARSAT-1, and as well, the orbit parameters will electric component of the radar wave) is horizontal to the earth’s sur- be the same thus allowing co-registration of RADARSAT-1 and face (Figure R1). In contrast, the ERS SAR sensor was vertically polar- RADARSAT-2 images.
    [Show full text]
  • Canadian Space
    COTS View Case Study: Space Station Robot Embeds Ada Despite rumors of its demise, Adas is at the heart of the International Space Station’s in-orbit Canadarm 2 where it assures software safety and reliability. The ISS-based, next-generation Canadarm 2, the key element Robert Dewar, President, Ada Core Technologies of the MSS, is a bigger, better, smarter version of Canadarm, the robotic arm that operates from the cargo bay of the Space Shuttle. hile safety-critical characteristics have been introduced This arm is capable of handling large payloads and assisting with into the design of many programming languages, Ada docking the space shuttle to the space station. The new arm, built Wis the language specifically targeted at “life-critical” specifically for the space station, is 17.6 meters (57.7 feet) long systems. Developed between 1975 and 1984 by the US Department when fully extended and has seven motorized joints, each of of Defense (DoD), Ada has been classically targeted for use in which operates as a complex real-time embedded control system. mission-critical embedded systems that emphasize safety, low cost, Canadarm 2 is “self-relocatable” and can move around the sta- and a near-perfect degree of reliability. The most important safety tion’s exterior like an inchworm. Each end of the arm is equipped features that make Ada ideal for development of fail-safe software with a specialized mechanism called a Latching End Effector that include its information-hiding capability, its ability to provide can lock its free end on one of many special fixtures, called Power re-useable code and its “strong typing”, which helps detect and Data Grapple Fixtures placed strategically around the station, and solve many types of coding errors at compile time, very early in then detach its other end and pivot it forward.
    [Show full text]
  • Canadian Progress Toward Marine and Coastal Applications of Synthetic Aperture Radar
    MARINE AND COASTAL APPLICATIONS OF SAR Canadian Progress Toward Marine and Coastal Applications of Synthetic Aperture Radar Paris W. Vachon, Paul Adlakha, Howard Edel, Michael Henschel, Bruce Ramsay, Dean Flett, Maria Rey, Gordon Staples, and Sylvia Thomas With Radarsat-1 presently in operation and Radarsat-2 approved, Canada is starting to develop synthetic aperture radar (SAR) applications that require imagery on an operational schedule. Sea ice surveillance is now a proven near–real-time application, and new marine and coastal roles for SAR imagery are emerging. Although some image quality and calibration issues remain to be addressed, ship detection and coastal wind field retrieval are now in demonstration phases, with significant participation from the Canadian private sector. (Keywords: Ice, Ocean, SAR, Ship, Wind.) INTRODUCTION The development of marine and coastal synthetic Inc.’s Ocean Monitoring Workstation (OMW) and aperture radar (SAR) applications in Canada has to IOSAT, Inc.’s Sentry, a transportable satellite ground date involved data from platforms such as the CV-580 station. In addition, the imaging of meteorological fea- airborne SAR, the European Remote Sensing (ERS) tures in SAR images over the ocean presents new satellite SARs, and the Radarsat SAR in research, dem- opportunities for both research and new operational onstration, and operational roles. An emerging theme applications. To better cater to the needs of offshore is the development of new operational applications as data users, Radarsat International, the commercial we approach the Envisat and Radarsat-2 eras. These Radarsat data distributor, has introduced new services new sensors will broaden the observation space (in for data programming, processing, and delivery.
    [Show full text]
  • RADARSAT-1 Standard Beam SAR Images Summary: This Data Set Is Derived from the Alaska SAR Facility's Archive of RADARSAT-1 Standard Beam SAR Data
    RADARSAT-1 Standard Beam SAR Images Summary: This data set is derived from the Alaska SAR Facility's archive of RADARSAT-1 Standard Beam SAR data. These data have been archived since shortly after the RADARSAT-1 launch in November 1995, with regular archiving starting in June 1996 after the commissioning phase was completed. The data represent how strongly the Earth's surface backscattered C-Band (5.66 cm wavelength) radar signals (see the SAR FAQ for more details). Most of the data cover ASF's station mask, approximated by a circle with radius 3000 km centered at Fairbanks, Alaska. ASF also archives data received at the McMurdo Station in Antarctica. Through ASF, approved U.S. RADARSAT-1 SAR researchers may obtain RADARSAT-1 data obtained by other ground stations and have that data processed at ASF as well. This foreign ground station data becomes part of the ASF data archive and is eventually available for order by other ASF approved researchers. RADARSAT-1 carries two tape recorders, each capable of recording 10 minutes of SAR data, so ASF also archives a significant amount of recorded out-of-mask data. The RADARSAT-1 Antarctic Mapping Mission (AMM) data represent one such example. In Antarctic mode, the RADARSAT-1 satellite was rotated such that the SAR was left-looking. RADARSAT-1 then recorded SAR data over the Antarctic continent and downlinked that data to ASF for processing and storage. The entire Antarctic continent was mapped. The AMM data is described more fully in the document for Radarsat-1 Standard Beam Left Looking RAMP Images.
    [Show full text]
  • RADARSAT-2 Data
    Article Figure 1a: Orthorectified RADARSAT-2 U2 data using RFM/RPC method without post-processing overlaid with Google Earth Automated High Accuracy Geometric Correction and Mosaicking without Ground Control Points RADARSAT-2 data Imagine a fully automated system used to produce accurate high resolution radar ortho-images and -mosaics all over the world with excellent reliability! Emergency management teams could then have access to highly-accurate radar data as soon as it becomes available for their time-sensitive needs. This was a difficult task in the past, mainly due to the arduous process of collecting ground control points (GCPs). It is now possible with the successful operation of the RADARSAT-2 satellite and a new 3D hybrid satellite model that process this data without user-collected GCPs. Philip Cheng and Thierry Toutin RADARSAT-2 satellite advancements that provide enhanced informa- Following the highly successful predecessor RADARSAT-2 is Canada’s second-generation com- tion for applications such as environmental RADARSAT-1 program (satellite launched in 1995), mercial Synthetic Aperture Radar (SAR) satel- monitoring, ice mapping, resource mapping, RADARSAT-2 was launched in December 14, 2007. lite and was designed with powerful technical disaster management, and marine surveillance. RADARSAT-2 is the world’s most advanced July/August 2010 22 Article Figure 1b: Orthorectified RADARSAT-2 U2 data using Toutin’s hybrid method without post-processing overlaid with Google Earth commercial C-band SAR satellite and heralds a Geometric Correction of RADARSAT-2 Since the RADARSAT-2 satellite has multiple GPS new era in satellite performance, imaging flexi- Data receivers on board with accurate real-time bility and product selection and service offer- For most SAR applications, it is required to positioning, this information could potentially ings.
    [Show full text]