Biodiversity Glossary
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions Http
Buzzle – Zoology Terms – Glossary of Biology Terms and Definitions http://www.buzzle.com/articles/biology-terms-glossary-of-biology-terms-and- definitions.html#ZoologyGlossary Biology is the branch of science concerned with the study of life: structure, growth, functioning and evolution of living things. This discipline of science comprises three sub-disciplines that are botany (study of plants), Zoology (study of animals) and Microbiology (study of microorganisms). This vast subject of science involves the usage of myriads of biology terms, which are essential to be comprehended correctly. People involved in the science field encounter innumerable jargons during their study, research or work. Moreover, since science is a part of everybody's life, it is something that is important to all individuals. A Abdomen: Abdomen in mammals is the portion of the body which is located below the rib cage, and in arthropods below the thorax. It is the cavity that contains stomach, intestines, etc. Abscission: Abscission is a process of shedding or separating part of an organism from the rest of it. Common examples are that of, plant parts like leaves, fruits, flowers and bark being separated from the plant. Accidental: Accidental refers to the occurrences or existence of all those species that would not be found in a particular region under normal circumstances. Acclimation: Acclimation refers to the morphological and/or physiological changes experienced by various organisms to adapt or accustom themselves to a new climate or environment. Active Transport: The movement of cellular substances like ions or molecules by traveling across the membrane, towards a higher level of concentration while consuming energy. -
6. Freshwater Flora and Fauna: Species Diversity, Community Structure and Ecology 6.1 Introduction 6.2 Vascular Plants
6. FRESHWATER FLORA AND FAUNA: SPECIES DIVERSITY, COMMUNITY STRUCTURE AND ECOLOGY 6.1 INTRODUCTION This chapter provides an in-depth focus on patterns of freshwater biodiversity in Maine (for an overview of aquatic taxa and ecosystems, see Chapter 3). The level of detail with which each taxonomic group is addressed reflects the amount of information available to MABP. Some groups, such as fish, odonates and mussels have been well-surveyed in Maine (Chapter 5) and the resulting data have resulted in a rich series of information analyses. Conversely, survey effort for other groups has been either patchy (e.g. caddisflies) or very limited (e.g. freshwater snails). In these cases, it is clear that there is much that we do not know about patterns of aquatic biodiversity in Maine – indeed it is likely that current species lists are significantly incomplete. Many of the findings presented here result from MABP-derived analyses using the composite MABP database; other information has been gleaned from various literature sources. 6.2 VASCULAR PLANTS Defining a list of “aquatic” plant species is problematic, particularly in the case of emergent plants. Species that grow entirely or largely below the water surface (e.g. many of the pondweeds [Potamogeton spp.], or the hornworts [Ceratophyllum spp.]) or float on the water surface (water lilies, duckweeds) are clearly obligate aquatic taxa. However, many emergent species straddle the often diffuse boundary between lakes (and streams) and palustrine wetlands. Others inhabit lake or river shores, where the habitat which may change over time from shallow water to being fully exposed. For the purposes of MABP, the decision to label a species as aquatic was based on habitat descriptions presented in Haines and Vining (1998) and Magee and Ahles (1999), supplemented by information provided by D. -
Flora and Fauna Impact Assessment
Flora and Fauna Impact Assessment Proposed Upgrade to the Air Services Australia Cooma Non-Directional Beacon (NDB). An ecological impact assessment prepared for Daly International SEPTEMBER 2010 Report No. EcIA 0180 Citation EnviroKey (2010) Flora and Fauna Impact Assessment: Proposed Upgrade to the Air Services Australia Cooma Non-Directional Beacon (NDB). A report prepared by of EnviroKey for Daly International. Report No. EcIA_0180. Final Version 22/09/2010. Commercial In Confidence All intellectual property rights, including copyright, in documents created by EnviroKey remain the property of EnviroKey. The information contained within this document is confidential. It may only be used by the person to whom it is provided for the stated purpose for which it is provided. The document must not be imparted to any third person without the prior written approval of EnviroKey. Disclaimer The scope of work for this report was defined by time and budgetary constraints and the availability of other reports and data. EnviroKey accept no liability or responsibility for or in respect of any use of or reliance upon this report and its supporting material in whole or in part by any third party. Information in this report is not intended to be a substitute for site specific assessment or legal advice in relation to any matter. PO Box 7231 Tathra NSW 2550 t 02 6494 5422 www.envirokey.com.au [email protected] ABN 35255478680 Executive Summary EnviroKey were engaged by Daly International to complete a Flora and Fauna Impact Assessment to determine the potential impacts to flora, fauna, threatened species, populations and communities and their habitats as a result of a proposed upgrade to the Air Services Australia Non-Directional Beacon (NDB) Facility at Cooma, NSW. -
The History of Planet Earth
SECOND EDITION Earth’s Evolving The History of Systems Planet Earth Ronald Martin, Ph.D. University of Delaware Newark, Delaware © Jones & Bartlett Learning, LLC, an Ascend Learning Company. NOT FOR SALE OR DISTRIBUTION 9781284457162_FMxx_00i_xxii.indd 1 07/11/16 1:46 pm World Headquarters Jones & Bartlett Learning 5 Wall Street Burlington, MA 01803 978-443-5000 [email protected] www.jblearning.com Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning directly, call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com. Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associations, and other qualified organizations. For details and specific discount information, contact the special sales department at Jones & Bartlett Learning via the above contact information or send an email to [email protected]. Copyright © 2018 by Jones & Bartlett Learning, LLC, an Ascend Learning Company All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learning, LLC. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement or recommendation by Jones & Bartlett Learning, LLC, and such reference shall not be used for advertis- ing or product endorsement purposes. -
LOCAL FLORA OR FAUNA Emphasizing Insects and Other Invertebrates BIO 225 – 001; BIO 225L – 020 Fall 2017
LOCAL FLORA OR FAUNA Emphasizing Insects and Other Invertebrates BIO 225 – 001; BIO 225L – 020 Fall 2017 Welcome to BIOLOGY 225! This course will introduce you to our local habitats, Flora, or fauna. In this section, we will be emphasizing insects and other invertebrates as we explore the Pineywoods ecoregion. Catalog description: Field studies oF local plants, animals, or Fungi and their native habitats. DiFFerent oFFerings oF the course will emphasize diFFerent organismal groups, e.g., plants, birds, reptiles, amphibians, arthropods, mammals, fish, or Fungi. Instructor: Dr. Dan Bennett Department: Biology Email: [email protected] Phone: 936-468-5163; OfFice: S-210 OfFice Hours: W 10:00-12:30; Th 2-4:30 and by appointment. Feel Free to stop by any time my door is open. I’m often in the back or in the room next door. Lecture: Tu, Th 1:00 – 1:50 (S-211); Lab: Tu 2:00 – 4:20 (S-211) Required texts: 1. Thorp, J. H. & D. C. Rogers. 2011. Freshwater Invertebrates oF North America. 2. Evans, A. V. 2007. Field Guide to Insects and Spiders oF North America. GRADING SUMMARY Exam I: 20% Exam II: 20% Exam III: 20% Quiz average: 14% Lab reports/assignments average: 20% Attendance & participation: 6% GRADING SCALE: J A = 90–100%; B = 80–89%; C = 70–79%; D = 60–69%; < 60% = F L EXAMS, QUIZZES, LAB REPORTS, AND ASSIGNMENTS: There will be three exams (including the final). Exams will cover content From both lab and lecture. Exams emphasize material since the previous exam, though there may be some comprehensive questions. -
Plant Evolution an Introduction to the History of Life
Plant Evolution An Introduction to the History of Life KARL J. NIKLAS The University of Chicago Press Chicago and London CONTENTS Preface vii Introduction 1 1 Origins and Early Events 29 2 The Invasion of Land and Air 93 3 Population Genetics, Adaptation, and Evolution 153 4 Development and Evolution 217 5 Speciation and Microevolution 271 6 Macroevolution 325 7 The Evolution of Multicellularity 377 8 Biophysics and Evolution 431 9 Ecology and Evolution 483 Glossary 537 Index 547 v Introduction The unpredictable and the predetermined unfold together to make everything the way it is. It’s how nature creates itself, on every scale, the snowflake and the snowstorm. — TOM STOPPARD, Arcadia, Act 1, Scene 4 (1993) Much has been written about evolution from the perspective of the history and biology of animals, but significantly less has been writ- ten about the evolutionary biology of plants. Zoocentricism in the biological literature is understandable to some extent because we are after all animals and not plants and because our self- interest is not entirely egotistical, since no biologist can deny the fact that animals have played significant and important roles as the actors on the stage of evolution come and go. The nearly romantic fascination with di- nosaurs and what caused their extinction is understandable, even though we should be equally fascinated with the monarchs of the Carboniferous, the tree lycopods and calamites, and with what caused their extinction (fig. 0.1). Yet, it must be understood that plants are as fascinating as animals, and that they are just as important to the study of biology in general and to understanding evolutionary theory in particular. -
MS-LS2-1 Ecosystems: Interactions, Energy, and Dynamics
MS-LS2-1 Ecosystems: Interactions, Energy, and Dynamics Students who demonstrate understanding can: MS-LS2-1. Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem. [Clarification Statement: Emphasis is on cause and effect relationships between resources and growth of individual organisms and the numbers of organisms in ecosystems during periods of abundant and scarce resources.] The performance expectation above was developed using the following elements from the NRC document A Framework for K-12 Science Education: Science and Engineering Disciplinary Core Ideas Crosscutting Concepts Practices LS2.A: Interdependent Relationships Cause and Effect in Ecosystems Analyzing and Interpreting Data Cause and effect relationships Analyzing data in 6–8 builds on K–5 Organisms, and populations of may be used to predict experiences and progresses to organisms, are dependent on their phenomena in natural or designed extending quantitative analysis to environmental interactions both with systems. other living things and with nonliving investigations, distinguishing between correlation and causation, and basic factors. statistical techniques of data and error In any ecosystem, organisms and analysis. populations with similar requirements Analyze and interpret data to for food, water, oxygen, or other provide evidence for phenomena. resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. Growth of organisms and population increases are limited by access to resources. Observable features of the student performance by the end of the course: 1 Organizing data a Students organize the given data (e.g., using tables, graphs, and charts) to allow for analysis and interpretation of relationships between resource availability and organisms in an ecosystem, including: i. -
Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland
Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland Davies, K. W., Boyd, C. S., Johnson, D. D., Nafus, A. M., & Madsen, M. D. (2015). Success of seeding native compared with introduced perennial vegetation for revegetating medusahead-invaded sagebrush rangeland. Rangeland Ecology & Management, 68(3), 224-230. doi:10.1016/j.rama.2015.03.004 0.1016/j.rama.2015.03.004 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Rangeland Ecology & Management 68 (2015) 224–230 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: http://www.elsevier.com/locate/rama Success of Seeding Native Compared with Introduced Perennial Vegetation for Revegetating Medusahead-Invaded Sagebrush Rangeland☆,☆☆ K.W. Davies a,⁎,C.S.Boyda,D.D.Johnsonb,A.M.Nafusc,M.D.Madsend a Rangeland Scientists, USDA—Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA 1 b Associate Professor, Oregon State University, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA c Research Associate, Oregon State University, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA d Ecologist, USDA—Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR 97720, USA 1 article info abstract Article history: Millions of hectares of Wyoming big sagebrush (Artemisia tridentata Nutt. subsp. wyomingensis Beetle Received 16 October 2014 &Young) rangeland have been invaded by medusahead (Taeniatherum caput-medusae [L.] Nevski), an exot- Accepted 2 March 2015 ic annual grass that degrades wildlife habitat, reduces forage production, and decreases biodiversity. Reveg- etation of medusahead-invaded sagebrush plant communities is necessary to restore ecosystem services. -
Nature Based Solutions FEMA
PROMOTING NATURE-BASED HAZARD MITIGATION THROUGH FEMA MITIGATION GRANTS ABBREVIATIONS ADCIRC – Advanced Circulation Model HGM Approach – Hydrogeomorphic Approach BCA – Benefit-Cost Analysis HMA – Hazard Mitigation Assistance BCR – Benefit-Cost Ratio HMGP – Hazard Mitigation Grant Program BRIC – Building Resilient Infrastructure and MSCP – Multiple Species Conservation Program Communities NBS – Nature-Based Solution C&CB – Capability- and Capacity-Building NFIP – National Flood Insurance Program CDBG-DR – Community Development Block Grant- Disaster Recovery NFWF – National Fish and Wildlife Foundation CDBG-MIT – Community Development Block NOAA – National Oceanic and Atmospheric Grant-Mitigation Administration D.C. – District of Columbia NOFO – Notice of Funding Opportunity DEM – Department of Emergency Management NPV – Net Present Value DOI – Department of the Interior SCC – State Coastal Conservancy EDYS – Ecological Dynamics Simulation SDG&E – San Diego Gas & Electric EMA – Emergency Management Agency SFHA – Special Flood Hazard Area EPA SWMM – Environmental Protection Agency SHMO – State Hazard Mitigation Officer Storm Water Management Model SLAMM – Sea Level Affecting Marshes Model FEMA – Federal Emergency Management Agency SRH-2D – Sedimentation and River Hydraulics – FIRM – Flood Insurance Rate Map Two-Dimension FMA – Flood Mitigation Assistance STWAVE – Steady-State Spectral Wave Model FMAG – Fire Management Assistance Grant TNC – The Nature Conservancy HAZUS – Hazards US USACE – U.S. Army Corps of Engineers HEC-HMS – Hydrologic -
Guide to Native Plants
- AA GUIDEGUIDE TOTO THETHE NATIVENATIVE PLANTS,PLANTS, NATURALNATURAL PLANTPLANT COMMUNITIESCOMMUNITIES ANDAND THETHE EXOTICEXOTIC ANDAND INVASIVEINVASIVE SPECIESSPECIES OFOF EASTEAST HAMPTONHAMPTON TOWNTOWN EAST HAMPTON TOWN Natural Resources Department TableTable ofof Contents:Contents: Spotted Beebalm (Monarda punctata) Narrative: Pages 1-17 Quick Reference Max Clearing Table: Page 18 Map: East Hampton Native Plant Habitats Map TABS: East Hampton Plant Habitats (1-12); Wetlands flora (13-15): 1. Outer Dunes Plant Spacing 2. Bay Bluffs 3. Amagansett Inner Dunes (AID) 4. Tidal Marsh (TM) Table: A 5. Montauk Mesic Forest (MMF) 6. Montauk Moorland (MM) guideline for the 7. North of Moraine Coastal Deciduous (NMCD) 8. Morainal Deciduous (MD) 9. Pine Barrens or Pitch Pine Oak Forest (PB) (PPO) number of 10. Montauk Grasslands (MG) 11. Northwest Woods (NWW) plants needed 12. Old Fields 13. Freshwater Wetlands 14. Brackish Wetlands and Buffer for an area: 15. East Hampton Wetland Flora by Type Page 19 Native Plants-Resistance to Deer Damage: Pages 20-21 Local Native Plant Landscapers, Arborists, Native Plant Growers and Suppliers: Pages 22-23 Exotic and Invasive Species: Pages 24-33 Native Wildflower Pictures: Pages 34-45 Samdplain Gerardia (Agalinas acuta) Introduction to our native landscape What is a native plant? Native plants are plants that are indigenous to a particular area or region. In North America we are referring to the flora that existed in an area or region before European settlement. Native plants occur within specific plant communities that vary in species composition depending on the habitat in which they are found. A few examples of habitats are tidal wetlands, woodlands, meadows and dunelands. -
Evaluating and Mitigating Introduction of Marine Non-Native Species Via Vessel Biofouling
ICES AD HOC REPORT 2019 ICES Viewpoint background document: Evaluating and mitigating introduction of marine non-native species via vessel biofouling Editors Bella S. Galil ● Cynthia McKenzie Authors Bella S. Galil ● Cynthia McKenzie ● Sarah Bailey Marnie Campbell ● Ian Davidson ● Lisa Drake ● Chad Hewitt Anna Occhipinti-Ambrogi ● Richard Piola International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: Galil, B.S., McKenzie, C., Bailey, S., Campbell M., Davidson, I., Drake, L., Hewitt, C., Occhipinti-Ambrogi, A., and Piola, R. 2019. ICES Viewpoint background document: Evaluating and mitigating introduction of marine non-native species via vessel bio- fouling. ICES Ad Hoc Report 2019. 17 pp. http://doi.org/10.17895/ices.pub.4680 For permission to reproduce material from this publication, please apply to the mate- rial in this report may be reused using the recommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this report, you must contact the original copyright holder for permission. For citation of datasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other reproduction requests please contact the General Secretary. The document is a report of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. -
A Conceptual Framework for Investigating Organizational Control and Resistance in Crowd-Based Platforms
Proceedings of the 50th Hawaii International Conference on System Sciences | 2017 A Conceptual Framework for Investigating Organizational Control and Resistance in Crowd-Based Platforms David A. Askay California Polytechnic State University [email protected] Abstract Crowd-based platforms coordinate action through This paper presents a research agenda for crowd decomposing tasks and encouraging individuals to behavior research by drawing from the participate by providing intrinsic (e.g., fun, organizational control literature. It addresses the enjoyment) and/or extrinsic (e.g., status, money, need for research into the organizational and social social interaction, etc.) motivators [3]. Three recent structures that guide user behavior and contributions Information Systems (IS) reviews of crowdsourcing in crowd-based platforms. Crowd behavior is research [6, 4, 7] emphasize the importance of situated within a conceptual framework of designing effective incentive systems. However, organizational control. This framework helps research on motivation is somewhat disparate, with scholars more fully articulate the full range of various categorizations and often inconsistent control mechanisms operating in crowd-based findings as to which incentives are the most effective platforms, contextualizes these mechanisms into the [4]. Moreover, this approach can be limited by its context of crowd-based platforms, challenges existing often deterministic and rational assumptions of user rational assumptions about incentive systems, and behavior and motivation, which overlooks normative clarifies theoretical constructs of organizational and social aspects of human behavior [8]. To more control to foster stronger integration between fully understand the dynamics of crowd behavior and information systems research and organizational and governance of crowd-based projects, IS researchers management science.