Chapter 3: Natural Environment and Natural Assets UK Climate Change Risk Assessment 2017: Evidence Report

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 3: Natural Environment and Natural Assets UK Climate Change Risk Assessment 2017: Evidence Report Chapter 3: Natural environment and natural assets UK Climate Change Risk Assessment 2017: Evidence Report Chapter 3: Natural environment and natural assets Lead contributor: Iain Brown (University of York/Stockholm Environment Institute) Contributing authors: Richard Bardgett (University of Manchester), Pam Berry (University of Oxford), Ian Crute (Agriculture and Horticulture Development Board), James Morison (Forest Research), Mike Morecroft (Natural England), John Pinnegar (Centre for Environment, Fisheries and Aquaculture Science), Tim Reeder (Environment Agency), Kairsty Topp (Scotland’s Rural College) ASC contributor: David Thompson This report should be referenced as: Brown, I., Thompson, D., Bardgett, R., Berry, P., Crute, I., Morison, J., Morecroft, M., Pinnegar, J., Reeder, T., and Topp, K. (2016) UK Climate Change Risk Assessment Evidence Report: Chapter 3, Natural Environment and Natural Assets. Report prepared for the Adaptation Sub-Committee of the Committee on Climate Change, London. Implications of the vote to leave the European Union This chapter was written before the results of the EU Referendum were known. Leaving the European Union is unlikely to change the overall scale of current and future risks from climate change, but in some areas it may affect policies and programmes important to address climate- related vulnerabilities. If such policies and programmes are changed, it will be necessary for UK measures to achieve the same or improved outcomes to avoid an increase in risk. The Adaptation Sub-Committee will consider the impact of the EU Referendum and the Government’s response in its next statutory progress report on the UK National Adaptation Programme, to be published in June 2017. Chapter 3 – Natural environment and natural assets 1 UK Climate Change Risk Assessment 2017: Evidence Report Contents Key messages ............................................................................................................................................................... 5 3.1 Context .................................................................................................................................................................. 10 3.1.1 Purpose of chapter ......................................................................................................................................... 10 3.1.2 Approach to chapter ...................................................................................................................................... 10 3.1.3 Comparision with approach to CCRA1 .................................................................................................... 13 3.2 Terrestrial ecosystems ...................................................................................................................................... 13 3.2.1 Terrestrial species and habitats .................................................................................................................. 13 Context and policy .................................................................................................................................................... 14 Current risks and opportunities ........................................................................................................................... 16 Future risks and opportunities.............................................................................................................................. 21 Adaptation ................................................................................................................................................................... 25 3.2.2 Pollination ......................................................................................................................................................... 27 Context and policy .................................................................................................................................................... 27 Current risks and opportunities ........................................................................................................................... 28 Future risks and opportunities.............................................................................................................................. 29 Adaptation ................................................................................................................................................................... 30 3.3 Soils and land use ............................................................................................................................................... 31 3.3.1 Soils ...................................................................................................................................................................... 31 Context and policy .................................................................................................................................................... 31 Current risks and opportunities ........................................................................................................................... 33 Future risks and opportunities.............................................................................................................................. 37 Adaptation ................................................................................................................................................................... 39 3.3.2 Land availability and capability .................................................................................................................. 41 Context and policy .................................................................................................................................................... 41 Current risks and opportunities ........................................................................................................................... 43 Future risks and opportunities.............................................................................................................................. 44 Adaptation ................................................................................................................................................................... 50 3.3.3 Crop production .............................................................................................................................................. 51 Context and policy .................................................................................................................................................... 51 Current risks and opportunities ........................................................................................................................... 53 Future risks and opportunities.............................................................................................................................. 55 Adaptation ................................................................................................................................................................... 57 Chapter 3 – Natural environment and natural assets 2 UK Climate Change Risk Assessment 2017: Evidence Report 3.3.4 Livestock production ..................................................................................................................................... 61 Context and policy .................................................................................................................................................... 61 Current risks and opportunities ........................................................................................................................... 62 Future risks and opportunities.............................................................................................................................. 63 Adaptation ................................................................................................................................................................... 64 3.3.5 Trees, wood production and forestry services ...................................................................................... 65 Context and policy .................................................................................................................................................... 66 Current risks and opportunities ........................................................................................................................... 69 Future risks and opportunities.............................................................................................................................. 72 Adaptation ................................................................................................................................................................... 77 3.3.6 Wildfire ............................................................................................................................................................... 80 Context and policy .................................................................................................................................................... 80 Current risks and opportunities ........................................................................................................................... 80 Future risks and opportunities.............................................................................................................................
Recommended publications
  • The History of Planet Earth
    SECOND EDITION Earth’s Evolving The History of Systems Planet Earth Ronald Martin, Ph.D. University of Delaware Newark, Delaware © Jones & Bartlett Learning, LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION 9781284457162_FMxx_00i_xxii.indd 1 07/11/16 1:46 pm World Headquarters Jones & Bartlett Learning 5 Wall Street Burlington, MA 01803 978-443-5000 [email protected] www.jblearning.com Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com. Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associations, and other qualified organizations. For details and specific discount information, contact the special sales department at Jones & Bartlett Learning via the above contact information or send an email to [email protected]. Copyright © 2018 by Jones & Bartlett Learning, LLC, an Ascend Learning Company All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC, and such reference shall not be used for advertis- ing or product endorsement purposes.
    [Show full text]
  • Nature Based Solutions FEMA
    PROMOTING NATURE-BASED HAZARD MITIGATION THROUGH FEMA MITIGATION GRANTS ABBREVIATIONS ADCIRC – Advanced Circulation Model HGM Approach – Hydrogeomorphic Approach BCA – Benefit-Cost Analysis HMA – Hazard Mitigation Assistance BCR – Benefit-Cost Ratio HMGP – Hazard Mitigation Grant Program BRIC – Building Resilient Infrastructure and MSCP – Multiple Species Conservation Program Communities NBS – Nature-Based Solution C&CB – Capability- and Capacity-Building NFIP – National Flood Insurance Program CDBG-DR – Community Development Block Grant- Disaster Recovery NFWF – National Fish and Wildlife Foundation CDBG-MIT – Community Development Block NOAA – National Oceanic and Atmospheric Grant-Mitigation Administration D.C. – District of Columbia NOFO – Notice of Funding Opportunity DEM – Department of Emergency Management NPV – Net Present Value DOI – Department of the Interior SCC – State Coastal Conservancy EDYS – Ecological Dynamics Simulation SDG&E – San Diego Gas & Electric EMA – Emergency Management Agency SFHA – Special Flood Hazard Area EPA SWMM – Environmental Protection Agency SHMO – State Hazard Mitigation Officer Storm Water Management Model SLAMM – Sea Level Affecting Marshes Model FEMA – Federal Emergency Management Agency SRH-2D – Sedimentation and River Hydraulics – FIRM – Flood Insurance Rate Map Two-Dimension FMA – Flood Mitigation Assistance STWAVE – Steady-State Spectral Wave Model FMAG – Fire Management Assistance Grant TNC – The Nature Conservancy HAZUS – Hazards US USACE – U.S. Army Corps of Engineers HEC-HMS – Hydrologic
    [Show full text]
  • The Health and Social Benefits of Nature and Biodiversity Protection
    The Health and Social Benefits of Nature and Biodiversity Protection Executive Summary Patrick ten Brink, Konar Mutafoglu, Jean-Pierre Schweitzer, Marianne Kettunen, Clare Twigger-Ross, Yoline Kuipers, Manon Emonts, Liisa Tyrväinen, Teppo Hujala, Ann Ojala A project funded by the European Commission (ENV.B.3/ETU/2014/0039) Funded by the European Commission, DG Environment (ENV.B.3/ETU/2014/0039) Legal notice The contents and views contained in this report are those of the authors, and do not necessarily represent those of the European Commission. Cite this report: ten Brink P., Mutafoglu K., Schweitzer J.-P., Kettunen M., Twigger-Ross C., Kuipers Y., Emonts M., Tyrväinen L., Hujala T., Ojala A. (2016) The Health and Social Benefits of Nature and Biodiversity Protection – Executive summary. A report for the European Commission (ENV.B.3/ETU/2014/0039), Institute for European Environmental Policy, London / Brussels. Corresponding author: Patrick ten Brink – [email protected] Acknowledgements: This executive summary by the core author team builds on and benefits from the inputs by the wider study team – including Owen White and Jonathan Baker (Collingwood Environmental Planning), Irene Lucius and Magdalena Peneva (WWF Danube-Carpathian Programme), Holger Robrecht, Pamela Mühlmann and Elisa Kerschbaumer (ICLEI Europe), Rudolf de Groot (Wageningen University), the extensive literature cited, and the case studies, presentations and discussions at a stakeholder workshop held on the 27th and 28th of January 2016 in Brussels. A summary of the workshop and the presentations are available here. For the workshop, we would like to thank Roby Biwer, Carsten Brauns, and Martine Lartigue at the Committee of the Regions and the contributing participants.
    [Show full text]
  • The Solar System
    5 The Solar System R. Lynne Jones, Steven R. Chesley, Paul A. Abell, Michael E. Brown, Josef Durech,ˇ Yanga R. Fern´andez,Alan W. Harris, Matt J. Holman, Zeljkoˇ Ivezi´c,R. Jedicke, Mikko Kaasalainen, Nathan A. Kaib, Zoran Kneˇzevi´c,Andrea Milani, Alex Parker, Stephen T. Ridgway, David E. Trilling, Bojan Vrˇsnak LSST will provide huge advances in our knowledge of millions of astronomical objects “close to home’”– the small bodies in our Solar System. Previous studies of these small bodies have led to dramatic changes in our understanding of the process of planet formation and evolution, and the relationship between our Solar System and other systems. Beyond providing asteroid targets for space missions or igniting popular interest in observing a new comet or learning about a new distant icy dwarf planet, these small bodies also serve as large populations of “test particles,” recording the dynamical history of the giant planets, revealing the nature of the Solar System impactor population over time, and illustrating the size distributions of planetesimals, which were the building blocks of planets. In this chapter, a brief introduction to the different populations of small bodies in the Solar System (§ 5.1) is followed by a summary of the number of objects of each population that LSST is expected to find (§ 5.2). Some of the Solar System science that LSST will address is presented through the rest of the chapter, starting with the insights into planetary formation and evolution gained through the small body population orbital distributions (§ 5.3). The effects of collisional evolution in the Main Belt and Kuiper Belt are discussed in the next two sections, along with the implications for the determination of the size distribution in the Main Belt (§ 5.4) and possibilities for identifying wide binaries and understanding the environment in the early outer Solar System in § 5.5.
    [Show full text]
  • Students' Understanding of Connections Between Human
    International Journal Journal of Environmental of Environmental & Science & Educat Scienceion Education Vol. 5, No. 4, October 2010, 407-433 Vol. 3, No. 3, July 2008, xx-xx Students’ understanding of connections between human engineered and natural environmental systems Blakely K. Tsurusaki, Charles W. Anderson Received 23 July 2009; Accepted 30 April 2010 This research draws on developments in educational research where learning progressions are emerging as a strategy for synthesizing research on science learning and applying that research to policy and practice, and advances in the natural sciences, where interdisciplinary research on coupled human and natural systems has become increasingly important. It focuses on the human systems that supply all of our essential goods and services (i.e., food, water, transportation), which begin and end in the earth‘s natural systems. In order to investigate what students know about how human actions affect environmental systems, we developed assessments focusing on supply and waste disposal chains. In addition, students were asked about a major environmental issue – global warming. Assessments were administered to elementary, middle, and high school students from rural, suburban, and urban schools. Results from this study provide insight into how student knowledge of connections between human-engineered and natural systems varies across grade level and context, which is essential if we are to teach students to be responsible citizens and stewards of our environment. Keywords: connected natural
    [Show full text]
  • Glossary of Terms
    Glossary of Terms This glossary includes common words and phrases that the Biomimicry Institute often uses when talking about and teaching biomimicry. Most are true to definition, and some have a variation that is specific to their application in biomimicry. Term Definition A Abiotic Not associated with or derived from living organisms. Abiotic factors in an environment include sunlight, temperature, wind patterns, and precipitation, for example. Opposite of "biotic." Adaptation A feature of an organism that results from natural selection and by which the organism becomes better fitted to survive and reproduce in its environment. Analogous Similar in function and/or appearance but not in origin or development. B Biodiversity The variety of life and its processes; includes the variety of living organisms, the genetic differences among them, and the communities and ecosystems in which they occur. Biological Of or relating to biology or living organisms. Biologize [a question] To take a human need or function and rephrase it so that an answer may be found in biology, e.g., "How can I make the fabric red?" becomes, "How does nature create color?" Biomimicry The conscious emulation of life’s genius. Learning from and then emulating biological forms, processes, and ecosystems to create more sustainable designs. Biomimicry Taxonomy A function-based organization scheme cataloging how organisms meet different challenges. Information on AskNature.org is organized by this taxonomy. Biomorphic Sometimes confused with biomimicry, biomorphic describes anything resembling or suggesting the forms of living organisms. Biophilic / Biophilia Sometimes confused with biomimicry, biophilia is a term popularized by E.O. Wilson to describe the extent to which humans need connection with nature and other forms of life.
    [Show full text]
  • Biodiversity and the Natural Environment
    Biodiversity and the Natural QQI Level 5 (Component Award) Environment About the Course The Teagasc college at the National Botanic Gardens, Glasnevin are offering a QQI Level 5 component award in Biodiversity and the Natural Environment which will equip the learner with the knowledge, skills and competence to value the natural environment as a sustainable resource. The course will lead to a minor award at NFQ level 5 in Biodiversity and the Natural Environment. Who should Apply? This course is designed for people who are currently pursuing careers in Horticulture or other similar disciplines. This subject is worth 15 credits which can be counted towards further studies at Level 5. By taking other Level 5 modules, students may be able to build towards a full major award of QQI Level 5 Certificate in Horticulture. Module Content On completion of this module, students will be able to: • Explain environmental terminology. • Describe the role of water quality. • Describe the effects of human activity on the environment. • Explain the role of biodiversity. • Review the Wildlife Act. • Describe a habitat using tools • Prepare an environmental survey Course Structure The course will be offered in a one day session over a 10 week period from January to March. Each session will comprise of lectures and hands-on practical / demonstration exercises. Skills learned throughout the year will be assessed at regular intervals. Students will be supplied with appropriate PPE (Personal Protection Equipment) but they will be required to have safety boots and appropriate work trousers for each of the practical / demonstration sessions. Please contact the college of your choice for precise details on the course structure, delivery and current fees.
    [Show full text]
  • Impact of Trace Elements in the Natural Environment and Public Health: a Medical Geology Perspective
    Central Annals of Public Health and Research Short Communication *Corresponding author Emmanuel Arhin, Department of Earth and Environmental Science, University for Development Impact of Trace Elements in the Studies, Faculty of Applied Sciences, P. O. Box 24, Navrongo, Ghana, Tel: 233 24 2280826; Email: Natural Environment and Public Submitted: 07 July 2016 Accepted: 17 November 2016 Health: A Medical Geology Published: 19 November 2016 Copyright Perspective © 2016 Arhin al. OPEN ACCESS Emmanuel Arhin* and MS Zango Department of Earth and Environmental Science, University for Development Studies, Keywords Ghana • Trace elements • Datoko-Shega • Deficiency Abstract • Adverse health The distributions and concentrations of trace elements in the environment exposed • Potentially toxic elements to biological materials including humans can affect life depending on the exposure and degree of concentrations. Whilst the essential trace elements impacts on human development the potential toxic elements will have adverse health consequences on humans and in animals. As observed from the study both lives threatening and life supporting trace elements all coexist in the environment. Clinical reviews on trace elements suggest that human bodies require some amounts of them at all times and their deficiencies adversely impact on human health. Mineral supplementation had always been the recommendation for people with deficiency of some trace elements as a prescription drug. In this study X-ray fluorescence analytical technique was used to measure the trace elements in the sediment samples whereas ICP-MS was used for the soil samples. The trace elements in sediments and in soils at the study areas showed Zn, V, Mo, and Ni depletions in both areas.
    [Show full text]
  • Environmental Science
    Environmental Science Performance Expectation and Louisiana Connectors HS-EVS1-1 Analyze and interpret data to identify the factors that affect sustainable development and natural resource management in Louisiana. LC-HS-EVS1-1a Identify factors (e.g., human activity, population size, types of crops grown) that affect sustainable development in Louisiana. LC-HS-EVS1-1b Identify factors (e.g., human activity, population size, types of crops grown) that affect natural resource management in Louisiana. Science and Engineering Practice Disciplinary Core Idea Crosscutting Concept Analyzing and interpreting data: LOUISIANA’S NATURAL RESOURCES STABILITY AND CHANGE Analyzing data in 9-12 builds on K-8 Ecosystem capital can be characterized as goods (removable products) and services such as Change and rates of experiences and progresses to the functions and values of wetlands. (HS.EVS1A.a) change can be introducing more detailed statistical quantified and modeled analysis, the comparison of data Ecosystem attributes or services are important to value. over very short or very sets for consistency, and the use of Ecosystem capital are the resources or benefits provided by ecosystems that are needed for long periods of time. models to generate and analyze economic development. Some system changes data. Ecosystems provide different goods or removable products such as timber, food, medicines, are irreversible. • Analyze data using tools, and fuel. technologies, and/or models (e.g., Ecosystems serve important functions for human and wildlife (e.g., natural water filtration, Change and rates of computational, mathematical) in control of floods by absorbing extra runoff from heavy rains, providing animal habitats). change can be order to make valid and reliable Ecosystems provide social and cultural services such as recreation.
    [Show full text]
  • Who Speaks for the Future of Earth? How Critical Social Science Can Extend the Conversation on the Anthropocene
    http://www.diva-portal.org This is the published version of a paper published in Global Environmental Change. Citation for the original published paper (version of record): Lövbrand, E., Beck, S., Chilvers, J., Forsyth, T., Hedrén, J. et al. (2015) Who speaks for the future of Earth?: how critical social science can extend the conversation on the Anthropocene. Global Environmental Change, 32: 211-218 http://dx.doi.org/10.1016/j.gloenvcha.2015.03.012 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-43841 Global Environmental Change 32 (2015) 211–218 Contents lists available at ScienceDirect Global Environmental Change jo urnal homepage: www.elsevier.com/locate/gloenvcha Who speaks for the future of Earth? How critical social science can extend the conversation on the Anthropocene a, b c d a e Eva Lo¨vbrand *, Silke Beck , Jason Chilvers , Tim Forsyth , Johan Hedre´n , Mike Hulme , f g Rolf Lidskog , Eleftheria Vasileiadou a Department of Thematic Studies – Environmental Change, Linko¨ping University, 58183 Linko¨ping, Sweden b Department of Environmental Politics, Helmholtz Centre for Environmental Research – UFZ, Permoserstraße 15, 04318 Leipzig, Germany c School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK d Department of International Development, London School of Economics and Political Science, Houghton Street, London WC2A 2AE, UK e Department of Geography, King’s College London, K4L.07, King’s Building, Strand Campus, London WC2R 2LS, UK f Environmental Sociology Section, O¨rebro University, 701 82 O¨rebro, Sweden g Department of Industrial Engineering & Innovation Sciences, Technische Universiteit Eindhoven, P.O.
    [Show full text]
  • Conceptions of the Nature of Biology Held by Senior Secondary School
    Malaysian Online Journal of Educational Sciences 2017 (Volume5 - Issue 3 ) Conceptions of the Nature of Biology [1] Department of Science Education, University of Ilorin, Held by Senior Secondary School Ilorin, Nigeria P.M.B. 1515 Ilorin, Nigeria Biology Teachers in Ilorin, Kwara State, [email protected] Nigeria [2] Department of Science Education, University of Ilorin, Ilorin, Nigeria P.M.B. 1515 Ilorin, Nigeria Adegboye, Motunrayo Catherine[1], Ganiyu Bello [2], Isaac, O. [email protected] Abimbola[3] [3] Department of Science Education, University of Ilorin, Ilorin, Nigeria P.M.B. 1515 Ilorin, Nigeria ABSTRACT [email protected] There is a sustained public outcry against the persistent abysmal performance of students in biology and other science subjects at the Senior School Certificate Examinations conducted by the West African Examinations Council (WAEC) and the National Examinations Council (NECO). Biology is a unique science discipline with peculiar philosophical principles and methodology that are not applicable to other science disciplines. Understanding the unique structure of knowledge, principles and methodology for providing explanations in biology is sine qua-non for effective and efficiency teaching of biology by teachers, and meaningful learning by the students. This study, therefore, investigated the conceptions of the nature of biology held by biology teachers in Ilorin, Nigeria. The study adopted the descriptive research design of the survey type. A questionnaire entitled “Biology Teachers’ Conceptions of the Nature of Biology Questionnaire”(BTCNBQ) was designed by the researchers and used as the instrument for data collection. The population for the study comprised all the biology teachers in Ilorin, Nigeria. Simple random sampling technique was used to select two hundred and sixty (260) biology teachers from Ilorin, Nigeria.
    [Show full text]
  • Origin and Evolution of Earth Research Questions for a Changing Planet
    Origin and Evolution of Earth Research Questions for a Changing Planet Questions about the origins and nature of Earth have long preoccupied human thought and the scientific endeavor. Deciphering the planet’s history and processes could improve the abil- ity to predict catastrophes like earthquakes and volcanoes, to manage Earth’s resources, and to anticipate changes in climate and geologic processes. This report captures, in a series of questions, the essential scientific challenges that constitute the frontier of Earth science at the start of the 21st century. arth is an active place. Earthquakes rip along plate boundaries, volcanoes spew fountains of Emolten lava, and mountain ranges and seabed are constantly created and destroyed. Earth scientists have long been concerned with deciphering the history—and predicting the future—of this active planet. Over the past four decades, Earth scientists have made great strides in understanding Earth’s workings. Scientists have ever-improving tools to understand how Earth’s internal processes shape the planet’s surface, how life can be sustained over billions of years, and how geological, biological, atmospheric, and oceanic NASA/NDGC processes interact to produce climate—and climatic change. At the request of the U.S. Department of Energy, Na- tional Aeronautics and Space Administration, National Science Foundation, and U.S. Geological Survey, the National Research Council assembled a committee to propose and explore grand ques- tions in Earth science. This report, which is the result of the committee’s deliberations and input solicited from the Earth science community, describes ten “big picture” Earth science issues being pursued today.
    [Show full text]